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Abstract: A numerical algorithm to handle the 2D mixed Volterra-Fredholm integral equations (MV-FIEs) is introduced. The
fundamentals of shifted Legendre and shifted Chebyshev polynomials are first mentioned. These fundamentals jointly with the shifted
Gauss-Legendre and Chebyshev nodes are then used to transform the integral equations to matrix equation. The main advantages of
the presented scheme is its reasonable accuracy. Sequentially, fine numerical results can be obtained via a relatively few number of
collocation points. The convergence and error analyses of the method were discussed in detail. Numerical test experiments are offered
to demonstrate the validity, efficiency, and applicability of the scheme.
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1 Introduction

In many disciplines of sciences and engineering,
many high-accurate approximate solvers are offered to
handle the relevant problems. At the forepart of these
schemes, weighted residual methods are extensively
considered as powerful techniques in the finding
semi-analytic solutions for different kinds of differential,
integral and integro-differential equations (see, ( [1–7])

Recently, several works Were focussed on developing
of more new and reliable methods for the linear/nonlinear
MV-FIEs. The spline collocation method (SCM) [8] and
the successive iterative method (SIM) [9] were introduced
for obtaining the approximation solution of these
equations. Behzadi [10] used a scheme based on
Homotopy analysis method (HAM) for solving nonlinear
V-FIEs of the first type, while Abdou et al. [11] was
reduced V-FIE of the second type to a system of
Fredholm integral equations using Toeplitz matrix
method (TMM) and Product Nystrm method (PNM).
Shekarabi, Maleknejad and Ezzati [12] applied the 2D
Bernstein operational matrices method to solve mixed
Volterra-Fredholm integral equations, while in [13],
Dastjerdi et al. used the radial basis function
approximation for the numerical solution of MV-FIEs.

Hafez et al. [1] solved classes of two-dimensional linear
and nonlinear MV-FIEs using Bernoulli collocation
method. Also, Taylor polynomial method (TPM) has been
applied for finding numerical solution of the MV-FIEs
in [14], Paripour and Kamyar [15] introduced novel basis
functions for approximating the solution of nonlinear
V-FIEs via a direct method. Also, the homotopy
perturbation method (HPM) and the modified HPM have
been used for finding approximate solution of nonlinear
V-FIEs in [16], [17], and [18], respectively.

It’s established that Legendre and Chebyshev
polynomials play a vital role numerical analysis,
especially in spectral approximations of differential,
integral and integro-differential equations, (see,
Refs. [19–24]). Our work aims to build some perfect
collocation algorithms to treat 2D linear and nonlinear
MV-FIEs. One great performance of such algorithms is
that it transforms the underlying problems to solving
systems of algebraic/transcendental equations by using
the Legendre-Chebyshev polynomials as basis functions
hybrid with the Gauss-Legendre and Chebyshev nodes as
the collocation points. The collocation algorithm has been
good tackled many problems [25–28].

The outline of this paper is as follows: In the next
section, we introduce some notations and some few
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mathematical facts needed in the rest the paper. In Section
3, the procedures of constructing the collocation
methodology for 2D linear MV-FIEs are described via the
shifted Legendre and shifted Chebyshev polynomials. In
Section 4, the procedures of constructing the collocation
methodology for 2D nonlinearMV-FIEs are described via
the shifted Legendre and shifted Chebyshev polynomials.
Moreover, in Section 6 the presented technique is used to
some various test experiments. Finally, concluding
remarks are reported in Section 7.

2 Some properties of polynomials

This section is devoted to some fundamental information
of orthogonal shifted Legendre and shifted Chebyshev
polynomials.

2.1 Some properties of shifted Legendre
polynomials

The known Legendre polynomialsLi(η) are defined on the
usual interval (−1, 1). Firstly, some of the properties of
regular Legendre polynomials (LP) have been mentioned
in this section. LP satisfy the following

L0(η) = 1, L1(η) = η,

Lk+2(η) =
2k + 3

k + 2
ηLk+1(η)− k + 1

k + 2
Lk(η)

and the orthogonality relation

(Lk(η), Ll(η))w =

1∫
−1

Lk(η)Ll(η)w(η) dη = hkδlk.

where w(η) = 1, hk = 2
2k+1 . The

Legendre-Gauss-Lobatto (LGL) quadrature was used to
compute the previous integrals accurately. For
φ ∈ S2N−1[−1, 1], one have

1∫
−1

φ(η)dη =

N∑
j=0

$N,jφ(ξN,j).

Consider the following discrete inner product

(u, v)w =

N∑
j=0

u(ξN,j) v(ξN,j)$N,j .

For Legndre Gauss-Lobatto, [29].
Let the shifted LP Li(2ξ − 1) be denoted by Pi(ξ). Then
Pi(ξ) can be resulted with the aid of the following
recursive relation:

(i+1)Pi+1(ξ) = (2i+1)(2ξ−1)Pi(ξ)−iPi−1(ξ), i = 1, 2, · · · .

The analytic power form of the shifted LP Pi(ξ) of degree
i is defined by

Pi(ξ) =

i∑
k=0

(−1)
i+k (i+ k)!

(i− k)! (k!)2 Lk
ξk, (1)

The orthogonality condition is∫ 1

0

Pj(ξ)Pk(ξ)w∗(ξ)dξ = hk δjk,

where w∗(ξ) = 1 and h̄j = 1
2j+1 .

2.2 Some properties of shifted Chebyshev
polynomial

The famous Chebyshev polynomials (CP) are defined on
the usual interval (−1, 1) and can be generated with the
aid of the following recurrence formula:

Tk+1(η) = 2ηTk(η)− Tk−1(η), k = 1, 2, · · · ,

where T0(η) = 1 and T1(η) = η. The Chebyshev
polynomials are satisfying the following relations

Tk(±1) = (±1)k, Tk(−η) = (−1)kTk(η).

Let w(η) =
1√

1− η2
, then define the weighted space L2

w

as usual. The inner product and the norm of L2
w w.r.t. the

weight function are defined as:

(u, v)w =

1∫
−1

u(η) v(η)w(η)dη, ‖u‖w = (u, u)
1
2
w.

The set of CP forms a complete L2
w-orthogonal system,

and

‖Tk‖w = hk =

{
Ck

2 π, k = j,

0, k 6= j,
C0 = 2, Ck = 1, k ≥ 1.

To tame these polynomials over (0, 1) define the
shifted CP by the map η = 2ξ − 1. Denote the shifted CP
Ti(2ξ − 1) by T ∗i (ξ). Then T ∗i (ξ) can be generated as
follows:

T ∗i+1(ξ) = 2(2ξ − 1)T ∗i (ξ)− T ∗i−1(ξ), i = 1, 2, · · · ,

where T ∗0 (ξ) = 1 and T ∗1 (ξ) = 2ξ−1. The analytic power
form of the shifted CP T ∗i (ξ) of degree i is given by

T ∗i (ξ) = i

i∑
k=0

(−1)
i−k (i+ k − 1)! 22k

(i− k)! (2k)! Lk
ξk, (2)

where T ∗i (0) = (−1)
i and T ∗i (1) = 1.
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The orthogonality condition is∫ 1

0

T ∗j (ξ)T ∗k (ξ)w∗(ξ)dξ = hk,

where w∗(ξ) =
1√
ξ − ξ2

and hk ={εj
2
π, k = j,

0, k 6= j,
ε0 = 2, εi = 1, i ≥ 1.

3 Linear MV-FIEs

Here, we are focused in using the Legendre-Chebyshev
collocation method (L-CCM) for solving linear 2D
MV-FIEs:

u(ξ, η) = g(ξ, η) +

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)u(s, t)dtds, (3)

where, u(ξ, η) is an unknown function, g(ξ, η) and
k(ξ, s, η, t) are analytical functions on [0, 1]2 and [0, 1]4,
respectively.

The aim of our methodology is to get solution using
the procedures listed in the previous section as:

u(ξ, η) w
N∑
i=0

M∑
j=0

cijPi(ξ)T
∗
j (η) = ψ(ξ, η)C, (4)

where, cij , i = 0, 1, . . . , N, j = 0, 1, . . . ,M are the
unknown coefficients,

C = [c00, c10, . . . , cN0; c01, c11, . . . , cN1; c0M , c1M ,

. . . , cNM ]T ,

N and M are any arbitrary positive integers,
Pi(ξ), i = 0, 1, . . . , N and T ∗j (η), j = 0, 1, . . . ,M are
shifted legendre polynomials and shifted Chebyshev
polynomials defined in Eqs. (1) and (2), respectively.
Also ψ(ξ, η) is 1× (N + 1)(M + 1) matrix introduced as
follows

ψ(ξ, η) = [r00(ξ, η), r10(ξ, η), . . . , rN0(ξ, η); r01(ξ, η)

, r11(ξ, η), . . . , rN1(ξ, η); r0M (ξ, η), r1M (ξ, η),

. . . , rNM (ξ, η)],

where

rij(ξ, η) = Pi(ξ)T
∗
j (η), i = 0, 1, . . . , N, j = 0, 1, . . . ,M.

Substituting Eq. (4) into Eq. (3) yields:

N∑
i=0

M∑
j=0

cijPi(ξ)T
∗
j (η) = g(ξ, η)

+

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)

N∑
i=0

M∑
j=0

cijPi(s)T
∗
j (t)dtds.

(5)

Suppose that:

fij(ξ, η) = Pi(ξ)T
∗
j (η)−

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)Pi(s)T
∗
j (t)dtds,

then, Eq. (5) can be rewritten as:

N∑
i=0

M∑
j=0

cijfij(ξ, η) = g(ξ, η). (6)

Collocating Eq. (6) in N + 1 and M + 1 roots of the
shifted legendre polynomial PN+1(ξ) and shifted
Chebyshev polynomial TM+1(ξ), respectively, the shifted
Legendre-Gauss in combination with shifted
Chebyshev-Gauss nodes, then:

N∑
i=0

M∑
j=0

cijfij(ξn, ηm) = g(ξn, ηm),

for n = 0, 1, . . . , N, m = 0, 1, . . . ,M,

(7)

which can be written in the following matrix form:

FTC = G,

where

G =[g(ξ0, η0), g(ξ1, η0), . . . , g(ξN , η0); g(ξ0, η1), g(ξ1, η1)

, . . . , g(ξN , η1); g(ξ0, ηM ), g(ξ1, ηM ), . . . , g(ξN , ηM )]T ,

and

F = (fijnm), i, n = 0, 1, . . . , N, j,m = 0, 1, . . . ,M,

in which the entries of the matrix F are defined as:

fijnm = fij(ξn, ηm), i, n = 0, 1, . . . , N, j,m = 0, 1, . . . ,M.

In our calculations, this system has been solved using
the Mathematica package ”FindRoot” with vanishing
initial approximation.

4 Nonlinear MV-FIEs

The 2D nonlinear MV-FIEs is given by:

u(ξ, η) =

∫ ξ

0

∫
Ω

k(ξ, η, s, t, u(s, t))dtds+ g(ξ, η), (8)

where u(ξ, η) is an unknown function defined on

D = [0, T ]×Ω,

and Ω is a closed compact subset of Rn, n = 1, 2, 3. The
functions k(ξ, η, s, t, u) and g(ξ, η) are given functions
defined on D and

S = {(ξ, η, s, t, u) : 0 ≤ s ≤ ξ ≤ T, η ∈ Ω, t ∈ Ω},
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respectively [30]. Note that any interval [0, T ] can be
shifted to [0, 1] by a linear dilation, so suppose that
[0, T ] = [0, 1] and Ω = [0, 1] WLOG. Now, approximate
the solution u(ξ, η) using Eq. (4); then one get,

ψ(ξ, η)C =

∫ ξ

0

∫ 1

0

k(ξ, η, s, t, ψ(s, t)C) + g(ξ, η)dtds.

(9)
Now, collocate Eq. (9) at points
(ξn, ηm) for n = 0, 1, . . . , N, m = 0, 1, . . . ,M. Hence,
we have

ψ(ξn, ηm)C =

∫ ξn

0

∫ 1

0

k(ξn, ηm, s, t, ψ(s, t)C)dtds

+ g(ξn, ηm),
(10)

for n = 0, 1, . . . , N, m = 0, 1, . . . ,M. From (10), one
obtain a nonlinear system of algebraic equations that can
be solved by Newton iteration method to obtain the
unknown vector C.

5 Convergence and Error Analysis

In this section, we find an upper estimate for both the
truncation and global error of the algorithm, for this
purpose we state and prove three theorems. The following
theorem is needed,

Theorem 1. [31] The repeated integration of shifted
Legendre polynomials is given by∫ ∫

· · ·
∫

︸ ︷︷ ︸
r−times

Pi(ξ)(dξ)
r =

1

4r

r∑
j=0

(
r
j

)
(−1)j

(i+ r − 2j + 1
2 )

Γ (i+ r − j + 3
2 )
Pi+r−2j(ξ).

and the following lemma.

Theorem 2. [32] The following inequality is valid:

| Pi(ξ) |≤ [2π(ξ − ξ2)]−
1
2 ,

u(ξ, η) =

∞∑
i=0

∞∑
j=0

Pi(ξ)T
∗
j (η),

∫ 1

0

∫ 1

0

u(ξ, η)√
η − η2

Pi(ξ)T
∗
j (η)dξdη =

εjπ

4i+ 2
cij .

Therefore

cij =
4i+ 2

πεj

∫ 1

0

∫ 1

0

u(ξ, η)Pi(ξ)T
∗
j (η)√

η − η2
dξdη.

Theorem 3.If u(ξ, η) is separable i.e.
u(ξ, η) = u1(ξ)u2(η) and if there exists M1, M2 such
that u(p)1 (ξ) ≤ M1 and u

(q)
2 (η) ≤ M2, for some p, q

positive integers, assume that u(ξ, η) is approximated by
u(ξ, η) '

∑N
i=0

∑M
j=0 Pi(ξ)T

∗
j (η), then the expansion

coefficients cij satisfy the following estimate

| cij |= O(i
1
2−pj−q), ∀ i > p >

3

2
, j > q > 1.

Proof.Following [33] and [34].
Starting from

cij =
4i+ 2

πεj

∫ 1

0

u1(ξ)Pi(ξ)dξ

∫ 1

0

u2(η)T ∗j (η)√
η − η2

dη.

Let

I1 =

∫ 1

0

u1(ξ)Pi(ξ)dξ, I2 =

∫ 1

0

u2(η)T ∗j (η)√
η − η2

dη.

For the integral I1, Integrating by parts p-times and
applying Theorem 1 and inequality in Theorem 2 and
after some algebraic manipulations we get

| I1 |≤ c1(i
1
2 − p). (11)

For the integral I2, using the substitution 2η − 1 = cos θ
and integration by parts q-times and after some lengthy
manipulations we get

| I2 |≤ c2(j−q). (12)

Joining (11) and (12), the Theorem is proved.

Theorem 4.Under the hypotheses of Theorem 3, one have
the following error estimate

eN,M =| u(ξ, η)− uN,M (ξ, η) |= O(N
3
2−pM1−q)

Proof.

eN,M =| u(ξ, η)− uN,M (ξ, η) |

=|
∞∑

i=N+1

∞∑
j=M+1

cijPi(ξ)T
∗
j (η) |,

using the result of Theorem 3 and the inequalities
| Pi(ξ) |≤ 1, | T ∗j (η) |≤ 1,

eN,M ≤ ι
∞∑

i=N+1

i
1
2−p

∞∑
j=M+1

j−q.

Now the reminder of any convergent series
∑∞
k=1 f(k)

satisfy
∑∞
k=N+1 f(k) <

∫∞
N
f(ξ)dξ,

therefore

eN,M ≤ ι
∫ ∞
N

ξ
1
2−pdξ

∫ ∞
M

η−qdη

= ι
2N

3
2−p

2p− 3

M1−q

q − 1
.

Which completes the proof of the Theorem.
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Theorem 5.If ε is the residual of Eq. (3) then one have the
following estimate | ε |≤ (1 + k)eN,M , where k is upper
bound of the kernel function k(ξ, t).

Proof.

u(ξ, η) = g(ξ, η) +

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)u(s, t)dtds,

uN,M (ξ, η) = ε+ g(ξ, η)

+

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)uN,M (s, t)dtds,

eN,M = ε+

∫ ξ

0

∫ 1

0

k(ξ, s, η, t)eN,Mdtds,

hence

| ε |≤ eN,M +

∫ ξ

0

∫ 1

0

| k(ξ, s, η, t) | eN,Mdtds,

which yields

| ε |≤ eN,M (1 + kξ) ≤ (1 + k)eN,M .

6 Numerical results

This part is devoted to some numerical examples to show
the accuracy, quality and applicability of the proposed
method.

The distance between the value of approximate
solution and its exact value, is determined by

E(ξ, η) = |u(ξ, η)− ũ(ξ, η)|, (13)

where u(ξ, η) and ũ(ξ, η) are the exact solution and the
numerical solution at the point (ξ, η), respectively.
Moreover, the maximum AEs is given by

MAEs = Max{E(ξ, t) : ∀(ξ, t) ∈ [0, 1]× [0, 1]} = L∞.
(14)

Also we can denote to L2 by

L2 =

√√√√√ M∑
i=0

M∑
j=0

(approximate− exact)2

(N + 1)(M + 1)

(15)

Example 1.Let us first consider the following linear MV-
FIEs equation [12]

u(ξ, η) = g(ξ, η) +

∫ ξ

0

∫ 1

0

η2e−tu(s, t)dtds,

ξ, η ∈ [0, 1),

(16)

where, g(ξ, η) = ξ2 − 1
3ξ

3η2 with the exact solution
u(ξ, η) = ξ2eη , for 0 ≤ ξ, η < 1.

Table 1: Comparison of the AEs with various choices of
ξ, η,N,M , for Example 1.

ξ = η = N =M = 4 N =M = 8
[12] CLM [12] CLM

0.0 2.26.10−8 1.04.10−17 6.39.10−10 7.39.10−17

0.1 4.27.10−5 3.74.10−8 7.06.10−5 1.50.10−13

0.2 2.00.10−4 7.58.10−7 3.41.10−4 1.18.10−12

0.3 4.71.10−4 2.16.10−6 8.36.10−4 1.36.10−12

0.4 7.69.10−4 6.25.10−7 1.47.10−3 5.44.10−12

0.5 8.78.10−4 6.47.10−6 2.03.10−3 8.49.10−12

0.6 4.21.10−4 1.45.10−5 2.13.10−3 1.14.10−11

0.7 1.18.10−3 1.06.10−5 1.17.10−3 2.58.10−11

0.8 4.75.10−3 1.62.10−5 1.65.10−3 1.15.10−12

0.9 1.14.10−3 4.16.10−5 7.48.10−3 3.73.10−11

1.0 2.25.10−3 5.62.10−5 9.77.10−3 7.14.10−11

Table 2: L2 and L∞-error for Example 1.

N =M L2-error L∞-error
4 7.960.10−8 2.740.10−16

8 2.093.10−14 1.598.10−16

To prove that our methodology is more power-full than
the operational matrix using Bernstein polynomials [12],
in Table 1, we give the AE with several choices of
N, M, ξ, and η and compare the obtained results with
those obtained using the operational matrix using
Bernstein polynomials [12]. Moreover, Table 2 display
the L2-error and L∞-error using our methodology
(Chebyshev-Legendre Method CLM) with several choices
of N, M . We see in these tables that the results are very
accurate for small values of N and M . we depicted

Fig. 1), show the exact solution of Example 1 at N =
M = 8.

Fig. 1: The exact u(ξ, η) solution for Example 1 where
N = M = 8.

Fig. 2), show the numerical solution of Example 1 at
N = M = 8.

Fig. 3) The AE for Example 1 where N = M = 8.
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Fig. 2: The numerical ũ(ξ, η) solution for Example 1
where N = M = 8.

Fig. 3: The AE for Example 1 where N = M = 8.

Fig. 4) The graph of AE for Example 1 where N =
M = 8 at ξ = 0.5.

Fig. 5) The graph of exact u(ξ, η) solution for
Example 1 where N = M = 8 at three different values of
η.

Fig. 6) The graph of numerical ũ(ξ, η) solution for
Example 1 where N = M = 8 at three different values of
ξ.

Example 2.Consider the following linear mixed Volterra-
Fredholm integral equation [12]

u(ξ, η) = g(ξ, η)−
∫ ξ

0

∫ 1

0

(2t− 1)esu(s, t)dtds,

ξ, η ∈ [0, 1),

(17)

where, g(ξ, η) = sin(ξ) + η + 1
6e
ξ − 1

6 with the exact
solution u(ξ, η) = sin(ξ) + η, for 0 ≤ ξ, η < 1.

Table 3 shows that the AE obtained by the our method is
significantly better than that obtained by the operational
matrix using Bernstein polynomials [12]. Moreover,

Fig. 4: The graph of AE for Example 1 whereN = M = 8
at ξ = 0.5.

Fig. 5: The graph of exact u(ξ, η) and numerical ũ(ξ, η)
solutions for Example 1 where N = M = 8 at three
different values of ξ.

Table 4 display the L2-error and L∞-error using our
method with several choices of N, M . The Graph of
analytical solution and approximate solution at
N = M = 8 is depicted in Fig 7 to make it easier to
compare with analytical solution. Fig. 9, allows us to see
the absolute error E(ξ, t) at N = M = 8.

Fig. 10) The graph of exact u(ξ, η) and numerical
ũ(ξ, η) solutions for Example 2 where N = M = 8 at
three different values of η.

Fig. 11)] The graph of exact u(ξ, η) and numerical
ũ(ξ, η) solutions for Example 2 where N = M = 8 at
three different values of ξ.

Fig. 12) The graph of AE for Example 2 where N =
M = 8 at η = 0.5.

Fig. 13) The graph of AE for Example 2 where N =
M = 8 at ξ = 0.5.
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Fig. 6: The graph of exact u(ξ, η) and numerical ũ(ξ, η)
solutions for Example 1 where N = M = 8 at three
different values of ξ.

Table 3: Comparison of the AEs with various choices of
ξ, η,N,M , for Example 2.

ξ, η N =M = 4 N =M = 8
[12] CLM [12] CLM

0.0 1.142.10−8 8.247.10−17 7.432.10−9 3.219.10−17

0.1 6.482.10−4 1.424.10−5 6.512.10−4 2.157.10−11

0.2 1.257.10−3 6.116.10−6 5.992.10−4 1.852.10−11

0.3 1.826.10−3 2.080.10−5 9.213.10−5 8.707.10−12

0.4 2.356.10−3 1.705.10−5 1.376.10−3 2.683.10−11

0.5 2.858.10−3 1.665.10−16 3.219.10−3 3.885.10−16

0.6 3.347.10−3 1.674.10−5 5.601.10−3 2.653.10−11

0.7 3.840.10−3 2.005.10−5 8.597.10−3 8.518.10−12

0.8 4.358.10−3 5.790.10−6 1.193.10−2 1.792.10−11

0.9 4.926.10−3 1.324.10−5 1.588.10−2 2.065.10−11

1.0 5.568.10−3 3.306.10−16 2.036.10−2 4.440.10−16

Table 4: L2 and L∞-error for Example 2.

N =M L2-error L∞-error
4 1.660.10−16 1.549.10−5

8 3.905.10−16 2.461.10−11

Example 3.Consider the following nonlinear mixed
Volterra-Fredholm integral equation [35]

u(ξ, η) = g(ξ, η)−
∫ ξ

0

∫ 1

0

η2e−4s[u(s, t)]2dtds,

ξ, η ∈ [0, 1),

(18)

where, g(ξ, η) = ξ2e2s− 1
2ξ

2 + η2 with the exact solution
u(ξ, η) = ξ2e2η , for 0 ≤ ξ, η < 1.

In this example (Table 5), we compare our results
obtained by the L-CCM for the different choices ξ, η,
with the method of OM [35], the method of multiquadric
(MQs) radial basis functions [36] and Bernoulli
collocation method (BCM). The numerical results in this

Fig. 7: The exact u(ξ, η) solution for Example 2 where
N = M = 8.

Fig. 8: The numerical ũ(ξ, η) solution for Example 2
where N = M = 8.

Table 5: Comparison of the AEs with various choices of
ξ, η, for Example 3.

(ξ, η) OM [35] MQs [36] BCM [1] L-CCM
(0.0,0.0) 0 6.43.10−3 0 0

(0.1,0.1) 9.39.10−4 6.94.10−3 1.05.10−4 1.61.10−8

(0.2,0.2) 6.35.10−4 4.31.10−2 6.76.10−4 3.14.10−7

(0.3,0.3) 6.61.10−4 9.82.10−2 1.51.10−3 1.90.10−7

(0.4,0.4) 1.02.10−3 1.68.10−1 1.66.10−3 1.33.10−6

(0.5,0.5) 1.69.10−4 2.63.10−1 1.34.10−3 2.24.10−10

(0.6,0.6) 1.24.10−3 3.88.10−1 4.05.10−3 3.14.10−6

(0.7,0.7) 1.13.10−3 5.33.10−1 9.45.10−3 1.14.10−6

(0.8,0.8) 1.42.10−3 6.91.10−1 1.33.10−2 5.84.10−6

(0.9,0.9) 2.17.10−3 8.85.10−1 1.13.10−2 1.58.10−6

Table demonstrates that the AEs obtained by the L-CCM
method is significantly better than those in [35], [36] and
Bernoulli collocation method [1]. Fig. 14, allows us to see
the AE E(ξ, t) at N = 2, M = 6.
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Fig. 9: The AE for Example 2 where N = M = 8.

Fig. 10: The graph of exact u(ξ, η) and numerical ũ(ξ, η)
solutions for Example 2 where N = M = 8 at three
different values of η.

Fig. 14: The AE for Example 3 where N = 2, M = 6.

Fig. 11: The graph of exact u(ξ, η) and numerical ũ(ξ, η)
solutions for Example 2 where N = M = 8 at three
different values of ξ.

Fig. 12: The graph of AE for Example 2 whereN = M =
8 at η = 0.5.

Example 4.For the following nonlinear mixed
Volterra-Fredholm integral equation [35]

u(ξ, η) = g(ξ, η) + 16

∫ ξ

0

∫ 1

0

e(ξ+η+s+t)[u(s, t)]3dtds,

ξ, η ∈ [0, 1),
(19)

where, g(ξ, η) = eξ+η+4−e5ξ+η−e5ξ+η+4 with the exact
solution u(ξ, η) = eξ+η .

Maleknejad and JafariBehbahani [35] introduced this
problem and applied the operational matrix (OM) for
integration in mixed type for obtaining its numerical
solution. In order to show that our algorithm is more
accurate than the OM [35], in Table 6, we list the AEs
with several choices of ξ, η and N = 2, M = 3 and
compare the achieved results with those obtained using
the OM [35].
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Fig. 13: The graph of AE for Example 2 whereN = M =
8 at ξ = 0.5.

Table 6: Comparison of the AEs with various choices of
ξ, η, for Example 4.

(ξ, η) OM [35] L-CCM
at m1 = m2 = 8 at N = 2, M = 3

(0.0,0.0) 0 0

(0.1,0.1) 1.5274.10−2 1.6903.10−3

(0.2,0.2) 1.0857.10−2 3.5678.10−3

(0.3,0.3) 1.0937.10−2 2.5247.10−3

(0.4,0.4) 2.2908.10−2 1.0714.10−3

(0.5,0.5) 2.5617.10−2 6.0552.10−3

(0.6,0.6) 3.0525.10−2 1.0065.10−2

(0.7,0.7) 2.9937.10−2 9.0032.10−3

(0.8,0.8) 3.5379.10−2 3.6852.10−3

(0.9,0.9) 5.3123.10−2 3.7944.10−2

Example 5.The last example is a nonlinear mixed
Volterra-Fredholm integral equation that arises from
mathematical modelling of the spatio-temporal
development of an epidemic [37], in the form

u(ξ, η) = g(ξ, η)

+

∫ ξ

0

∫ 1

0

η(1− t)2

(1 + ξ)(1 + s2)
(1− exp(−u(s, t)))dtds,

ξ, η ∈ [0, 1),
(20)

where, g(ξ, η) = −log(1+ ξη
1+ξ2 )+ ηξ2

24(1+ξ)(1+ξ2) with the

exact solution u(ξ, η) = −log(1+ ξη
1+ξ2 ), for 0 ≤ ξ, η < 1.

Fig. 15, Fig. 16 show the exact solution and numerical
solutions of Example 5 at N = M = 8.

Fig. 15: The exact solution u(ξ, η) for Example 5 where
N = M = 8.

Fig. 16: The numerical solution ũ(ξ, η) for Example 5
where N = M = 8.

7 Concluding Remarks

We have applied a Legendre-Chebyshev collocation
method to solve a specific type of two-dimensional mixed
V-FIEs. This method uses the shifted Legendre-Gauss
combinations with shifted Chebyshev-Gauss points to
reduce the considered mixed V-FIEs to the solution of a
matrix equation. In the examples given, by selecting
relatively few shifted Legendre-Gauss combinations with
shifted Chebyshev-Gauss points, we are able to get very
accurate approximations, and we are thus able to
demonstrate the utility of our approach over other
analytical or numerical schemes such as other collocation
schemes or perturbation methods. The comparison of the
obtained results with those based on other methods shows
that the scheme is a powerful solver for these kinds of
equations. The only drawback of the proposed scheme is
that, raising the values of N and/or M (more than 64)
may cause a round of error.
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