
Appl. Math. Inf. Sci. 14, No. 6, 967-976 (2020) 967

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140603

A Mathematical Model of Risk Factors in HIV/AIDS

Transmission Dynamics: Observational Study of Female

Sexual Network in India

S. Saravanakumar1, A. Eswari2, L. Rajendran3 and Marwan Abukhaled4,∗

1Department of Mathematics, Sri Ramakrishna Institute of Technology, Coimbatore, India
2Department of Mathematics, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University,

Coimbatore, India
3Department of Mathematics, AMET (Deemed to be University), Tamil Nadu, India
4Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE

Received: 2 May 2020, Revised: 4 Jul. 2020, Accepted: 10 Sep. 2020

Published online: 1 Nov. 2020

Abstract: In this paper, a mathematical model for the transmission dynamics of HIV/AIDS epidemic with emphasis on the role of

female sex workers is considered. The model is a system of nine nonlinear differential equations that represent nine different groups of

an HIV population. A modified approach of the homotopy perturbation method is used to derive an approximate analytical expression

for each of the nine different groups that form HIV population. The analytical results are shown to be consistent with the numerical

results obtained by the highly accurate fourth-order Runge-Kutta method. The analytical solution will simplify studying the effect of

each parameter on the governing equation and identifying the dynamics of HIV prevalence. Thus, effective prevention strategies can be

adopted.
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1 Introduction

Understanding the transmission dynamics of HIV and its
deadly consequences (AIDS) helps propose effective
treatment for the infected patients and adopt effective
prevention measures. Mathematical models of HIV
transmission aim to describe the dynamics of the disease
prevalence using systems of differential equations where
the transition rates from a state to another are defined
quantitatively [1]. These models, which are complex
because of biological and behavioral variables
incorporation, become fairly reliable if their validity is
justified [2]. In literature, the four families of
mathematical models that are used to model HIV
transmission are stochastic, deterministic, statistical, and
state-space model (Kalman filter model) [3].

Stochastic models assume that the response variables
are random indexed by time, so the HIV epidemic is a
stochastic process [3]. Stochastic difference and
differential equations have been used as models for
primary HIV infection [4], models for spread of HIV in a

mobile heterosexual population [5] and as models to
study the effects of antiretroviral therapy (ART) and HIV
vaccines on HIV transmission using empirical data [6].
The fact that the variables involved in modeling infectious
diseases are subject to random variation makes stochastic
models more realistic than deterministic models.
However, adopting stochastic models involves some
obstacles. For example, closed form solutions are almost
impossible to be found in real world applications [7] and
numerical solutions in either weak or strong sense may
become unstable over large interval domains [8].

In deterministic models, the population is divided into
compartments consisting of those who are susceptible in
each of the infection stages or in the AIDS phase. The
movement between these compartments, which ranges
from infected to progressing to AIDS is expressed in
terms of systems of difference, differential or integral
equations. In addition, deterministic models consider the
biological, epidemiological and clinical aspects of the
disease. Among deterministic models that are used to
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study the HIV infection and its consequences, we mention
modeling the early stages of infection, the dynamics of
prevalence, and control of HIV/AIDS [9–13].

Statistical models have also contributed to
understanding the infection and the spread of HIV as well
as its development to AIDS. Brookmeyer and Liao [14]
proposed a back calculation method that aims to
reconstruct the pattern of HIV infections in the past to
predict the future cases and evaluate the impact of
therapeutic advances on these cases. Downs et al. [15]
applied an empirical Bayesian back-calculation method to
AIDS incidence data to reconstruct and predict
HIV/AIDS epidemic in the European countries. For more
on statistical models see [16–18]

The iterative computational algorithm (the state space
method or Kalman filtering method) aims to improve
noisy measurements, current state estimates and forecasts
calculations. Tan and We [19] employed the Kalman
filtering method for simultaneous estimation of HIV
infection and incubation distributions, the numbers of
susceptible and infective people and AIDS cases. Cazelles
and Chau [20] used the Kalman filter and dynamic
models to assess the changing HIV/AIDS epidemic.

1.1 HIV/AIDS in India

The presence of HIV in India became evident when first
cases were documented in the southern city of Chennai
in 1986. Prevalence of HIV is broadly divided into three
groups as per states and union territories [21]:

–High prevalence states: Forty-five districts in 6 HIV
prevalence states fall in this category

–Moderate prevalence states: Three states fall into this
group where the HIV prevalence is more than 5%
among high risk groups.

–Low prevalence states: The remaining states in the
country are classified within this group

Figures 1, 2 and 3 present review of HIV spread across
India as a whole and within the states in addition to AIDS
related deaths from 1982 to 2017 [22].

In 2002, it was estimated that around 500,000 were
diagnosed as HIV positive in the southern Indian State of
Tamil Nadu. The number of reported AIDS cases was
24667 in 2003 and 1092 cases in 1998. Heterosexuality is
the main cause of HIV transmission. Commercial sex
workers, homosexuals, and intravenous injection drug
users are classified among the high risk groups, whereas
migrant population workers of unorganized sectors, street
children, and youth adolescent are among the most
vulnerable groups [21].

The present paper aims to find an analytical solution
to a mathematical model for the transmission dynamics of
HIV/AIDS epidemic with emphasis on the role of female
workers in the disease prevalence. It is believed that
analytical solutions are more useful in the study of
disease transmission dynamics than numerical solutions

Fig. 1: Adult HIV prevalence in India from 1982 to 2017.

Fig. 2: State-wise adult HIV Prevalence in 2017.

Fig. 3: AIDS related deaths over years from 1982 to 2017.

because they enable us to obtain quantitative information
on the variables that cannot be measured easily. In this
paper, we will employ a modified form of the powerful
homotopy perturbation method [23–25] to solve the
underlined nonlinear system modeling the dynamics of
HIV transmission. Other methods that can be used to
obtain analytical solutions include, but not limited to, the
variational iteration method [26, 27], differential
transformation method [28] and Green function based
method [29–31].

This paper is organized as follows: Section 2
describes the mathematical model of HIV infection.
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Section 3 addresses the analytical solution of the
nonlinear model. In section 4, we present numerical
simulation with discussion. Section 5 is devoted to
conclusions.

2 Mathematical model for HIV infection

A sexually active population at time t denoted by P(t)
consists of the following nine mutually exclusive
compartments: HIV-susceptible males, females, and
female sex-workers denoted Sm,S f , and S f s, respectively,
HIV-infected males, females, and female sex-workers
denoted Im, I f an I f s, respectively, AIDS-infected males,
females, and female sex-workers denoted Am,A f and A f s,
respectively. The following system of deterministic
nonlinear differential equations describes the model of
HIV/AIDS infection [11]

dSm

dt
= Λ1 −β1SmI f −β2SmI f s − µSm, (1)

dIm

dt
= β1SmI f +β2SmI f s − (b1 + µ)Im, (2)

dAm

dt
= b1Im − (µ + d)Am, (3)

dS f

dt
= Λ2 −β3S f Im − µS f , (4)

dI f

dt
= β3S f Im − (b2 + µ)I f , (5)

dA f

dt
= b2I f − (µ + d)A f , (6)

dS f s

dt
= Λ3 −β4S f sIm − µS f s, (7)

dI f s

dt
= β4S f sIm − (b3 + µ)I f s, (8)

dA f s

dt
= b3I f s − (µ + d)A f s, (9)

with the following initial conditions

Sm > 0, S f > 0, S f s > 0, (10)

Im ≥ 0, I f ≥ 0, I f s ≥ 0, (11)

Am ≥ 0, A f ≥ 0, A f s ≥ 0, (12)

where Λ1,Λ2 and Λ3 denote the recruitment rates of male,
female and female sex-workers, respectively,
βi, i = 1,2,3,4 are the rates of transmission of infection
from infective to susceptible, µ is the natural death rate
constant, d is the disease induced mortality rate in AIDS
classes, b1,b2, and b3 are the progression rates from HIV
infective male, female and female sex workers to
respective AIDS class. The disease dynamic transmission
is illustrated in Figure 4 [11].

Fig. 4: Schematic illustration of the Dynamic transmission of the

deterministic model.

3 Analytical solution of the nonlinear

HIV/AIDS transmission dynamics

In this section, a new approach of the homotopy
perturbation method (HPM) is employed to derive an
analytical solution of the nonlinear system (1)-(12). The
main idea of the HPM is presented in Appendix A.
Constructing the homotopy (A.4) to each equation in the
nonlinear system (1)-(12) gives

(1− p)
[dSm

dt
+ µSm

]

+ p
[dSm

dt
−Λ1 +(β1Is +β2I f s + µ)Sm

]

= 0

(13)

(1− p)
[dIm

dt
+(b1 + µ)Im

]

+ p
[dIm

dt
+(b1 + µ)Im− (β1I f −β2I f s)Sm

]

= 0

(14)

(1− p)
[dAm

dt
+(µ + d)Im

]

+ p

[dAm

dt
− b1Im +(µ + d)Am

]

= 0

(15)

(1− p)
[dS f

dt
+ µS f

]

+ p
[dS f

dt
−Λ2 + µS f −β3S f Im

]

= 0

(16)
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(1− p)
[dI f

dt
+(b2 + µ)IS f

]

+ p
[dI f

dt
−Λ2 + µS f −β3S f Im

]

= 0

(17)

(1− p)
[dA f

dt
+(µ + d)A f

]

+ p
[dA f

dt
+(µ + d)A f − b2I f

]

= 0

(18)

(1− p)
[dS f s

dt
+ µS f s

]

+ p
[dS f s

dt
−Λ3 + µS f s−β4S f sIm

]

= 0

(19)

(1− p)
[dI f s

dt
+(b3 + µ)I f S

]

+ p
[dI f s

dt
+(b3 + µ)I f S −β4S f sIm

]

= 0

(20)

(1− p)
[dA f s

dt
+(µ + d)A f s

]

+ p
[dA f s

dt
+(µ + d)A f s − b3I f s

]

= 0

(21)

The solution to each equation in the system (13)-(21)
is expressed in terms of power series, as follows:

Sm = Sm0 + pSm1 + p2Sm2 + p3Sm3 + · · · (22)

S f = S f 0 + pS f 1 + p2S f 2 + p3S f 3 + · · · (23)

S f s = S f s0 + pS f s1 + p2S f s2 + p3S f s3 + · · · (24)

Im = Im0 + pIm1 + p2Im2 + p3Im3 + · · · (25)

I f = I f 0 + pI f 1 + p2I f 2 + p3I f 3 + · · · (26)

I f s = I f s0 + pI f s1 + p2I f s2 + p3I f s3 + · · · (27)

Am = Am0 + pAm1 + p2Am2 + p3Am3 + · · · (28)

A f = A f 0 + pA f 1 + p2A f 2 + p3A f 3 + · · · (29)

A f s = A f s0 + pA f s1 + p2A f s2 + p3A f s3 + · · · (30)

Back substitution of Eqs. (22)-(30) into Eqs. (13)-(21)
and arranging the coefficients of the powers of p produce
the following systems of differential equations:

p0 :
dSm0

dt
+ µSm0 = 0

p1 :
dSm1

dt
+ µSm1 +β1Sm0I f 0 +β2Sm0I f s0 = 0

p2 :
dSm2

dt
+ µSm2 +β1(Sm0I f 1 + Sm1I f 0)

+β2(Sm0I f s1 + Sm1I f s0) = 0

(31)

p0 :
dIm0

dt
+(b1 + µ)Im0 = 0

p1 :
dIm1

dt
+(b1 + µ)Im1 −β1Sm0I f 0 −β2Sm0I f s0 = 0

(32)

p0 :
dAm0

dt
+(µ + d)Am0 = 0

p1 :
dAm1

dt
+(µ + d)Am1 − b1Im0 = 0

(33)

p0 :
dS f 0

dt
+ µS f 0 = 0

p1 :
dS f 1

dt
−Λ2 + µS f 1 +β3S f 0Im0 = 0

(34)

p0 :
dI f 0

dt
+(b2 + µ)I f 0 = 0

p1 :
dI f 1

dt
+(b2 + µ)I f 1 −β3S f 0Im0 = 0

p2 :
dI f 2

dt
+(b2 + µ)I f 2 −β3(S f 0Im1 + S f 0Im1) = 0

(35)

p0 :
dA f 0

dt
+(µ + d)A f 0 = 0

p1 :
dA f 1

dt
+(µ + d)A f 1 − b2I f 0 = 0

p2 :
dA f 2

dt
+(µ + d)A f 2 − b2I f 1 = 0

(36)
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p0 :
dS f s0

dt
−Λ3 + µS f s0 = 0

p1 :
dS f s1

dt
−Λ3 + µS f s1 +β4S f s0Im0 = 0

p2 :
dS f s2

dt
+ µS f s2 +β4(S f s0Im1 + S f s1Im0) = 0

(37)

p0 :
dI f s0

dt
+(b3 + µ)I f 0 = 0

p1 :
dI f s1

dt
+(b3 + µ)I f S1 −β4S f s0Im0 = 0

−β4(S f s0Im1 + S f s1Im0) = 0

(38)

p0 :
dA f s0

dt
+(µ + d)A f s0 = 0

p1 :
dA f s1

dt
+(µ + d)A f s1 − b3I f s0 = 0

p2 :
dA f s2

dt
+(µ + d)A f s2 − b3I f s1 = 0

(39)

The solutions of the initial value systems (31)-(39)
with initial conditions (10)-(12) are given by

Sm0(t) = le−µt

Sm1(t) =

(

−
β1lR

µ + b2

−
β2ly

µ + b3

−
Λ1

µ

)

e−µt +
Λ1

µ

+
β1lR

µ + b2

e−(2µ+b2)t +
β2ly

µ + b3

e−(2µ+b3)t

Sm2(t) =

(

β2β4lL

(b3 − b1 − µ)(−2µ − b1)

)

×

(

e−µt
− e−(3µ+b1)t

)

(40)

Im0(t) = Le−(b1+µ)t

Im1(t) =
β1lR

b1 − µ − b2

(

− e−(b1+µ)t + e−(2µ+b2)t
)

+
β2ly

b1 − µ − b3

(

− e−(b1+µ)t + e−(2µ+b3)t
)

(41)

Am0(t) = ke−(d+µ)t

Am1(t) =
b1L

b1 − d

(

e−(d+µ)t
− e−(b1+µ)t

) (42)

S f 0(t) = Qe−µt

S f 1(t) =
β3QL

µ +β1

(e−(b1+2µ)t
− e−µt)+

Λ2

µ
(1− e−µt)

(43)

I f 0(t) = Re−(b2+µ)t

I f 1(t) =
( β3QL

b2 − µ − b1

)

(−e−(b2+µ)t + e−(b1+2µ)t)

I f 2(t) =
( β3Λ2L

µ(b2 − µ − b1)

)

(e−(b2+µ)t
− e−(b1+2µ)t)

−

( β3Λ2L

µ(b2 − b1)

)

(e−(b2+µ)t + e−(b1+µ)t)

(44)

A f 0(t) = Je−(d+µ)t

A f 1(t) =
( b2R

b2 − d

)

(e−(d+µ)t
− e−(b2+µ)t)

A f 2(t) =
b2β3QL

(b2 − b1 − µ)(d− b2)
(e−(µ+d)t

− e−(b2+µ)t)

−
b2β3QL

(b2 − b1 − µ)(d− b1 − µ)
(e−(µ+d)t

− e−(2µ+b1)t)

(45)

S f s0(t) = Xeµt

S f s1(t) =
Λ3

µ
(1− e−µt)+

β4XL

b1 + µ
(−e−µt + e−(b1+2µ)t)

S f s2(t) =
β4Λ3L

µ(µ + b1)
(e−µt

− e−(2µ+b1)t)

−
β4Λ3L

µ + b1

(e−(b1+µ)t − e−µt)

(46)

I f s0(t) = ye−(b3+µ)t

I f s1(t) =
( β4XL

−µ − b1 + b3

)

(e−(b1+2µ)t
− e−(b3+µ)t)

I f s2(t) =
β4Λ3L

µ(b3 − b1 − µ)
(e−(b3+µ)t

− e−(2µ+b1)t)

−
β4Λ3L

µ(b3 − b1)
(e−(b3+µ)t

− e−(b1+µ)t)

(47)

A f s0(t) = ze−(d+µ)t

A f s1(t) =
( b3β4XL

(−µ − b1 + b3)(d − b3)

)

(e−(b1+2µ)t
− e−(b3+µ)t)

S f s2(t) =
b3β4XL

(b3 − b1 − µ)(d− b3)
(e−(µ+d)

− e−(b3+µ))

−
b3β4XL

(b3 − b1 − µ)(d− b1 − µ)
(e−(µ+d)+ e−(2µ+b1))

(48)
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Equations (40)-(48) are now used to construct the
following analytical solutions

Sm(t) = lim
p→1

Sm(t)≈ Sm0 + Sm1 + Sm2 (49)

Im(t) = lim
p→1

Im(t)≈ Im0 + Im1 (50)

Am(t) = lim
p→1

Am(t)≈ Am0 +Am1 (51)

S f (t) = lim
p→1

S f (t)≈ S f 0 + S f 1 (52)

I f (t) = lim
p→1

I f (t)≈ I f 0 + I f 1 + I f 2 (53)

A f (t) = lim
p→1

A f (t)≈ A f 0 +A f 1 +A f 2 (54)

S f s(t) = lim
p→1

S f s(t)≈ S f s0 + S f s1 + S f s2 (55)

I f s(t) = lim
p→1

I f s(t)≈ I f s0 + I f s1 + I f s2 (56)

A f s(t) = lim
p→1

A f s(t)≈ A f s0 +A f s1 +A f s2 (57)

4 Numerical simulation and discussion

For numerical simulations, the following experimental
values for the parameters are used [11]:
Λ1 = 80,Λ2 = 60,Λ3 = 50,β1 = 0.00005,β2 =
0.0002,β3 = 0.0001,β4 = 0.00005,0.0003,b1 = 0.1,b2 =
0.0924,b3 = 0.25,µ = 0.0743, and d = 0.123. The
analytical solution obtained by the proposed method is
compared to a numerical solution obtained by the fourth
order Runge-Kutta method using MATLAB’s function
ode45.

Figure 5 shows the analytical curves representing
HIV-susceptible males (Sm), HIV-susceptible females
(S f ), HIV-susceptible female sex-workers (S f s),
HIV-infected males (Im), and AIDS-infected males (Am).
The analytical curves representing HIV-infected females
(I f ), HIV-infected female sex-workers (I f s),
AIDS-infected females (A f ,) and AIDS-infected female
sex-workers (A f s) are depicted in Figure 6.

A comparison between the analytical and numerical
curves for HIV infected male (Im), AIDS infected male
(Am), HIV susceptible female (S f , and HIV susceptible
female sex worker (S f s) is shown in Figures 7-10.

Figures 11 and 12 show the effects of the rate of
transmission of infection, β2, on the number of
susceptible and infected males. Figure 13 indicates that a
larger rate of transmission of infection leads to an
increase in AIDS infected females as time increases.
Figure 14 also reveals that the number of AIDS infected
female sex workers increase with time when the rate of
transmission increases.

Fig. 5: Analytical curves for Sm, Im,Am,S f and S f s.

Fig. 6: Analytical curves for I f ,A f , I f s and A f s.
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Fig. 7: Comparison between analytical and numerical

solutions for HIV infected male (Im).

Fig. 8: Comparison between analytical and numerical

solutions for AIDS infected male (Am).

Fig. 9: Comparison between analytical and numerical

solutions for HIV susceptible female (S f ).

Fig. 10: Comparison between analytical and numerical

solutions for HIV susceptible female sex worker (S f s).
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Fig. 11: Normalized analytical curve of 3-dim

concentration of susceptible males as a function of

time for different values of β2.

Fig. 12: Normalized analytical curve of 3-dim

concentration of infected males as a function of

time for different values of β2.

Fig. 13: Normalized analytical curve of 3-dim

concentration of AIDS infected females as a function of

time for different values of β3.

Fig. 14: Normalized analytical curve of 3-dim

concentration of AIDS infected female sex workers as

a function of time for different values of β4.
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5 Conclusion

A deterministic mathematical model of the HIV virus
with nonlinear incidence function in a population was
presented and analyzed. A modified version of the
homotopy perturbation method was employed to obtain
analytical expressions for the concentrations of
HIV-susceptible male (Sm), female (S f ) and female
sex-workers (S f s), HIV-infected male (Im ) female (I f )
and female sex workers (I f s), AIDS-infected males (AM),
female (A f ) and female sex workers (A f s). The obtained
analytical solution are consistent with the numerical
results obtained by MATLAB ode45 routine. The
obtained accurate analytical results can be employed to
run sensitivity analysis of the parameters of the governing
system to better understand the spread mechanism of the
disease and suggest effective prevention measures.
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Appendix A: The basic idea of HPM

Consider the nonlinear differential equation

A(u)− f (r) = 0, r ∈ Ω , (A.1)

with the boundary condition

B
(

u,
du

dr

)

= 0, r ∈ Γ , (A.2)

where A,B, f (r) and Γ are a general differential operator,
a boundary operator, a known analytical function and the
boundary of the domain Ω , respectively. Expressing A(u)
as the sum of linear (L) and nonlinear (N) parts, Eq. (A.1)
becomes

L(u)+N(u)− f (r) = 0. (A.3)

The homotopy technique begins by defining v(r, p) :
Ω × [0,1]→ R, such that

H(v, p) = (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)] = 0,
(A.4)

where p ∈ [0,1] is an embedding parameter and u0 is an
initial approximation of Eq. (A.1) that satisfies boundary
conditions (A.2). Evidently, Eq.(A.4) implies that

H(v,0) = L(v)−L(u0) = 0, (A.5)

H(v,1) = A(v)− f (r) = 0. (A.6)

As p changes from 0 to 1, v(r, p) changes from u0 to ur,
a process known as a homotopy. The solution of Eq. (A.4)
may be expressed in terms of power series in the form:

v = v0 + pv1 + p2v2 + · · · . (A.7)

With p = 1, an approximate solution to Eq. (A.4) is given
by:

u = lim
p→1

v = v0 + v1 + v2 + · · · . (A.8)
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