
Appl. Math. Inf. Sci. 14, No. 6, 977-984 (2020) 977

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140604

A Pseudo-Random Number Generator Using Double

Pendulum

Chokri Nouar ∗and Zine El Abidine Guennoun

Department of Mathematics, Mohamed V University in Rabat No. 4, Avenue Ibn Battouta B. P. 1014 RP, Rabat, Morocco

Received: 15 Oct. 2019, Revised: 3 Apr. 2020, Accepted: 6 May. 2020

Published online: 1 Nov. 2020

Abstract: Chaos in the double pendulum motion has been proved in several studies. Despite this useful cryptographic propriety, this

system has not been applied to cryptography yet. This paper presents a new pseudo random number generator based on a double

pendulum. Randomness of the numbers generated by the proposed generator is successfully tested by NIST and DIEHARDER tests.

The results of the security analysis asserted the appropriateness of the new generator for cryptographic applications.

Keywords: Chaotic systems, DIEHARDER, Double Pendulum, NIST, Pseudo-Random Number Generator.

1 Introduction

Recently, the pseudo random number generators have
become a ubiquitous tool used in numerous areas such as
numerical analysis, statistical sampling, gaming industry,
computer simulations, computer security (keygen,
captacha...), cryptography , ... etc. [1].

Chaotic dynamical systems are highly sensitive to
initial conditions and parameters [2]. This propriety
makes the pseudo random numbers generators based on
them appropriate for encryption algorithms. The idea of
designing a pseudo random numbers generator using
chaotic dynamical systems was proposed by Oishi and
Inoue in 1982 . Several pseudo random number
generators were suggested in their paper [3]. The double
pendulum is a dynamic chaotic system [4] that consists of
two-point masses at the end of light rods. It is a simple
physical system that exhibits a strong sensitivity to initial
conditions [5].

The motion of a double pendulum is given by a set of
ordinary differential equations [6]. First, we change the
continuous equations into discrete counterparts using the
Euler method with very small steps. Second, we collect
the Cartesian coordinates of the second mass; the couples
(x,y) of every moment. Then, we extract the numbers
starting form the fourth digit after the decimal point.

This paper presents a pseudo random number
generator based on a double pendulum. The produced
sequences were subjected to an experimental study to test
randomness and the chaotic behavior of the generator.
The sequences stream has successfully passed various
statistical tests, and the generator is highly sensitive to
one bit change in the keys.

The rest of this paper is organized as follows. In
section 2, the double pendulum and its motion equations
are introduced. In section 3, a detailed description of our
PRNG is presented. Section 4 is dedicated to the
statistical analysis and validation of the number
sequences generated by our generator.

2 Double Pendulum

A double pendulum consists of a mass m1, attached by a
massless rod of length l1 and a mass m2 attached at the
mass m1 by another massless rod of length l2. The system
freely rotates in a vertical plane. This means that the first
pendulum is attached freely at the second but both are
constrained to oscillate in the same plane. See Figure 1.

The double pendulum is very sensitive to initial
conditions and its motion exhibits chaotic behavior [4].

∗ Corresponding author e-mail: chokri.nouar@gmail.com

c© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140604

978 C. Nouar, Z. A. Guennoun: A Pseudo-Random number generator using...

Fig. 1: Double pendulum

2.1 The motion equations

Equations of motion are usually deduced using the
Lagrangian, Hamiltonian or Newtonian methods. In this
paper, we use the Newtonian method.

The position equations are given by the relations below
{

x1 = l1sin(θ1)

y1 =−l1cos(θ1)
{

x2 = x1 + l2sin(θ2)

y2 = y1− l2cos(θ2)

Speed is the derivative of the position with respect to
the time (v = ẋ).

{

ẋ1 = θ̇1l1cos(θ1)

ẏ1 = θ̇1l1sin(θ1)
{

ẋ2 = ẋ1 + θ̇2l2cos(θ2)

ẏ2 = ẏ1 + θ̇2l2sin(θ2)

and the acceleration is the second derivative
(a = v̇ = ẍ), so

{

ẍ1 =−θ̇ 2
1 l1sin(θ1)+ θ̈1l1cos(θ1)

ÿ1 = θ̇ 2
1 l1cos(θ1)+ θ̈1l1sin(θ1)

{

ẍ2 = ẍ1− θ̇ 2
2 l2sin(θ2)+ θ̈2l2cos(θ2)

ÿ2 = ÿ1 + θ̇ 2
2 l2cos(θ2)+ θ̈2l2sin(θ2)

We shall denote by :
T1 : the tension of the first rod,
T2 : the tension of the second rod,
m1 : the mass of m1,
m2 : the mass of m2,
g : the gravitational constant.

Applying the second Newton’s law : ∑F = ma

to the first mass we have :

m1ẍ1 = −T1sin(θ1)+T2sin(θ2) (1)

m1ÿ1 = T1cos(θ1)−T2cos(θ2)−m1g (2)

Fig. 2: The forces applied to m1 and m2

and when applied to the second mass we have :

m2ẍ2 = −T2sin(θ2) (3)

m2ÿ2 = T2cos(θ2)−m2g (4)

Applying some algebraic manipulations to our
equations, we find the expressions of θ̈1 and θ̈2.

From (1) and (3):

m1ẍ1 =−T1sin(θ1)−m2ẍ2

⇒ m1ẍ1 +m2ẍ2 =−T1sin(θ1) (5)

from (2) and (4):

m1ÿ1 = T1cos(θ1)−m2ÿ2−m2g−m1g

⇒ m1ÿ1 +m2ÿ2 +m2g+m1g = T1cos(θ1) (6)

Now from (5) and (6), we have the result (7):

sin(θ1)(m1ÿ1 +m2ÿ2 +m2g+m1g) = −cos(θ1)m1ẍ1

− cos(θ1)m2ẍ2 (7)

and from (3) and (4) we have the result (8)

sin(θ2)(m2ÿ2 +m2g) =−cos(θ2)(m2ẍ2) (8)

Finally, we replace ẍ and ÿ in results (7) and (8) with
the equations of acceleration. After calculations and some
simplifications, the motion equations of the double
pendulum are given by the following relations:

θ̈1 =
−g(2m1 +m2)sinθ1−m2gsin(θ1− 2θ2)

l1(2m1 +m2−m2cos(2θ1− 2θ2))

−
2sin(θ1−θ2)m2(θ̇ 2

2 l2 + θ̇ 2
1 l1cos(θ1−θ2))

l1(2m1 +m2−m2cos(2θ1− 2θ2))
(9)

θ̈2 =
2sin(θ1−θ2)[θ̇

2
1 l1(m1 +m2)

l2(2m1 +m2−m2cos(2θ1− 2θ2))

+
g(m1 +m2)cos(θ1)+ θ̇ 2

2 l2m2cos(θ1−θ2)]

l2(2m1 +m2−m2cos(2θ1− 2θ2))
(10)

c© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 6, 977-984 (2020) / www.naturalspublishing.com/Journals.asp 979

2.2 Euler method

The explicit Euler method is a general principle that
allows to discretize first degree and first order differential
equations with a given initial value. When the step size
minimizes, accuracy of the Euler method maximizes.

Given an initial value problem :

ẏ(t) = f (t,y(t)), y(t0) = y0

Let h be the step size, so tn+1 = tn + h, n ∈ N, and the
differential equation is, as follows:

yn+1 = yn + h f (tn,yn), y(tn) = yn

2.3 The positions suite

The present paper focuses on the Cartesian coordinates of
the second mass (x2;y2), given that this position depends
on the angles θ1 and θ2 by the following relations :

{

x2 = l1sin(θ1)+ l2sin(θ2)

y2 =−l1cos(θ1)− l2cos(θ2)

From the acceleration θ̈1 and θ̈2 we use the explicit
Euler method to define the speed θ̇1 and θ̇2, as well as the
position θ1 and θ2.

We have :

θ̇1,n+1 = θ̇1,n + hθ̈1,n and θ̇2,n+1 = θ̇2,n + hθ̈2,n

likewise :

θ1,n+1 = θ1,n + hθ̇1,n and θ2,n+1 = θ2,n + hθ̇2,n

Hence, we have the positions suite, as follows:

{

x2,n = l1sin(θ1,n)+ l2sin(θ2,n)

y2,n =−l1cos(θ1,n)− l2cos(θ2,n)

3 The Proposed Generator

This paper presents a new pseudo-random number
generator based on a double pendulum; it is a
deterministic generator initialized by a key K of more
than four characters size whose output is a
cryptographically-secured binary sequence.

Considering a double pendulum with the parameters
l1, l2,m1,m2,θ1,θ2, each one is calculated from the key K

using a new method based on XOR and permutation of
the bits derived by ASCII representation of the K.

After the initialization of the parameters l1, l2,m1,m2,
θ1,θ2, our generator starts producing the numbers needed
to construct the final sequence S = S1...Sn with Si = Xi‖Yi,
where Xi and Yi are two 32-bit numbers generated in the ith

step. ”‖” represents concatenation between tow bits.

3.1 The calculation of the initialization values

The initial conditions l1, l2,m1,m2,θ1,θ2 are calculated
from a binary string of any length n ≥ 32bits which
represents the key K = (k1k2k3...kn)2. Hence we extract
64 bits for each parameter value from the K by a method
based on a new technique of initialization.

In the first step, the key binaries are divided into four
parts (i.e. k1,k2,k3 and k4) and from these four parts all
parameters are built by XOR and concatenation. This
operation stops when we get 64 bits for each part.

L1 = k1⊕ k2‖k1⊕ k2‖...

L2 = k1⊕ k3‖k1⊕ k3‖...

M1 = k1⊕ k4‖k1⊕ k4‖...

M2 = k2⊕ k3‖k2⊕ k3‖...

T1 = k2⊕ k4‖k2⊕ k4‖...

T2 = k3⊕ k4‖k3⊕ k4‖...

R = k1⊕ k2‖k3⊕ k4‖...

In the second step, all parameters are represented in the
binary form as follows

L1 = (kL1
0 k

L1
1 k

L1
2 k

L1
3 ...kL1

60k
L1
61k

L1
62k

L1
63)

L2 = (kL2
0 k

L2
1 k

L2
2 k

L2
3 ...kL2

60k
L2
61k

L2
62k

L2
63)

M1 = (kM1
0 k

M1
1 k

M1
2 k

M1
3 ...kM1

60 k
M1
61 k

M1
62 k

M1
63)

M2 = (kM2
0 k

M2
1 k

M2
2 k

M2
3 ...kM2

60 k
M2
61 k

M2
62 k

M2
63)

T1 = (kT1
0 k

T1
1 k

T1
2 k

T1
3 ...kT1

60k
T1
61k

T1
62k

T1
63)

T2 = (kT2
0 k

T2
1 k

T2
2 k

T2
3 ...kT2

60k
T2
61k

T2
62k

T2
63)

R = (kR
0 kR

1 kR
2 kR

3 ...k
R
60kR

61kR
62kR

63)

Finally, from this binary representation, we calculate the
real values of our parameters by a binary to decimal
conversion.

l1 =
63

∑
i=0

k
L1
i × 263−i

263
l2 =

63

∑
i=0

k
L2
i × 263−i

263

m1 =
63

∑
i=0

k
M1
i × 263−i

263
m2 =

63

∑
i=0

k
M2
i × 263−i

263

θ1 =
63

∑
i=0

k
T1
i × 263−i

263
θ2 =

63

∑
i=0

k
T2
i × 263−i

263

r =
63

∑
i=0

kR
i × 263−i

259

Consequently, all initial conditions values are included
in the interval [0;2] and r ∈ [0;104] . Algorithm 1 is used
to calculate the initial values

3.2 Generating the pseudo-random sequence

After extracting the initial values l1, l2,m1,m2,r,θ1 and
θ2, our system gets ready to generate the pseudo random

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

980 C. Nouar, Z. A. Guennoun: A Pseudo-Random number generator using...

Algorithm 1 initialization

1: Input key K = (k1k2...kn)2 a binary string of any length

2: Output initiation values l1, l2,m1,m2,θ1, θ2 and r

3: L← Length(K)
4: for i← 0 to L/4 do

5: k1[i]← K[i]
6: k2[i]← K[L/4+ i]
7: k3[i]← K[L/2+ i]
8: k4[i]← K[3L/4+ i]
9: end for

10: j← 0

11: while j < 64 do

12: i← 0

13: while L/4− i > 0 do

14: L1[j]← k1[i]⊕k2[i]
15: L2[j]← k1[i]⊕k3[i]
16: M1[j]← k1[i]⊕k4[i]
17: M2[j]← k2[i]⊕k3[i]
18: T1[j]← k2[i]⊕k4[i]
19: T2[j]← k3[i]⊕k4[i]
20: R[j]← k1[i]
21: if j >= 64 Exit

22: end while

23: end while

24: for i← 0 to 64 do

25: l1← l1 +L1[i]×263−i

26: l2← l2 +L2[i]×263−i

27: m1← m1 +M1[i]×263−i

28: m2← m2 +M2[i]×263−i

29: t1← t1 +T1[i]×263−i

30: t2← t2 +T2[i]×263−i

31: r← r+R[i]×263−i

32: end for

33: l1←
l1

263 ; l2←
l2

263 ; m1←
m1

263 ; m2←
m2

263 ;

θ1←
t1

263 π; θ2←
t2

263 π; r← r
259 ;

34: return l1; l2;m1;m2;θ1;θ2; r

number sequences by the following relations.

{

x2,n = l1sin(θ1,n)+ l2sin(θ2,n)

y2,n =−l1cos(θ1,n)− l2cos(θ2,n)

{

θ1,n+1 = θ1,n + hθ̇1,n

θ2,n+1 = θ2,n + hθ̇2,n

{

θ̇1,n+1 = θ̇1,n + h ¨θ1,n

θ̇2,n+1 = θ̇2,n + h ¨θ2,n

The algorithm 2 generates a pseudo random binary
sequence of a given size F in three steps using two inputs:
a key K and the integer F .

step 1: The system loops up to t0 iterations to avoid
the harmful effects of transitional procedures [7], where
t0 is determined from the length of K as follows : t0 =
r× length(K)

step 2: Our system starts generating the pseudo
random numbers for each i ≥ t0. To construct the
sub-sequence Si, we take the pairs (Xi,Yi) as shown below
:

Xi = f loor[mod(x2,i× 103,1)]× 232

Yi = f loor[mod(y2,i× 103,1)]× 232

The f loor(x) rounds each element of x to the nearest
integer less than or equal to x. The mod(x,y) returns the
remainder after division of x by y, and the Xi and Yi are
two 32-bit numbers generated in the ith step.

step 3: Calculating the Xi = (k31k30k29...k1k0) and Yi =
(k′31k′30k′29...k

′
1k′0), we construct the sub sequence Si by a

bit-by-bit concatenation, such as

Si = Xi‖Yi = (k31k′31k30k′30k29k′29...k1k′1k0k′0)

The final sequence S of our system is the concatenation
of the sub-sequences S = S1‖S2‖S3‖...‖SF

Algorithm 2 Generation

1: Input key K = (k1k2...kn)2 and F the length of the requested

binary sequence

2: Output S the random binary sequence

3: r, l1, l2,m1,m2,θ1,θ2← Initialize(K)

4: t0← r× length(K)
5: i, j,k,S← 0

6: v1,v2← 0

7: h← 0.002

8: while j ≤ F do

9: a1← θ̈1 and a2← θ̈2 using the motion equations

10: if i≤ t0 then

11: v1← v1 +h∗a1 and v2← v2 +h∗a2

12: θ1← θ1 +h∗v1 and θ2← θ2 +h∗v2

13: x2← l1 ∗ sin(θ1)+ l2 ∗ sin(θ2)
14: y2←−l1 ∗cos(θ1)− l2 ∗cos(θ2)
15: i← i+1

16: else

17: v1← v1 +h∗a1 and v2← v2 +h∗a2

18: θ1← θ1 +h∗v1 and θ2← θ2 +h∗v2

19: x2← l1 ∗ sin(θ1)+ l2 ∗ sin(θ2)
20: y2←−l1 ∗cos(θ1)− l2 ∗cos(θ2)
21: X ← ⌊(x2×103)mod(1)⌋×232

22: Y ← ⌊(y2×103)mod(1)⌋×232

23: R← X‖Y
24: S← S ‖ R

25: i← i+1

26: j← j+1

27: end if

28: end while

29: return S

4 Security analysis

In this section, we first exhibit a study of the security of
our generator against attacks through a formal security
analysis[8], key space and key sensitivity. Second, we
perform the random analysis of the generator output by
entropy, Histogram, NIST tests and Dieharder tests.

c© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 6, 977-984 (2020) / www.naturalspublishing.com/Journals.asp 981

4.1 Formal security analysis

A formal security analysis of pseudo-random number
generator guarantees that the generator is secure when the
outputs are indistinguishable in polynomial time from
another uniform distribution generated by another source
[2], [10], [11].

Two ensembles Xn and Yn are statistically close if their
statistical difference is negligible. In that case they are
also indistinguishable in polynomial time. However, the
converse is untrue [10].

The statistical difference is given by the function :

δ (n) =
1

2
∑
α

| Pr[Xn = α]−Pr[Yn = α] |

Now, we calculate the statistical differences between ten
random sequences generated by our generator and ten
others provided using Matlab’s "rand" function.

Table 1 shows the results.

Table 1: Statistical Difference

Sequences δ (n)
1 0.000333370079837857

2 0.000333444103124018

3 0.000333406138545570

4 0.000333368516303501

5 0.000333278273508269

6 0.000333225315793545

7 0.000333399362138856

8 0.000333432623581588

9 0.000333268516504502

10 0.000333249517312451

Table 1 indicates that the statistical difference
between the sequence from our PRNG and the one from
Matlab is less than 0.034% for the ten comparaisons we
made. We can say these differences are negligible, so our
PRNG’s sequences and Matlab’s are indistinguishable.

4.2 Histogram

To measure the distribution of our generator’s outputs, we
use a visual test (i.e. the histogram) [13].

0.1×109 0.5×109 1×109
0

25

50

75

100

125

150

175

Sequences

F
re

q
u

en
cy

d
is

tr
ib

u
ti

o
n

Fig. 3: Histogram test result for sequences in [108; 109].

Figure 3 illustrates that the distribution of our
generator’s outputs is uniform.

4.3 Entropy

The Shannon entropy is another numerical test that
evaluates the average amount of randomness contained in
a given source [12].

Existence of all values should be equiprobable [13].
This test can be applied using the following formula :

H(S) =−
n

∑
i=0

Pr(si)× log2Pr(si)

Where H(S) is the entropy value for the sequence, and
Pr(si) is the probability of the occurrence of each value.

We calculated the entropies of ten sequences
generated by our PRNG and ten others generated by the
"rand" function from Matlab. Table 2 shows the results.

Table 2: Comparison between the entropy of our generator and

that of "rand" function from Matlab.

Sequences Entropy of our PRNG Entropy of rand function

1 26.040986434642150 25.690318043116390

2 26.070531376416571 26.026246156715211

3 26.011563791576325 26.182989117450119

4 25.817920777077662 25.858197136427929

5 26.085410174333433 26.142902729186530

6 25.989467468612918 26.082532219488901

7 25.931863811492090 25.965797296929013

8 26.054270536575130 25.992902729186530

9 26.038555943091972 25.984663540502476

10 26.146863978363647 26.178282303679637

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

982 C. Nouar, Z. A. Guennoun: A Pseudo-Random number generator using...

The table shows that the sequences from our generator
have entropies close to the entropies of those from
Matlab’s "rand" function.

4.4 Key Space

The size of key space is a prominent criterion of a
cryptosystem. A large security key space makes
exhaustive attacks impossible. The proposed generator is
initialized by a key of any size more than four characters:
(size > 32bits).

Any key space of size larger than 2128 is
computationally secured against exhaustive attacks [14].

Using algorithm 1, we calculate seven initial values
r, l1, l2,m1,m2,θ1 and θ2, of 64 bits each, i.e. 448 bits
from the binary string of the key. Therefore, our space of
initial values is 2448, which is large enough to avoid any
exhaustive attack as mentioned before.

4.5 Key sensitivity

The key sensitivity means that the smallest change in the
secret key produces a big change in the pseudo-random
sequence. This characteristic is central to make a highly
secured generator against statistical and differential
attacks [3], [7].

Our generator is based on a double pendulum which is
a chaotic system. This makes it very sensitive to the initial
conditions. Thus, any small difference between the keys
produces very different outputs.

To examine the security of our generator we used
several keys Ki with one bit of difference between each of
them and the first key k0, and we calculated the hamming
distances between every output Si and S0.

The number DH(Si,S j) = card{e/xe 6= ye}, with Si =
x1x2...xN and S j = y1y2...yN , is the value of the hamming
distance between two binary sequences.
This distance is given by:

DH(Si,S j) =
N

∑
k=1

(xk

⊕

yk)

The fact that a generator is very sensitive to the key
makes the hamming distance vary in the neighborhood of
N/2,(when N is the length of the sequences) resulting in
the DH(Si,S j)/N being about 0.50 for each pair of
sequences.

In the next step, the aim is to generate a set of
sequences Si from the keys {ki}0≤i≤48.

Let’s consider k0 = ”CHOKRI” whose binary
representation in ASCII code is k0 =
(01000011 01001000 01001111 01001011 01010010
01001001)2. The other 48 keys {ki}1≤i≤48 are derived
from k0 through modifying only the ith bit among the 48
bits of the k0.

The result of the Hamming distance between the
sequences is presented in Figure 4.

0 10 20 30 40 50
49.7%

49.8%

49.9%

50%

50.1%

50.2%

The keys

T
h

e
p

ro
p

o
rt

io
n

s
o

f
d

is
ta

n
ce

Fig. 4: The proportions of the Hamming distance.

Difference proportion between each sequence
Si(1 ≤ i ≤ 48) and S0 is about 50%, which implies that
the proposed generator is purely sensitive to the initial
conditions.

Sensitivity to key changes occurs due to the chaotic
system that constructs the generator, suggesting that the
generated sequences are chaotic and unpredictable.

A change of one bit between two keys leads to totally
different initialization values and generated sequences.

4.6 Randomness level

NIST tests and DIEHARDER tests are used to measure
the level of randomness of the bits sequences generated
by our PRNG.

For each statistical test, Pvalue is calculated from the
bits sequence. It is compared to a predefined threshold
α = 0.01, which is also called significance level. If Pvalue

is greater than α , the sequence is considered to be
random, and passed the statistical test successfully.
Otherwise, the sequence does not appear random.

c© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 6, 977-984 (2020) / www.naturalspublishing.com/Journals.asp 983

4.6.1 NIST

NIST tests suite consists of 15 tests [15] developed to
quantify and evaluate the degree of randomness of the
sequences produced by the cryptographic generators.

To apply the NIST tests to our generator, various keys
are used to produce 1000 sequences as a first step. The
size of each sequence is 106 bits. Table 3 presents the test
results.

Table 3: NIST Statistical test suite results for 1000 sequences of

size 106 bits each, generated by the our generator

NIST statistical test Pvalue Pass rate

Frequency 0.896345 989/1000

Block-Frequency 0.014100 982/1000

Cumulative Sums 0.465077 990/1000

Runs 0.455937 985/1000

Longest Run 0.163513 995/1000

Rank 0.345650 984/1000

FFT 0.832561 986/1000

Non-Overlapping 0.507534 991/1000

Overlapping 0.420827 997/1000

Universal 0.986658 993/1000

Approximate Entropy 0.705466 988/1000

Random Excursions 0.608559 606/612

Random Excursions Variant 0.498447 607/612

Serial 0.407401 991/1000

Linear Complexity 0.174728 995/1000

Table 3 reveals that NIST tests suite is successful.
The pvalue of all tests is greater than the minimum rate
(0.01).

The minimum pass rate for each statistical test with
the exception of the random excursion (variant) test is
approximately 980 for a sample size 1000 binary
sequences. The minimum pass rate for the random
excursion (variant) test is approximately 598 for a sample
size 612 binary sequences.

4.6.2 DIEHARDER

DIEHARDER tests consist of a set of statistical tests that
measure the quality of randomness developed by George
Marsaglia [16].

For DIEHARDER tests, 1000 sequences of 106 bits
are generated by the proposed pseudo random numbers
generator. The results are presented in Table 4.

Table 4 shows that DIEHARDER Pvalues are in the
acceptable range of [0,1), and all tests are successful.

Table 4: DIEHARDER Statistical test suite results for 1000

sequences of size 106 bits each, generated by the our generator

DIEHARDER test name Pvalue Assessment

Birthday 0.75887849 passed

Overlapping 5-permutation 0.90706791 passed

Binary rank (32 x 32) 0.68830507 passed

Binary rank (6 x 8) 0.99066355 passed

Bitstream 0.96862068 passed

OPSO 0.61437395 passed

OQSO 0.35136051 passed

DNA 0.96343430 passed

Stream count-the-ones 0.71485215 passed

Byte count-the-ones 0.61749066 passed

Parking lot 0.61013501 passed

2D circle 0.77047741 passed

3D spheres 0.28540625 passed

Squeeze 0.58848691 passed

Sums 0.11428089 passed

Runs 0.96215077 passed

Craps 0.87203328 passed

Marsaglia and Tsang GCD 0.70839018 passed

STS Monobit 0.96164295 passed

STS Runs 0.22671732 passed

STS Serial Test (Generalized) 0.65230427 passed

RGB Bit Distribution 0.80597401 passed

RGB Min Distance 0.34340374 passed

RGB Permutations 0.08477149 passed

RGB Lagged Sum 0.52026957 passed

RGB Kolmogorov-Smirnov 0.67656475 passed

5 Conclusion

In this paper, a new pseudo-random number generator
based on a Double Pendulum was presented.

The generator was selected after a rigorous analysis
that showed high dimensional chaos, which helped the
generator produce more complex and unpredictable
chaotic sequences.

The results of the statistical analyses, namely formal
security analysis, histogram, entropy, key space, key
sensitivity and randomness indicated that the proposed
generator provided high security, which made it
appropriate for practical encryption.

In the future paper, we will apply our proposed
generator to image and audio encryption using a new
method based on xor and permutation operations.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

984 C. Nouar, Z. A. Guennoun: A Pseudo-Random number generator using...

References

[1] F. Michael, D. David, A Fast Chaos-Based Pseudo-Random

Bit Generator Using Binary 64 Floating-Point Arithmetic,

Informatica 38, 115-124 (2014)

[2] O. Reyad, Z. Kotulski, On Pseudo-Random Number

Generators Using Elliptic Curves and Chaotic Systems,

Applied Mathematics and Information Sciences, 9, 1, 31-38

(2015)

[3] K. Charif, A. Drissi, and Z.A. Guennoun, A pseudo random

number generator based on chaotic billiards, International

Journal of Network Security, 19, 479-486, (2017)

[4] T. Shinbrot, C. Grebogi, J. Wisdom, and J. Yorke, Chaos in a

double pendulum, American Journal of Physiology, 60, 491-

499 - (1992)

[5] T. Yaren, S. Kizir, A.B. Yildiz, The motion characteristics of

the double-pendulum system with skew walls, Mathematical

Methods in the Applied Sciences, 42, 475-487 (2019)

[6] M. Lampart, J. Zapomel, Electrical Equivalent Circuit Based

Analysis of Double Pendulum System, in Proc. ICEEE 258-

262 (2019)

[7] C. Nouar and Z.A. Guennoun, A Pseudo Random Bit

Generator Based on a Modified Chaotic Map, International

Journal of Network Security, 21, 402-408, (2019)

[8] S. Ruhault, Security Analysis for Pseudo-Random Number

Generators, Ph.D. thesis, Ecole normale superieure, Paris

(2015)

[9] D Lambic, M Nikolic, Pseudo-random number generator

based on discrete-space chaotic map, Nonlinear Dynamics,

90, 223-232 (2017)

[10] O. Goldreich, Foundations of Cryptography : Basic Tools,

Cambridge University Press, Cambridge, 103-118, (2004)

[11] L. Marangio, C. Guyeux, Entropy and Security of

Pseudorandom Number Generators based on Chaotic

Iterations, in Proc. ICETE, 402-407 (2019)

[12] C Li, D Lin, B Feng, J Lu, F Hao, Cryptanalysis of a Chaotic

Image Encryption Algorithm Based on Information Entropy,

IEEE Access, 6, 75834-75842 (2018); J.-S. Zhang,A.-X.

Chen, M. Abdel-Aty, Two atoms in dissipative cavities in

dispersive limit: Entanglement sudden death and long-lived

entanglement, J. Phys. B: Atom. Mol. Opt. Phy., 43 025501

(2010).

[13] O. Salhab, N. Jweihan, M.A. Jodeh, M.A. Taha, and M.

Farajallah, Survey paper pseudo random number generator

and security tests, Journal of Theoretical and Applied

Information Technology, 96, 1951-1970. (2018)

[14] E. Hato and D. Shihab, Lorenz and rossler chaotic

system for speech signal encryption, International Journal of

Computer Applications, 128, 25-33, (2015)

[15] NIST, A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic

Applications, SP 800-22, (2010)

[16] Robert G. Brown, Dieharder : A Random Number Test

Suite, Duke University, Physics Department, 27708-0305,

(2020)

Zine El Abidine Guennoun
He is a full professor of
Department of Mathematics
at the Faculty of Science,
Mohamed V University in
Rabat, Morocco. He received
his Ph.D. (1989). His research
interests include non linear
analysis, fixed point theory,
differential equation, financial

mathematics and cryptography.

Chokri Nouar He is
received his Master’s
degree in mathematics and
statistics, option cryptography
and information security from
Mohammed-V University
in Rabat, Morocco. He is
actually a PhD student in the
Laboratory of Mathematics,
statistic and applications. His

major research interests include information security and
cryptography.

c© 2020 NSP

Natural Sciences Publishing Cor.

	Introduction
	Double Pendulum
	The Proposed Generator
	Security analysis
	Conclusion

