Appl. Math. Inf. Sci. 7, No. 1, 399-406 (2013)

Applied Mathematics & Information Sciences
An International Journal

© 2013 NSP
Natural Sciences Publishing Cor.

Data Migration from Grid to Cloud Computing

Wei Chen', Kuo-Cheng Yin', Don-Lin Yang" and Ming-Chuan Hung?

I Department of Information Engineering and Computer Science, Feng Chia University, 40724 Taichung, Taiwan
ZDepartment of Industrial Engineering and Systems Management, Feng Chia University, 40724 Taichung, Taiwan

Received: 2 Jan. 2012; Revised 4 Jun. 2012; Accepted 17 Jul. 2012
Published online: 1 January 2013

Abstract: The advance of information and communication technologies over the last decade has improved the quality of healthcare and
medical services tremendously. Especially, the people living in the countryside or remote areas benefit the most from telemedicine and
emergency services. Our Health Grid is one of the test beds which provide various health-related Web services associated with mobile
devices and physiological data acquisition and analysis instruments. As the number of new applications being developed increases
rapidly, the ever-growing volume of collected data and real-time demand of analysis result have driven the architectural migration
from Grid to Cloud Computing much sooner than we expected. Our challenge is to make the transition cost effective. This paper
describes the data access migration from a relational database to Apache’s HBase - one of the cloud databases. Our contribution is
to minimize the required change of software for data access. Since the SQL commands of the relational database cannot be used in
HBase, various mechanisms for translation and mapping between two sides must be developed. In addition, the services provided by
the Web programs in Health Grid are written in various kinds of Web language while HBase does not support the access authority to
these Web languages. To reduce the effort of modifying the source code for accessing HBase, we propose the use of Web services as
the communication interface between various Web programs and necessary facilities to execute SQL commands in HBase. Although
this is a hard engineering work, our results show that the proposed approaches are feasible and cost effective for the development teams
at academic institutes. With this preliminary study, our next step is to improve our methods to take advantage of the efficient functions

of HBase in processing the large amount of data.

Keywords: Database, Grid, Cloud computing, Healthcare, Web service

1. Introduction

In this information age, the amount of generated data grows
exponentially every year. To take on this enormous chal-
lenge, a new paradigm shift is needed. One might favor
a move from computation-centric to data-centric approach
and the other would prefer both of them at the same time.
Cloud Computing [1] [2] [3] may be regarded as the most
interesting platform to meet the requirement at this time.
The cloud connects a vast number of distributed process-
ing nodes to form a virtual processing center. It can support
on-demand services with expandable processing power and
fast data access via its distributed file management. How-
ever, most databases supported by cloud computing plat-
forms are non-SQL, such as GFS [4] of Google, HBase
[5] of Apache Hadoop plan, Carssandra [6] and so on.
These databases are designed specifically for cloud com-
puting environments, thus they don’t support SQL syntax

like the relational databases do. Therefore they are called
Non-SQL databases. Instead of complex SQL commands,
only two simple I/O instructions, put and get, are used to
access a full column. The traditional relational databases
using SQL commands to access data are not appropriate
for cloud computing at this time.

If we move existing systems to the cloud computing
environment, we have to face the following three problems
regarding the transformation of platform and databases.
First, the column oriented database was not developed long
enough to provide suitable I/O libraries for different pro-
gramming languages. Second, most of the system devel-
opers are not familiar with column-based databases. When
one migrates to the cloud computing platform, all the pro-
grams using the SQL syntax have to be changed. It is really
a heavy burden to rewrite program code. Third, the column
based database just uses put and get instructions. Many
powerful and commonly-used SQL commands, such as

* Corresponding author: e-mail: dlyang@fcu.edu.tw

© 2013 NSP
Natural Sciences Publishing Cor.

400 %N S\

Wei Chen, et al.: Data Migration from Grid to Cloud Computing

Join, cannot be used in the cloud any more. It is another
big challenge for developers.

The main goal of this paper is to find the most effective
way for Web based system developers to avoid the above
problems. The developers still can use SQL commands to
directly access the column based database without rewrit-
ing program code. To simplify our presentation, we focus
on a specific column based database, HBase of Apache.
Here, we propose a SQL-HBase mapping model to facili-
tate efficient interfaces for developers to directly use SQL
commands to access HBase without modifying the pro-
gram. Combining with the use of Web services, we can
access HBase no matter what platform we use.

We investigate and evaluate our SQL-HBase mapping
model on a private Health Grid [7] under development.
We intend to have a cloud version of Health Grid (called
Health Cloud) in the future. Our Health Grid uses an MS
SQL Server as the system database and it is implemented
with ASPNET and PHP. In order to migrate to a cloud
computing environment, we setup HBase on Ubuntu and
transfer the data of MS SQL Server to HBase.

The rest of paper is organized as follows. In Section
2, we review the databases in cloud computing environ-
ments. In Section 3, the detail of the proposed method
is described. In Section 4, the operation process of SQL-
Mapping model is given and the experimental results are
shown. Finally, we make a conclusion and present future
work in Section 5.

2. Related Work
2.1. HBase

The rapid growth of data requires new information tech-
nologies to solve the problem. Apache Hadoop [8] is an
open-source project for reliable, scalable, distributed com-
puting and data storage. Hadoop not only has a distributed
processing platform but also has a sequential and batched

file system, called Hadoop Distributed File System (HDFES).

Google had developed a distributed file system, called
BigTable to successfully store a large amount of structured
data. HBase [9] is a solution similar to BigTable and is de-
veloped by the Hadoop team. HBase and BigTable adopt
column-oriented approach to store data instead of row-
oriented process in the relational database. The advantage
of column-oriented access is that a record can have a vari-
able number of columns. HBase takes the advantage of a
distributed file system and partitions a table into many por-
tions which are accessed by different servers in order to
achieve high performance.

2.2. MapReduce

MapReduce [10] is a software framework introduced by
Google and has been used in global communities like Ya-
hoo, Facebook and so on. The superiority of MapReduce

is able to store and process a large amount of data by us-
ing commodity hardware. However, there is a high thresh-
old for developers to write Map-Reduce programs and the
cost of maintenance and reuse is very high too.

Using MapReduce to build systems, the developer first
analyzes the problem in parallel manner and finds the parts
which can be processed in parallel. In other words, those
portions which can be partitioned into small tasks will be
written to Map program. Then, one can use a large number
of machines to execute Map programs and analyze data in
parallel. The results of all Map programs are merged by
Reduce program and finally to be output for report.

2.3. SQL in Cloud

The typical works of MapReduce with database systems
include Apache’s Hive [11], Yale’s HadoopDB [12], and
Microsoft’s SCOPE [13]. [4] proposed a new type of data
warehouse named Hive. Hive supports HiveQL which is
like SQL. It can insert pre-written MapReduce scripts when
executing a query. Through HiveQL and data exploration,
query optimization, query compilation of Metastore, users
can easily complete Map-Reduce programming and query
data. Hive is written by Data Infrastructure Team of Face-
book. In Facebook, Hive processes tens of thousands of ta-
bles and the amount of report data and ad-hoc analyses per
month is over 700TB. However, HiveQL is still slightly
different from SQL. For migrating the system developed
on RDBMS to Hive and Hadoop, we have to rewrite pro-
grams and take a lot of time to make modification and ad-
justment. Furthermore, very few programming languages
support Hive. Java and python are two main Hive program-
ming languages. The transition to use cloud platform is
hard for the programmers using other programming lan-
guages.

Jing Zhao [6] proposed an algorithm using SQL com-
mands to access structured data and still enjoy the effi-
ciency of cloud computing. The performance of the cloud
platforms that can execute SQL commands on traditional
relational databases is not satisfactory. On the other hand,
the databases suitable for cloud computing don’t process
structured data well. Jing Zhao et al. got inspiration from
MapReduce of Google and proposed the ESQP algorithm.
It partitions a job into several tasks for many cloud nodes
to execute and divides a database into many units. Every
unit is stored in a node in a distributed and replicated man-
ner. In this way, one SQL command is executed in mul-
tiple nodes. In order to speed up the process further, the
algorithm also adopts pipeline scheduling and other man-
agement methods.

The ESQP algorithm performs well in JOIN and non-
JOIN SQL commands in distributed file systems. Every
SQL command task can be partitioned into subtasks for
processing in multi-nodes. However, ESQP just focuses on
the read SQL command, while the write command (for ex-
ample, INSERT) is not included. The database of ESQP
has to be partitioned at the beginning and distributed to

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1, 399-406 (2013) / www.naturalspublishing.com/Journals.asp

Login Server

omeServer
(HS) >
Boot Strap i]
Home Server /] H 1L \
Home erver Overlay Reglon erver E Client
(RS) 4 PC

Home Server Home Server
(HS) (HS)

Figure 1 The Architecture of Health Grid

nodes. It belongs to the static database algorithm and is
not suitable for our environment.

3. Proposed Method

Our Health Grid is one of the test beds which provide var-
ious health-related Web services associated with mobile
devices, physiological data acquisition and analysis instru-
ments. Figure 1 shows the architecture of our Health Grid.
When migrating our system from Grid to Cloud, the exist-
ing Web programs in Health Grid written in various kinds
of Web language cannot be executed in HBase.

We propose a method of SQL-HBase mapping to al-
low the execution of SQL commands in HBase. The pur-
pose is for the original programs of Health Grid to access
HBase without rewrite or considerable modification. This
will save a lot of time for system developers.

3.1. Architecture

Figure 2 shows the architecture of our Health Cloud af-
ter migrating from Health Grid. The left side of Figure 2
is the Web program environment. It contains various Web
programs for clients. The right side is a cloud representing
the cloud environment. A cloud database contains as many
cloud nodes as needed. Typically, a cluster of such nodes
has one name node and multiple data nodes. The Web ser-
vice, in the middle, is the gateway of data communication
and exchange. The name node contains all HDFS metadata
and handles Web services.

A Web service is like an external calling function. It
can pass parameters to the called function and return a
value to the calling function. When a Web program needs
to access the database, it packs the SQL command into
a string as a parameter and the Web service transmits it
to the cloud node running an instance of the name node.
After the name node has completed the process, the Web
service returns the result to the Web program and finishes

YN
/N/\ ’ N

/

[Cloud Node

|

Web Cloud Node

~—

V| DataNode

jeoos

Web Service (- / 3
£
“ PIN 3 D SaLHBase | ¢—3 | | \ame Node |]
program N
Clou
/ HBase q
Web Program Hadoop & HDFS
Data Node

Figure 2 The Architecture of Health Cloud

the database access. However, the user data need not flow
through the name node.

Although Web services can transmit the SQL command
to a name node, it still cannot directly access HBase due to
privilege and security concerns. Therefore, we need a mid-
dleware to translate the SQL command and access HBase.
The middleware contains socket programs and SQL-HBase
programs written in JAVA as shown in the cloud of Figure
2. A socket program then opens a specific port to listen to
the SQL command from Web services. After accepting the
SQL command, the socket program establishes a thread
to call SQL-HBase programs. The SQL-HBase program
translates the SQL command to access HBase. After re-
trieving HBase, the socket program returns acquired data
to Web services. Finally, the Web service returns the result
to the calling Web program.

3.2. Relational Database and Column Based
Database

Before explaining how the SQL-HBase program accesses
HBase, we first introduce the characteristics of a column

based database. HBase is one kind of column based databases.

The table format has five items as shown in Figure 3.

1. Table name: It is the name of a table. There can be lots
of tables in an HBase database. It is the same as a table in
a relational database.

2. Rowkey: Rowkey is the key of a row. It is like the pri-
mary key (PK) in a relational database.

3. Column family and column label: One column family
consists of several column labels. In other words, one col-
umn family can record several values. When adding new
column labels, the column family can record more values.

© 2013 NSP
Natural Sciences Publishing Cor.

402 fﬁEEDJs;{g>

Wei Chen, et al.: Data Migration from Grid to Cloud Computing

Table: t1
L W f2____|. f3]
coln e el]
T T T ':
r1 i :
: l : v2 :
row—key: : . !
: ! : v3 :
Vfr2 o l :
o R ' I N N I va | Vo |

Figure 3 Table format of HBase

When reading data from a database, we can get all the col-
umn labels from the column family. Column family has
to be planned when establishing the database. But column
labels can be added as needed. Therefore, column label
is not required and becomes an option. In Figure 3, f1:11
is an example of column label_11 in the column family_f1
and f1:* is another example of the column family_f1 with-
out any column label.

4. Value: The place to record a value.

The main advantage of the column family and column
label is that we can easily add new data into a database as
needed. It is easy to increase the required storage space,
but also speed up the access of database. We can take ad-
vantage of expandable storage space in a cloud environ-
ment. If there is a short of storage space, we can add new
data nodes to solve the problem. Now, we use a simple ex-
ample to explain the difference between a relation database
management system (RDBMS) and an HBase.

Here, we design an application system of RDBMS to
manage the information of friends. Because the relation
between a user and his/her friends is one to many, the data
have to be partitioned into two tables, Users and Friend-
ships, as shown in Figure 4. These two tables are related
by the key id-IDX in the Users table and user_id IDX in the
Friendships table. Now we show how to develop the same
system in HBase. Since we can add new column labels as
needed, the Users and Friendships data can be recorded in
the same table and in the same row. We do not need to cre-
ate a relation for them either. It makes the data input and
process more direct. With large data volumes, it is advan-
tageous to use the approach of HBase.

3.3. Analysis of SQL-HBase Mapping

Because the library of HBase supports Java, Java programs
can directly access HBase. The SQL-HBase program is
written in Java and its main function is to transform SQL
commands into the code which HBase can realize.

(RDBMS)
Users Friendships
id IDX user_id IDX
name friend_id
sex type
age
& (HBase)
row column families
info: friend:
<user_id> Info:name friend:<user_id>=type
inforsex
info:age

Figure 4 The mapping example of RDBMS and HBase

~ =Type

| INSERT INTO ‘tableName’ (‘col1 : label1’ i

VALUES ('value?)

L

HTable table1 = new HTable(config, tableName)

r

rPut p1 = Put (the lastest row / the asigned row),

p1.add(col1, label1, valuel), «
table1.put(p1),

Figure 5 The example of “Insert Into”

Due to space limitations, we only take the SQL com-
mand ‘Insert into’ as an example to illustrate the process
of SQL-HBase program. In Figure 5, after accepting the
SQL command ‘Insert into’, we partition it into two parts,
Type and Dest. Type records the kind of an SQL command.
Dest records which ‘table’, ‘PK value’, ‘column family
and label’ to be processed and what the ‘where’ condi-
tion is. In Figure 5, the SQL command consists of table
name- ‘tablename’, column family-‘coll’ and value-‘vall’.
It lacks of row-key and column label. To execute the ‘Insert
into’ command, the relational database system will append
its data after the last record. So SQL-HBase program will
automatically access the last row-key and add one as the
new row-key. As to the column label, it is optional and can
be ignored.

After making sure the presence of five items- table
name, row-key, column family, column label and value,
the SQL-HBase program follows the code in Figure 5 to

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1, 399-406 (2013) / www.naturalspublishing.com/Journals.asp

Original

string CommandStr="INSERT INTO AppaintmentData(id_no, departmentName, doctorName, dats, time)' +
"VALUES('"+ Session("id_no") ToString() + " '+ DropDownList Department Selectedtem.Text ToString() +

" "+ DropDownList Doctor Selectedtem Text ToString() + , " + displaydate.Text ToString() + |
" " + RadioButtonList_time.Selectealtem.Text ToString() + "'

SclConnection sglConn = new SelConnection(Conn);
SolCommand Command = new So/Command()

Command Connection = sgConn

|
|
|
| .
Command CommandTest = CommandS, :Relatlonal Database Access
|
|
|
|

sqiConn.Open();

resut = Command ExecuteNonCuery() SQL Command Code

sqiConn.Close() (the same)
SQL-Hbase Mapping Module

sfring CommandStr="INSERT INTO AppointmentDatal id_no, deparimentName, doctorName, date, tme)' +
"VALUES["+ Session('id_no').ToString{) + " " + DropDownList_Department Selectedtiem.Text ToString() +
" "+ DropDownList_Doctor Selectedltem Text ToString() + ", " + displaydate. Text ToString() +
" "+ RadioButtonList_time Selectedttem.Text ToString() +")'

string CommandText receiveSt,

TR R SQL-Hbase Mapping

receiveSt = solSending.sendSQL{Connd;

Figure 6 The comparison of program codes

assign table and row-key in order. Then it puts the value to
the assigned column family and label. If there is any prob-
lem, using the insertion of an existing value as an example,
we can use ‘try and catch’ module to log where it occurs
and report the error message for correction later.

4. Discussion and Experiments

To show the correctness and effectiveness of our approach,
we will make the comparison between the codes of orig-
inal and SQL-HBase mapping, discuss the type of map-
ping, and show performance results.

4.1. Analysis of SQL-HBase Mapping

Figure 6 shows a portion of program code for our Health
Grid on the top of the figure. It is the original code which
uses ado to access an SQL server. The modified code of
SQL-HBase mapping is shown on the bottom of Figure 6.
When applying the module of SQL-HBase mapping, the
programmer just needs to do two things. One is to use the
Web service of this module as below:
SendSQL.SocketClientO1Service sqlSending =

new sendSQL.SocketClientO1Service ();

Insert into t1({c1,c2,c3) values(v1, v2,v3)

Verify instruction

Get table column family and value

}

Check whether table exist

|

Get current rowkey

Call Put{rowkey,family,qualifier value)
Transmit parameters to HBase

Figure 7 The example of Mapping

The other is to put the original SQL command as a
string parameter in the Web service as follows.
string CommandStr;
sqlSending.sendSQL (Conn);

This way, we do not need to rewrite SQL command and
can execute the original code to access HBase after setting
up the cloud environment. The details of HBase APIs will
not be discussed here.

4.2. The Type of Mapping

In this section, we would like to inspect the four SQL com-
mands - Insert, Delete, Update and Select to show how to
map them into the API of HBase. Since they are similar,
we only depict the Insert due to space limitations. There
are four elements - rowkey, column family, column label
and value, related to an SQL command. As shown in Fig-
ure 7, we will explain how to map the relational database
to HBase. SQL command:

Insert into t1 (cl1, c2, c3) values (v1, v2, v3)—
Corresponding HBase API: Put (rowkey, family, qualifier,
value)

First, we verify the instruction and get parameters. Then,
check whether the table name exists in HBase. If not, we
use Get.getRow() function to get the last rowkey and add
one to the last rowkey as the current rowkey. To fill the rest
of the put call, the family name is the same as the column
name (cl1, c¢2, c3) in the relational database. To reduce the
complexity, the qualifier is set as Null. The value is the
same as the value in the relational database. The mapping
is straightforward, which is the principle rule in our ap-
proach.

Figure 8 shows a real example from our mapping pro-
cess of Health Grid to Health Cloud migration in the ex-
periment.

© 2013 NSP
Natural Sciences Publishing Cor.

404 %m =)

Wei Chen, et al.: Data Migration from Grid to Cloud Computing

<SQL INSERT>
INSERT INTO SportData(id_no, inpdate, sport_way, sport_type, sdate, edate, number,
length) VALUES('H123342673, '2011/3/22', 3, 4, '2011/3/14', '2011/3117', 15, 2.5)

<SQL-HBase Mapping>

HTable table = new HTable(conf, SportData)
Put p = new Put(The Last rowkey+1)
p.add(id_no, ", 'H123342673")
p.add(inpdate, ", '2011/3/22")

p.add(sport_way, "', 3)

p.add(sport_type, ", 4)

p.add(sdate, ", '2011/3/14')

p.add(edate, ", '2011/3/17")

p.add(number, ", 15)

p.add(length, "', 2.5)

table.put(p)

Figure 8 A real mapping example of “Insert into”

VMware Server Client

SQL-HBase
model

Figure 9 The environment of implementation

4.3. Experimental Results

To show the correctness and effectiveness of our approach,
we perform some experiments to evaluate SQL-HBase map-
ping algorithm.

4.3.1. Experimental Environments

We implemented our approach in two computers as shown
in Figure 9. One functions as a server to support the SQL-
HBase mapping service. The other functions as a client
to invoke requests. The client has Windows XP sp3, In-
tel Xeon E5520 2.27GHz processor and 8GB RAM. We
use IIS 6.0 as the web server and write Web programs
in ASP.NET. The server has Windows XP sp3, Intel Core
Q9400 2.66 GHz and 2GB RAM. The virtual environment
includes Ubuntu 10.04 with 512MB RAM and VMware.
The SQL-HBase mapping programs are written in JAVA
and run on the virtual environment of the server. The Hbase
with version 0.90.3 is also running on the virtual environ-
ment of the server. The test dataset, DRUG2006, comes
from National Health Insurance Research Database (NHIR-
Data) [14] which is supported by the Bureau of National
Insurance of Taiwan. DRUG2006 is a dataset of medicine
and contains 25091 records of data.

4.3.2. The Correctness of SQL-HBase Mapping

To verify that the proposed method is correct, we devise
an experiment as shown in Figure 10. First, we read data

Original NHIRData
' compare

'y

NHIRData-Copy by
SQL-HBase mapping

Write by INSERT
command
Server Client

—

S |
i -
— | U J
Read by SELECT
command

Figure 10 The experiment of correctness

from NHIRData on the client side as the original NHIR-
Data. Then, use ‘Insert into’ command to store the data
into Hbase on the server side through SQL-Hbase map-
ping. Next, use ‘select from’ command to get the stored
data from Hbase on the server side with a new name of
NHIRdata-copy. Then we compare the difference between
the original NHIRData and NHIRData-copy. The results
show that there is no difference between them.

4.3.3. Performance Evaluation

To evaluate the performance of our approach, we measure
the time of transformation by the SQL-HBase Mapping.
The experiments are performed to calculate the following
time:
(1) A SQL command is transmitted to Web services,
(2) The Web service transmits it to the SQL-HBase Map-
ping and
(3) The SQL-HBase mapping transforms the SQL com-
mand to the syntax of HBase.

We design ten kinds of different SQL commands. They
are randomly selected to execute 100, 200, 300 and 400
numbers of times. Then we select 10 samples from the re-
sults of each execution. Finally, the average time is com-
puted as shown in Figure 11. The results show that, in aver-
age, it takes 0.4 second to test 100 times. In other words, it
takes 0.004 extra second to execute one SQL command us-
ing our SQL-HBase Mapping. This overhead is much less
than the considerable efforts required to rewriting the pro-
gram code for the existing system to migrate to the cloud
environment. Our experiments are performed specifically
for the SQL-HBase mapping.

5. Conclusions and Future Work

Using the SQL-HBase mapping approach, our implemen-
tation can facilitate the Web-based program to use SQL
commands to access HBase effectively. In this way, the
existing non-HBase programs can access HBase via Web
services without rewriting their programs or making con-
siderable modifications. Because the core of Web services

© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 7, No. 1, 399-406 (2013) / www.naturalspublishing.com/Journals.asp

awi| uonnoaxg abelony

100 200 300 400

Input times

Figure 11 Average execution time of SQL-HBase Mapping

is in the form of XML and most Web programs support
XML format, we can use the Web service to achieve cross-
platform objective and reduce the effort of migrating exist-
ing systems to other new platforms. The experiments show
that our approach is feasible and cost effective.

To meet the requirement of our Health Grid to Health
Cloud migration, our approach just supports the SQL Com-
mands of ‘insert’, ‘delete’, ‘update’, ‘select’, basic ‘join’
and the operators of ‘+’, ‘<’, and ‘>’. With the experience
we gained from this research, we will take more complex
SQL commands into consideration in the future. In addi-
tion, we would like to enhance the fault tolerance of our
modules with some debugging functions. When testing the
mapping between two sides, it is very important to trace
and pinpoint where the problem is and which side is at
fault.

Next, we want to improve the interface for users to
complete SQL-HBase mapping more efficiently. Currently,
we transform the SQL command line by line. It lacks the
resilience on choosing row, column family and label. Fur-
thermore, we have not taken the problem of socket col-
lision into consideration yet. When the number of users
increases, how to prevent collision effectively is an impor-
tant research topic.

Acknowledgement

This research was supported by the National Science Coun-
cil, Taiwan, under grants NSC 99-2218-E-007-001 and NSC
100-2221-E-035-103.

References

[1] M. Lynch. Amazon elastic compute cloud (Amazon ec2).
[Online]. Available: http://aws.amazon.com/ec2/.

[2] IBM. IBM introduces ready-to-use cloud
computing. [Online]. Available: http://www-
03.ibm.com/press/us/en/pressrelease/22613.wss.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file
system, in Proceedings of SOSP’03 29-43 (2003).

[4] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao Liu
and Raghotham Murthy, Hive - a petabyte scale data ware-
house using Hadoop, Data Engineering (ICDE), IEEE 26th
International Conference 996-1005 (2010).

[5] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. Gruber, Bigtable: A
distributed storage system for structured data, In Proceed-
ings of the 7th USENIX Symposium on Operating Systems
Design and Implementation 205-218 (2006).

[6] Jing Zhao, Xiangmei Hu and Xiaofeng Meng, ESQP: An
efficient SQL query processing for cloud data management,
Proceedings of the second international workshop on Cloud
data management pp.1-8 (2010).

[7] Wei Chen, Don-Lin Yang, Ming-Chuan Hung, and Jungpin
Wu. An Omnipresent Personal Health Management System,
Proceedings of 2011 International Conference on Comput-
ing and Security 1-7 (2011).

[8] Hadoop. [Online]. Available: http://hadoop.apache.org/.

[9] HBase. [Online]. Available:
http://hadoop.apache.org/hbase/.

[10] J. Dean and S. Ghemawat, MapReduce: simplified data pro-
cessing on large clusters, Communications of the ACM. Vol.
51, 107-113 (2008).

[11] A. Thusoo, J. Sen Sarma, N. Jain, Z. Shao, P. Chakka, S. An-
thony, H. Liu, P. Wyckoff and R. Murthy, Hive: a warehous-
ing solution over a map-reduce framework, in Proceedings
of VLDB’09 922-933 (2009).

[12] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz and A. Rasin, HadoopDB: An Architectural Hy-
brid of MapReduce and DBMS Technologies for Analytical
Workloads, in Proceedings of VLDB’09 922-933 (2009).

[13] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver and J. Zhou, SCOPE: Easy and Efficient Par-
allel Processing of Massive Data Sets, in Proceedings of
PVLDB’08 1265-1276 (2008).

[14] National = Health Insurance
http://nhird.nhri.org.tw/index.htm.

Research Database,

Wei Chen received the B.E.
degree from the Department of
Information and Computer En-
gineering at Chung Yuan Chris-
tian University, Taiwan, in 2008.
Currently, Mr. Chen is work-
ing on his M.S. degree in the
Department of Information En-
gineering and Computer Sci-
ence at Feng Chia University.
His research interests are data mining and cloud comput-
ing.

© 2013 NSP
Natural Sciences Publishing Cor.

406 %N S\ Wei Chen, et al.: Data Migration from Grid to Cloud Computing

Kuo-Cheng Yin received
the B.E. degree and M.S. de-
gree from the Department of
Information Engineering and Com-
puter Science at Feng Chia Uni-
versity, Taiwan, in 1990 and 1992
respectively. He is now a Ph.
D. candidate in the Department
of Information Engineering and
Computer Science at Feng Chia
University. His research inter-
ests include data mining and software engineering.

Don-Lin Yang received the
B.E. degree in Computer Sci-
ence from Feng Chia Univer-
sity, Taiwan in 1973, the M.S.
degree in Applied Science from
the College of William and Mary
in 1979, and the Ph.D. degree
in Computer Science from the
University of Virginia in 1985.
He was a staff programmer at
IBM Santa Teresa Laboratory
from 1985 to 1987 and a member of the technical staff at
AT&T Bell Laboratories from 1987 to 1991. Since then, he
joined the faculty of Feng Chia University, where he was
in charge of the University Computer Center from 1993
to 1997 and served as the Chairperson of the Department
of Information Engineering and Computer Science from
2001 to 2003. Dr. Yang is currently a professor at Feng
Chia University. His research interests include distributed
and parallel computing, image processing, and data min-
ing. He is a member of the IEEE computer society and the
ACM.

Ming-Chuan Hung received
the B.E. degree in Industrial En-
gineering and the M.S. degree
in Automatic Control Engineer-
ing from Feng Chia University,
Taiwan, in 1979 and 1985 re-
spectively, and the Ph.D. de-
gree from the Department of

i Information Engineering and Com-
puter Science at Feng Chia Uni-
versity in 2006. From 1985 to

1987, he was an instructor in the Mechanics Engineer-
ing Department at National Chin-Yi Institute of Technol-
ogy. Since 1987, he has been an instructor in the Indus-
trial Engineering Department at Feng Chia University and
served as a secretary in the College of Engineering from
1991 to 1996. Dr. Hung is currently an Associate Profes-
sor. His research interests include data mining, CIM, and
e-commerce applications. He is a member of the CIIE.

© 2013 NSP
Natural Sciences Publishing Cor.

