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1 Introduction

The study of stochastic processes began in the late 1930’s
and the introduction of stochastic convexity appeared in
1980 [1], where K. Nikodem presented this notion and a
generalization of theorems was proved by B. Nagy [2] in
the setting of a study of the Cauchy equation. For other
results related to stochastic processes, see [3, 4] where
further references are presented.

Similarly, the concept of convexity has had a great
evolution because of its wide application in various fields
of science, including those where the fractional and
quantum calculus are applied [5–11]. In the last decades
generalizations of the convexity, such as log-convexity,
s−convexity in the first and second sense , Wright
convexity, E−convexity, m−convexity, ϕ−convexity,
GA−convexity, (s,ϕ)−convexity and others [12–23] have
arisen.

Some authors have related these concepts with the
stochastic processes. For example, A. Skrowonski
explored J-convex stochastic processes and Wright
convex stochastic processes [21, 24]. Other authors have
obtained some further results in this area. For example, D.
Kotrys investigated convex and strongly convex stochastic
processes [25–27], E. Set E. et al. handled s−convex

stochatic processes in the second sense [28], S. Maden et
al. worked on s−convex stochastic processes in the first
sense [18], N. Okur et al. investigated harmonically
convex stochastic processes [29] and M. Tomar et al.
worked on log-convex stochastic processes [30].
Furthermore, the works of Vivas-Cortez, Hernández
Hernández and Gómez [31–35] addressed the
(m,h1,h2)−convex stochastic processes in the setting of
fractional calculus.

Following the path outlined by the aforementioned
authors, the present paper aims to introduce the concept
of ϕ−convex stochastic process, demonstrate some
properties, and relate it to the inequalities of the Hermite
Hadamard type and other inequalities associated with
special means.

2 Preliminaries

The following notions correspond to mathematical
fundaments on stochastic processes and the generalized
convexity related to them. For elementary calculus
associated with stochastic processes, we encourage the
reader to review the following texts [36–38].
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Definition 1. Let (Ω ,A ,P) be an arbitrary probability
space. A function X : Ω → R is called a random variable

if it is A -measurable. Let I ⊂ R be time. A collection of
random variable X(t,w), t ∈ I with values in R is called a
stochastic processes.

1. If X(t,w) takes values in S = R
d , then it is called

vector-valued stochastic process.
2. If the time I is a discrete subset of R, then X(t,w) is

called a discrete time stochastic process.
3. If the time I is an interval, R+ or R, then it is called

a stochastic process with continuous time.

Definition 2. Let (Ω ,A,P) be a probability space and

I ⊂ R be an interval. We say that the stochastic process
X : I ×Ω →R is called

1. Continuous in probability in interval I if for all t0 ∈
I, it has

P− lim
t→t0

X(t, ·) = X(t0, ·),

where P− lim denotes the limit in probability;

2. Mean-square continuous in the interval I if for all
t0 ∈ I

P− lim
t→t0

E(X(t, ·)−X(t0, ·)) = 0,

where E(X(t, ·)) denotes the expectation value of the
random variable X(t, ·);

3. Increasing (decreasing) if for all u,v ∈ I such that

t < s,

X(u, ·)≤ X(v, ·), (X(u, ·)≥ X(v, ·))

4. Monotonic if it’s increasing or decreasing;
5. Differentiable at a point t ∈ I if there exists a random

variable X ′(t, ·) : Ω → R , such that

X ′(t, ·) = P− lim
t→t0

X(t, ·)−X(t0, ·)

t − t0
.

We say that a stochastic process X : I × Ω → R is
continuous (differentiable) if it is continuous
(differentiable) at every point of the interval I
(See [21, 25, 36]).

Definition 3. Let (Ω ,A,P) be a probability space
T ⊂ R be an interval with E(X(t)2)< ∞ for all t ∈ T .
Let [a,b] ⊂ T,a = t0 < t1 < ... < tn = b be a partition of

[a,b] and θk ∈ [tk−1, tk] for k = 1,2, ...,n.
A random variable Y : Ω → R is called mean-square
integral of the process X(t, ·) on [a,b] if the following

identity holds:

lim
n→∞

E[X(θk)(tk − tk−1)−Y ]2 = 0

Then we can write

∫ b

a
X(t, ·)dt = Y (·)(a.e.).

Also, mean square integral operator is increasing, i.e.,

∫ b

a
X(t, ·)dt ≤

∫ b

a
Z(t, ·)dt(a.e.)

where X(t, ·)≤ Z(t, ·) in [a,b] ( [24]).
In this paper, we will consider the stochastic processes

that is with continuous time and mean-square continuous.
As mentioned in the introductory section, several

notions of stochastic generalized convexity had been
introduced. The following is a brief compilation of these
concepts.

Definition 4. ( [25])Let (Ω ,A ,P) be a probability
space and I ⊂ R be an interval. It is said that a stochastic
process X : I ×Ω → R is convex if for all u,v ∈ I and
t ∈ [0,1] the following inequality holds almost everywhere

X(tu+(1− t)v, ·)≤ tX(u, ·)+ (1− t)X(v, ·). (1)

Now, we give the well-known Hermite-Hadamard integral
inequality for convex stochastic processes (see [25]).

Theorem 1. If X : I×Ω →R is Jensen-convex and mean
square continuous in the interval I, then for any u,v ∈ I,

we have

X

(

u+ v

2
, ·

)

≤
1

u− v

∫ v

u
X(t, ·)dt ≤

X(u, ·)+X(v, ·)

2

Definition 5. Let (Ω ,A ,P) be a probability space,
I ⊂ R be an interval and let ϕ : R × R → R be a real
valued function of two variables. It is said that a

stochastic process X : I ×Ω → R is ϕ−convex if for all
u,v ∈ I and t ∈ [0,1] the following inequality holds almost
everywhere

X (tu+(1− t)v ,·)≤ X(v, ·)+ tϕ (X(u, ·),X(v, ·)) .

It must be noted that if the real valued function of two
variables ϕ : R×R → R is defined by ϕ(x,y) = x− y then
Definition 5 coincides with Definition 4.

Example 1.Let X : I × Ω → R be a stochastic process
defined by

X(t, ·) = A(·)ekt ,

then since the exponential function is convex, it implies
that

X(ta+(1− t)b, ·) = A(·)ek(ta+(1−t)b)

≤ A(·)
(

teka +(1− t)ekb
)

= tX(a, ·)+ (1− t)X(b, ·)

showing that it is a convex stochastic process, and also

X(ta+(1− t)b, ·) ≤ X(b, ·)+ t (X(a, ·)−X(b, ·))

= X(b, ·)+ tϕ (X(a, ·),X(b, ·))

showing that X is a ϕ−convex stochastic process where
ϕ(x,y) = x−y. In addition, if ϕ1(x,y)≥ ϕ(x,y), then X is
ϕ1−convex stochastic process.

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 6, 947-956 (2020) / www.naturalspublishing.com/Journals.asp 949

Example 2. Let X : R×Ω → R+ defined by X(t, ·) =
f (t)A(·) where

f (t) =

{

t if 0 < t < 1
1 if t > 1

and A is a random variable. Let ϕ be defined by

ϕ(x,y) =

{

x+ y, if x ≤ y
2(x+ y) if x > y

.

Then, X is a ϕ−convex stochastic process, it is not convex.

Concerning the function ϕ , it is a necessary definition
that will be useful for the development of this work.

Definition 6. The function ϕ : R×R → R is said to be

(i) non negatively homogeneous if kϕ(x,y) = ϕ(kx,ky)
for all x,y ∈ R and k ≥ 0

(ii) additive if ϕ(x1 + x2,y1 + y2) = ϕ(x1,y1)+ϕ(x2,y2)
for all x1,x2,y1,y2 ∈ R

3 Main Results

Proposition 1. Let ϕ : R × R → R be an additive and
non negatively homogeneous real valued function of two
variables, X1,X2 : I ×Ω → R+ be ϕ− convex stochastic

processes and k ≥ 0. Then, (X1 +X2) and kX1 are a ϕ−
convex stochastic processes.

Proof. Let X1,X2 : I×Ω → R+ be ϕ− convex stochastic
processes, then

(X1 +X2)(ta+(1− t)b ,·)

= X1 (ta+(1− t)b ,·)+X2 (ta+(1− t)b ,·)

≤ X1(b, ·)+ tϕ (X1(a, ·),X1(b, ·))

+X2(b, ·)+ tϕ (X2(a, ·),X2(b, ·))

= (X1(b, ·)+X2(b, ·))

+ t (ϕ (X1(a, ·),X1(b, ·))+ϕ (X2(a, ·),X2(b, ·)))

= (X1(b, ·)+X2(b, ·))

+ t (ϕ (X1(a, ·)+X2(a, ·),X1(b, ·)+X2(b, ·)))

= (X1 +X2)(b, ·)+ tϕ ((X1 +X2)(a, ·),(X1 +X2)(b, ·)) .

Now, if k > 0 then

kX1 (ta+(1− t)b ,·)

≤ k (X1(b, ·)+ tϕ (X1(a, ·),X1(b, ·)))

= kX1(b, ·)+ ktϕ (X1(a, ·),X1(b, ·))

= kX1(b, ·)+ tϕ (kX1(a, ·),kX1(b, ·)) .

The proof is complete.

Corollary 1. Let ϕ : R×R → R be an additive and non

negatively homogeneous real valued function of two
variables, X1,X2, ...,Xn : I × Ω → R+ be ϕ− convex
stochastic processes and k1,k2, ...,kn real non negative
numbers. Then, X(t, ·) = ∑n

i=1 kiXi(t, ·) is a ϕ− convex

stochastic process.

Proposition 2. Let ϕ : R+ × R+ → R be a real valued
function defined by ϕ(x,y) = αx + β y, with α ∈ [0,∞)
and β ∈ [−1,∞) . Let X ,Y : R+ ×Ω → R be ϕ− convex
stochastic processes such that for each t ∈ R+ ,
max{X (t, ·) ,Y (t, ·)} exists in R. Then, the stochastic
process Z : R+ × Ω → R defined by

Z (t, ·) = max{X (t, ·) ,Y (t, ·)} is ϕ− convex stochastic
process.

Proof. Let X ,Y : R+×Ω → R be ϕ− convex stochastic
processes. Given a,b ∈ R+ and t ∈ [0,1] it implies that

X (ta+(1− t)b ,·)≤ X(b, ·)+ tϕ (X(a, ·),X(b, ·))

and

Y (ta+(1− t)b ,·)≤ Y (b, ·)+ tϕ (Y (a, ·),Y (b, ·)) .

Then,

Z (ta+(1− t)b, ·)

= max{X (ta+(1− t)b, ·),Y (ta+(1− t)b, ·)}

≤ max{X(b, ·)+ tϕ (X(a, ·),X(b, ·)) ,

Y (b, ·)+ tϕ (Y (a, ·),Y (b, ·))}

= max{X(b, ·)+ t (αX(a, ·)+β X(b, ·)),

Y (b, ·)+ t (αY (a, ·)+βY(b, ·))}

= max{(1+ tβ )X(b, ·)+ tαX(a, ·),

(1+ tβ )Y(b, ·)+ tαY(a, ·)}

≤ (1+ tβ )max{X(b, ·),Y (b, ·)}

+ tα max{X(a, ·),Y (a, ·)}

= (1+ tβ )Z(b, ·)+ t(αZ(a, ·)+β Z(b, ·))

= Z(b, ·)+ tϕ (Z(a, ·),Z(b, ·)) .

The proof is complete.

Proposition 3. Let ϕ : R+ ×R+ → R be a real valued
function of two variables, continuous in each coordinate
and let Xn : R+ × Ω → R be ϕ− convex stochastic
process for n ∈ N. Let X : R+ × Ω → R such that

X(t, ·) = limn→∞ Xn(t, ·). Then, X is ϕ− convex stochastic
process.

Proof. Let Xn : R+ ×Ω → R be ϕ− convex stochastic
process for n ∈ N. Then, we have

X (ta+(1− t)b ,·)

= lim
n→∞

Xn (ta+(1− t)b ,·)

≤ lim
n→∞

(Xn(b, ·)+ tϕ (Xn(a, ·),Xn(b, ·)))

= lim
n→∞

Xn(b, ·)+ t lim
n→∞

ϕ (Xn(a, ·),Xn(b, ·))

= lim
n→∞

Xn(b, ·)+ tϕ
(

lim
n→∞

Xn(a, ·), lim
n→∞

Xn(b, ·)
)

= X(b, ·)+ tϕ (X(a, ·),X(b, ·))

The proof is complete.
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3.1 Hermite – Hadamard type inequalities

The following two Theorems show a left side and right
side inequality of Hermite – Hadamard type, respectively.

Theorem 2. Let X : R+ × Ω → R be a ϕ−convex
stochastic process . If a,b ∈ R+ with a < b and X is mean
square integrable, then the following inequality holds
almost everywhere

X

(

a+ b

2
, ·

)

−
1

2(b− a)

∫ b

a
ϕ (X (u, ·) ,X (b+ a− u, ·))du

≤
1

b− a

∫ b

a
X(u, ·)du (2)

≤
X (a , ·)+X (b , ·)

2

+
(ϕ (X (a , ·) ,X (b , ·))+ϕ (X (b , ·) ,X (a , ·)))

2

Proof. Let X : R+ ×Ω → R be a ϕ−convex stochastic
process. From Definition 5 with t = 1/2, it follows that

X

(

a+ b

2
, ·

)

= X

(

ta+(1− t)b+(1− t)a+ tb

2
, ·

)

≤ X ((1− t)a+ tb, ·)

+
1

2
ϕ (X (ta+(1− t)b, ·),X ((1− t)a+ tb, ·))

Integrating over t ∈ [0,1] and making use of the change of
variable u = ta+(1− t)b, the following is obtained

X

(

a+ b

2
, ·

)

≤

∫ 1

0
X ((1− t)a+ tb, ·)dt

+
1

2

∫ 1

0
ϕ (X (ta+(1− t)b, ·),X ((1− t)a+ tb, ·))dt

=
1

b− a

∫ b

a
X(u, ·)du

+
1

2(b− a)

∫ b

a
ϕ (X (u, ·) ,X (b+ a− u, ·))du

so,

X

(

a+ b

2
, ·

)

−
1

2(b− a)

∫ b

a
ϕ (X (u, ·) ,X (b+ a− u, ·))du

≤
1

b− a

∫ b

a
X(u, ·)du,

obtaining the left side of the inequality (2) in this way.

Also, it implies that

X (ta+(1− t)b, ·)≤ X (b , ·)+ tϕ (X (a , ·) ,X (b , ·))

and

X ((1− t)a+ tb, ·)≤ X (a , ·)+ tϕ (X (b , ·) ,X (a , ·)) .

Adding these inequalities, the following is obtained

X (ta+(1− t)b, ·)+X ((1− t)a+ tb, ·)

≤ (X (a , ·)+X (b , ·))

+ t (ϕ (X (a , ·) ,X (b , ·))+ϕ (X (b , ·) ,X (a , ·)))

Integrating over t ∈ [0,1]

1

b− a

∫ b

a
X(u, ·)du

≤
X (a , ·)+X (b , ·)

2

+
(ϕ (X (a , ·) ,X (b , ·))+ϕ (X (b , ·) ,X (a , ·)))

2
.

The proof is complete.

Remark. If ϕ(x,y) = x − y, the inequality for convex
stochastic process is obtained

X

(

a+ b

2
, ·

)

≤
1

b− a

∫ b

a
X(u, ·)dt ≤

X (a , ·)+X (b , ·)

2
,

making coincidence with the result obtained by D. Kotrys
in [25].

Theorem 3. Let X ,Y : I × Ω → R be a ϕ−convex
stochastic process . If a,b ∈ I with a < b and X ,Y are

mean square integrable, then the following inequality
holds almost everywhere

1

b− a

∫ b

a
X (u ,·)Y (u ,·)du

≤ X(b, ·)

[

Y (b, ·)+
ϕ (Y (a, ·),Y (b, ·))

2

]

+ϕ (X(a, ·),X(b, ·))

[

Y (b, ·)

2
+

ϕ (Y (a, ·),Y (b, ·))

3

]

.

Proof.Let X ,Y : I× Ω → R be a ϕ−convex stochastic
process, then for all a,b ∈ I with a < b and t ∈ [0,1] it
follows that

X (ta+(1− t)b ,·)≤ X(b, ·)+ tϕ (X(a, ·),X(b, ·)) (3)

and

Y (ta+(1− t)b ,·)≤ Y (b, ·)+ tϕ (Y (a, ·),Y (b, ·)) . (4)

Multiplying (3) and (4), we have

X (ta+(1− t)b ,·)Y (ta+(1− t)b ,·)

≤ (X(b, ·)+ tϕ (X(a, ·),X(b, ·)))×

(Y (b, ·)+ tϕ (Y (a, ·),Y (b, ·)))

= X(b, ·)Y (b, ·)+X(b, ·)tϕ (Y (a, ·),Y (b, ·))

+Y(b, ·)tϕ (X(a, ·),X(b, ·))

+ t2ϕ (X(a, ·),X(b, ·))ϕ (Y (a, ·),Y (b, ·)) ,
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Integrating over t ∈ [0,1], the following is obtained

∫ 1

0
X (ta+(1− t)b ,·)Y (ta+(1− t)b ,·)dt

≤ X(b, ·)Y (b, ·)+
X(b, ·)ϕ (Y (a, ·),Y (b, ·))

2

+
Y (b, ·)ϕ (X(a, ·),X(b, ·))

2

+
ϕ (X(a, ·),X(b, ·))ϕ (Y (a, ·),Y (b, ·))

3

= X(b, ·)

[

Y (b, ·)+
ϕ (Y (a, ·),Y (b, ·))

2

]

+ϕ (X(a, ·),X(b, ·))

[

Y (b, ·)

2
+

ϕ (Y (a, ·),Y (b, ·))

3

]

.

With the change u = ta+(1− t)b, it follows that

1

b− a

∫ b

a
X (u ,·)Y (u ,·)du

≤ X(b, ·)

[

Y (b, ·)+
ϕ (Y (a, ·),Y (b, ·))

2

]

+ϕ (X(a, ·),X(b, ·))

[

Y (b, ·)

2
+

ϕ (Y (a, ·),Y (b, ·))

3

]

.

The proof is complete.

Corollary 2. Let X ,Y : I × Ω → R be a convex
stochastic process . If a,b ∈ I with a < b and X ,Y are

mean square integrable, then the following inequality
holds almost everywhere

1

b− a

∫ b

a
X (u ,·)Y (u ,·)du

≤
X(a, ·)Y (a, ·)+X(b, ·)Y(b, ·)

3

+
X(a, ·)Y (b, ·)+X(b, ·)Y(a, ·)

6
.

Proof. Letting ϕ(x,y) = x− y in Theorem 3, it follows
the desired result.

The proof is complete.

Theorem 4. Let X ,Y : I × Ω → R be a ϕ−convex
stochastic process . If a,b ∈ I with a < b and X ,Y are

mean square integrable, then the following inequality
holds almost everywhere

1

b− a

∫ b

a
X(u, ·)Y (a+ b− u, ·)du

≤ X(b, ·)

[

Y (a, ·)+
ϕ (Y (b, ·),Y (a, ·))

2

]

+ϕ (X(a, ·),X(b, ·))

[

Y (a, ·)

2
+

ϕ (Y (b, ·),Y (a, ·))

3

]

.

Proof. Let X ,Y : I×Ω → R be a ϕ−convex stochastic
process, then for all a,b ∈ I with a < b and t ∈ [0,1], it
follows that

X (ta+(1− t)b ,·)≤ X(b, ·)+ tϕ (X(a, ·),X(b, ·)) (5)

and

Y (tb+(1− t)a ,·)≤ Y (a, ·)+ tϕ (Y (b, ·),Y (a, ·)) . (6)

Multiplying (5) and (6), it follows that

X (ta+(1− t)b ,·)Y (tb+(1− t)a ,·)

≤ [X(b, ·)+ tϕ (X(a, ·),X(b, ·))]×

[Y (a, ·)+ tϕ (Y (b, ·),Y (a, ·))]

= X(b, ·)Y (a, ·)+X(b, ·)tϕ (Y (b, ·),Y (a, ·))

+ tϕ (X(a, ·),X(b, ·))Y (a, ·)

+ t2ϕ (X(a, ·),X(b, ·))ϕ (Y (b, ·),Y (a, ·))

Integrating over t ∈ [0,1] and letting the change of varible
u = ta+(1− t)b

1

b− a

∫ b

a
X(u, ·)Y (a+ b− u, ·)du

≤ X(b, ·)Y (a, ·)+
X(b, ·)ϕ (Y (b, ·),Y (a, ·))

2

+
ϕ (X(a, ·),X(b, ·))Y (a, ·)

2

+
ϕ (X(a, ·),X(b, ·))ϕ (Y (b, ·),Y (a, ·))

3

= X(b, ·)

[

Y (a, ·)+
ϕ (Y (b, ·),Y (a, ·))

2

]

+ϕ (X(a, ·),X(b, ·))

[

Y (a, ·)

2
+

ϕ (Y (b, ·),Y (a, ·))

3

]

The proof is complete.

Corollary 3.Let X ,Y : I ×Ω → R be a convex stochastic
process . If a,b ∈ I with a < b and X ,Y are mean square

integrable, then the following inequality holds almost
everywhere

1

b− a

∫ b

a
X(u, ·)Y (a+ b− u, ·)du

≤
X(a, ·)Y (a, ·)+X(b, ·)Y(b, ·)

6

+
X(b, ·)Y (a, ·)+X(a, ·)Y(b, ·)

3
.

Theorem 5. Let X ,Y : I × Ω → R be a ϕ−convex
stochastic process . If a,b ∈ I with a < b and X ,Y are
mean square integrable, then the following inequality
holds almost everywhere

1

b−a

∫ b

a
X(u, ·)Y (a+b−u)du

≤
5

8

(

(X (b ,·))2 +(Y (a ,·))2
)

+
14

48

(

(ϕ (X(a, ·),X(b, ·)))2 +(ϕ (Y (b, ·),Y (a, ·)))2
)

.
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Proof. Let X ,Y : I ×Ω → R be a ϕ−convex stochastic
processes. Using the change of variables u = ta+(1− t)b

and recalling that (x− y)2 ≥ 0, we have

1

b− a

∫ b

a
X(u, ·)Y (a+ b− u)du

=

∫ 1

0
X (ta+(1− t)b ,·)Y (tb+(1− t)a ,·)dt

≤
1

2

∫ 1

0
(X (ta+(1− t)b ,·))2 +(Y (tb+(1− t)a ,·))2

dt

≤
1

2

∫ 1

0
(X (b ,·)+ tϕ (X(a, ·),X(b, ·)))2

dt

+
1

2

∫ 1

0
(Y (a ,·)+ tϕ (Y (b, ·),Y (a, ·)))2

dt

=
1

2
(X (b ,·))2 +

1

4
X (b ,·)ϕ (X(a, ·),X(b, ·))

+
1

6
(ϕ (X(a, ·),X(b, ·)))2

+
1

2
(Y (a ,·))2 +

1

4
Y (a ,·)ϕ (Y (b, ·),Y (a, ·))

+
1

6
(ϕ (Y (b, ·),Y (a, ·)))2

=
(X (b ,·))2 +(Y (a ,·))2

2

+
(ϕ (X(a, ·),X(b, ·)))2 +(ϕ (Y (b, ·),Y (a, ·)))2

6

+
X (b ,·)ϕ (X(a, ·),X(b, ·))+Y (a ,·)ϕ (Y (b, ·),Y (a, ·))

4

≤
(X (b ,·))2 +(Y (a ,·))2

2

+
(ϕ (X(a, ·),X(b, ·)))2 +(ϕ (Y (b, ·),Y (a, ·)))2

6

+
(X (b ,·))2 +(ϕ (X(a, ·),X(b, ·)))2

8

+
(Y (a ,·))2 +(ϕ (Y (b, ·),Y (a, ·)))2

8

=
5

8

(

(X (b ,·))2 +(Y (a ,·))2
)

+
14

48

(

(ϕ (X(a, ·),X(b, ·)))2 +(ϕ (Y (b, ·),Y (a, ·)))2
)

.

The proof is complete.

Corollary 4. Let X ,Y : I × Ω → R be a convex
stochastic process . If a,b ∈ I with a < b and X ,Y are
mean square integrable, then the following inequality
holds almost everywhere

1

b−a

∫ b

a
X(u, ·)Y (a+b−u)du

≤
7

11

(

(X (b ,·))2 +(Y (a ,·))2
)

+
7

24

(

(X (a ,·))2 +(Y (b ,·))2
)

−
7

12
(X (a ,·)X (b ,·)+Y (b ,·)Y (a ,·)) .

3.2 Some integral inequalities and some special

means

Lemma 1. Let X : I × Ω → R be a differentiable
stochastic process, where I is an interval include in R+,
and a,b ∈ I with a < b. If X ′ is mean square integrable,
then

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

=
b−a

4

[

∫ 1

0
((1+ t)b+(1− t)a)X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)

dt

+
∫ 1

0
((1− t)b+(1+ t)a)X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)

dt

]

.

Proof. Integrating by parts the first integral inside the
brackets, it follows that

I1 =

∫ 1

0
((1+ t)b+(1− t)a)X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)

dt

=
2bX (b, ·)− (b+a)X

(

b+a
2

)

b−a
2

−
2

b−a
2

∫ b

a+b/2
X (u, ·)du (7)

similarly, the second integral is

I2 =

∫ 1

0
((1− t)b+(1+ t)a)X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)

dt

=
−2aX (a, ·)+(b+a)X

(

b+a
2

)

b−a
2

−
2

b−a
2

∫ a+b/2

a
X (u, ·)du (8)

Adding 7 and 8, it follows that

b−a

4
(I1 + I2) = bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du.

The proof is complete.

Theorem 6. Let X : I × Ω → R be a differentiable
stochastic process, where I is an interval include in R+,
and a,b ∈ I with a < b. If X ′ is mean square integrable
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and |X ′|q is ϕ−convex, for q > 1, then the following
inequality holds almost everywhere

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−
∫ b

a
X (u, ·)du

∣

∣

∣

∣

b−a

4
×

[

(

3b+a

2

)1−1/q

×

(

3b+a

2

∣

∣X ′ (b, ·)
∣

∣

q
+

2b+a

6
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
)1/q

+

(

3a+b

2

)1−1/q

×

(

3a+b

2

∣

∣X ′ (b, ·)
∣

∣

q
+

6a+b

3
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
)1/q

]

.

Proof. Using Lemma 1 and the Hölder inequality, it
follows that

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
b−a

4
×

[

∫ 1

0
|((1+ t)b+(1− t)a)|

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

dt

+

∫ 1

0
|((1− t)b+(1+ t)a)|

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

dt

]

≤
b−a

4
×

[

(

∫ 1

0
(t(b−a)+a+b) dt

)1−1/q

×

(

∫ 1

0
(t(b−a)+b+a)

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

)1/q

+

(

∫ 1

0
(a+b− t(b−a)) dt

)1−1/q

×

(

∫ 1

0
(a+b− t(b−a))

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

)1/q
]

.

(9)

For each integral in 9, we have

∫ 1

0
(t(b− a)+ a+ b)dt =

3b+ a

2
, (10)

∫ 1

0
(a+ b− t(b− a))dt =

3a+ b

2
, (11)

so, using the ϕ−convexity of |X ′|q

∫ 1

0
(t(b−a)+b+a)

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

≤
∫ 1

0
(t(b−a)+b+a)

∣

∣X ′ (b, ·)
∣

∣

q

+

(

1− t

2

)

ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
dt

≤
∣

∣X ′ (b, ·)
∣

∣

q
∫ 1

0
(t(b−a)+b+a) dt

+ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
∫ 1

0

(

1− t

2

)

(t(b−a)+b+a) dt

=
3b+a

2

∣

∣X ′ (b, ·)
∣

∣

q
+

2b+a

6
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
(12)

similarly

∫ 1

0
(a+b− t(b−a))

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

≤
3a+b

2

∣

∣X ′ (b, ·)
∣

∣

q
+

6a+b

3
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
(13)

Replacing (10), (11), (12) and (13) in (9) the desired result
is obtained.
The proof is complete.

Recall that the weighted arithmetic mean of two
numbers a and b is defined by

Aw1,w2
(a,b) =

w1a+w2b

w1 +w2

,

the weighted power mean of order p,(p 6= 0), of two
distinct numbers a and b by

Mp;w1,w2
(a,b) =

(

w1ap +w2bp

w1 +w2

)1/p

and the logarithmic mean for two positive numbers a and
b is given for a = b by Lp(a,a) = a and for a 6= b by

Lp(a,b) =

[

bp+1 − ap+1

(p+ 1)(b− a)

]1/p

if p 6=−1,0

Corollary 5. Let X : I × Ω → R be a differentiable
stochastic process, where I is an interval include in R+,
and a,b ∈ I with a < b. If X ′ is mean square integrable
and |X ′|q is convex, for q > 1, then the following
inequality holds almost everywhere

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
b−a

2
×

A3/2,1/2(a,b)
[

Mq;w1,w2

(
∣

∣X ′ (a, ·)
∣

∣ ,
∣

∣X ′ (b, ·)
∣

∣

)

+Mq;w2 ,w1

(
∣

∣X ′ (a, ·)
∣

∣ ,
∣

∣X ′ (b, ·)
∣

∣

)]

,

where

w1 =
2b+a

6
and w2 =

7b+2a

6

Proof. Letting ϕ(x,y) = x−y in the previous Theorem 6,
the following is obtained

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
b−a

4
×

[

(

3b+a

2

)1−1/q(
2b+a

6

∣

∣X ′ (a, ·)
∣

∣

q
+

7b+2a

6

∣

∣X ′ (b, ·)
∣

∣

q
)1/q

+

(

3a+b

2

)1−1/q(
7a+2b

6

∣

∣X ′ (a, ·)
∣

∣

q
+

2a+b

2

∣

∣X ′ (b, ·)
∣

∣

q
)1/q

]
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and using the weighted arithmetic mean of a and b, and the
weighted power mean of |X ′ (a, ·)| and |X ′ (b, ·)| with

w1 =
2b+ a

6
and w2 =

7b+ 2a

6
.

The proof is complete.

Theorem 7. Let X : I × Ω → R be a differentiable
stochastic process, where I is an interval include in R+,
and a,b ∈ I with a < b. If X ′ is mean square integrable
and |X ′|q is ϕ−convex, for q > 1 and 1/p+1/q = 1, then
the following inequality holds almost everywhere

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−
∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
(b−a)

4
×

[

Lp(a+b,2b)

(

∣

∣X ′ (b, ·)
∣

∣

q
+

1

4
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
)1/q

+ Lp(2a,a+b)

(

∣

∣X ′ (b, ·)
∣

∣

q
+

3

4
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
)1/q

]

.

Proof. Using Lemma 1 and the Hölder inequality, it
implies that

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−
∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
b−a

4
×

[

∫ 1

0
|((1+ t)b+(1− t)a)|

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

dt

+
∫ 1

0
|((1− t)b+(1+ t)a)|

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

dt

]

≤
b−a

4
×

[

(

∫ 1

0
((1+ t)b+(1− t)a)p)

dt

)1/p

×

(

∫ 1

0

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

)1/q

+

(

∫ 1

0
((1− t)b+(1+ t)a)p)

dt

)1/p

×

(

∫ 1

0

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

)1/q
]

(14)

For each integrals in the inequality (14), we have

∫ 1

0
((1+ t)b+(1− t)a)p dt

=
(2b)p+1

(p+1)(b−a)
−

(a+b)p+1

(p+1)(b−a)
, (15)

∫ 1

0
((1− t)b+(1+ t)a)p dt

=
(a+b)p+1

(p+1)(b−a)
−

(2a)p+1

(p+1)(b−a)
, (16)

and using the ϕ−convexity of |X ′|q, the following is
obtained

∫ 1

0

∣

∣

∣

∣

X ′

((

1+ t

2
b+

1− t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt (17)

≤
∫ 1

0

∣

∣X ′ (b, ·)
∣

∣

q
+

1− t

2
ϕ
(∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
dt

=
∣

∣X ′ (b, ·)
∣

∣

q
+

1

4
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
,

and similarly

∫ 1

0

∣

∣

∣

∣

X ′

((

1− t

2
b+

1+ t

2
a

)

, ·

)
∣

∣

∣

∣

q

dt

≤
∣

∣X ′ (b, ·)
∣

∣

q
+

3

4
ϕ
(
∣

∣X ′ (a, ·)
∣

∣

q
,
∣

∣X ′ (b, ·)
∣

∣

q)
(18)

Replacing (15), (16), (17) and (18) in inequality (14) the
desired result is obtained. The proof is complete.

Corollary 6. Let X : I × Ω → R be a differentiable
stochastic process, where I is an interval include in R+,
and a,b ∈ I with a < b. If X ′ is mean square integrable
and |X ′|q is convex, for q > 1 and 1/p+1/q = 1, then the
following inequality holds almost everywhere

∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
(b−a)

4
×

[

Lp(a+b,2b)Mq;1/4,3/4

(
∣

∣X ′ (a, ·)
∣

∣ ,
∣

∣X ′ (b, ·)
∣

∣

)

+ Lp(2a,a+b)Mq;3/4,1/4

(
∣

∣X ′ (a, ·)
∣

∣ ,
∣

∣X ′ (b, ·)
∣

∣

)

]

.

Proof. Letting ϕ(x,y) = x− y in Theorem 7, we have
∣

∣

∣

∣

bX (b, ·)−aX (a, ·)−

∫ b

a
X (u, ·)du

∣

∣

∣

∣

≤
(b−a)

4
×

[

Lp(a+b,2b)

(

1

4

∣

∣X ′ (a, ·)
∣

∣

q
+

3

4

∣

∣X ′ (b, ·)
∣

∣

q
)1/q

+ Lp(2a,a+b)

(

3

4

∣

∣X ′ (a, ·)
∣

∣

q
+

1

4

∣

∣X ′ (b, ·)
∣

∣

q
)1/q

]

.

and using the weighted power mean of |X ′ (a, ·)| and
|X ′ (b, ·)| with

w1 =
1

4
and w2 =

3

4

the desired result is obtained.

4 Conclusion

In this paper, the concept of φ−convex stochastic process
was introduced and certain algebraic properties were
deduced. Also, some mean square integral inequalities of
Hermite – Hadamard type were established. In addition,
various mean square integral inequalities were
investigated.

This work is expected to serve as a motivation for
further research in the area. A similar study using
fractional integrals is significant.
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Atlántico (Colombia), 5(1), 13 – 28 (2018).

[32] J.E. Hernández Hernández, J.F Gómez, Hermite –
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