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1 Introduction

The concept of a 2-metric space is a natural generalization of a metric space. It has
been introduced by Gähler [3–5] and extensively studied by some mathematicians such as
Gähler [3–5], White [18], Iséki [6]. Moreover, a number of authors [1, 10, 13, 17] have
studied the contractive, non-expansive and contraction type mapping in 2-metric spaces.
On the other hand, Jungck [7] studied the common fixed points of commuting maps. Then
Sessa [16] generalized the commuting maps by introducing the notion of weakly commut-
ing and proved a common fixed point theorem for weakly commuting maps. Jungck [8]
further made a generalization of weakly commuting maps by introducing the notion of
compatible mappings. Moreover, Jungck and Rhoades [9] introduced the notion of coinci-
dentally commuting or weakly compatible mappings. Several authors used these concepts
to prove some common fixed point theorems on usual metric, as well as on different kinds
of generalized metric spaces [1,2,11,15]). In this paper, the existence and approximation of
a unique common fixed point of two families of weakly compatible self maps on a 2-metric
space are proved. In order to study these theorems, we recall the definition of a 2-metric
space which is given by Gähler as follows:
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Definition 1.1 ( [3]). A 2-metric space is a set with a real-valued function satisfying the
following conditions:

(1) For distinct points x, y ∈ X , there exists a point c ∈ X such that d(x, y, c) 6= 0;
(2) d(x, y, c) = 0 if at least two of x, y and c are equal;
(3) d(x, y, c) = d(x, c, y) = d(c, y, x);
(4) d(x, y, c) ≤ d(x, y, z) + d(x, z, y) + d(z, y, c) for all x, y, c, z ∈ X.

The function d is called a 2-metric of the space X and pair (X, d) denotes a 2-metric
space. It has shown by Gähler that a 2-metric space d is non-negative and although d is
a continuous function of any one of its there arguments, it need not be continuous in two
arguments. A 2-metric space d which is continuous in all of its arguments is said to be
continuous.

Geometrically, a 2-metric d(x, y, c) represents the area of a triangle with vertices x, y

and c. Throughout in this paper, let (X, d) be 2-metric space unless mentioned otherwise
and B(X) is the set of all nonempty bounded subset of X .

Definition 1.2 ( [14]). A sequence {xn} in (X, d) is said to be convergent to a point x in
X , denoted by

lim
n→∞

xn = x,

if
lim

n→∞
d(xn, x, c) = 0

for all c in X . The point x is called the limit of the sequence {xn} in X .

Definition 1.3 ( [14]). A sequence {xn} in (X, d) is said to be a Cauchy sequence if

lim
n→∞

d(xn, xm, c) = 0

for all c in X .

Definition 1.4 ( [14]). The space (X, d) is said to be complete if every Cauchy sequence
in converges to an element in X .

Remark 1.1. A convergent sequence is a Cauchy sequence in a metric space but in a 2-
metric space a convergent sequence need not be a Cauchy sequence, but every convergent
sequence is a Cauchy sequence when the 2-metric d is continuous on X (see [12]).

Define δ(A,B, C) for all A, B and C in B(X), by

δ(A,B,C) = sup{d(a, b, C) : a ∈ A, b ∈ B},
where d(a, b, C) = inf{d(a, b, c) : c ∈ C}. If A consist of a single point a, we write
δ(A,B, C) = δ(a,B,C), if B and C consist of a single point b and c respectively, we
write δ(A, B,C) = δ(a, b, c). It follows immediately from the definition that

δ(A,B, C) = δ(A,C, B) = δ(C,B,A) = δ(C, A,B) = δ(B, C,A) = δ(B, A, C) ≥ 0
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and

δ(A,B, C) ≤ δ(A,C, E) + δ(A,E,C) + δ(E, B, C),

for all A, B,C and E in B(X). Moreover, δ(A,B, C) = 0, if at least two of A,B and C

consist of equal single points.

Definition 1.5 ( [11]). Two single-valued mapping f and g of (X, d) into itself are com-
patible if

lim
n→∞

d(fgxn, gfxn, C) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = gxn = t

for some t in X . It can be seen that two weakly commuting mapping are compatible but
the converse is false.

Definition 1.6 ( [1]). Self maps F and T of a 2-metric space (X, d) are weakly compatible
if they commute at coincidence point, i.e. if Fp = Tp for some point p in X , then FTp =
TFp.

2 Main Results

In this section, the existence and approximation of a unique common fixed point the-
orem of two families of weakly compatible self maps on a complete 2-metric space is
proved.

Define Φ = {ϕ : R+ → R+}, where R+ = [0, +∞) and each ϕ ∈ Φ satisfies the
following conditions:

(a) ϕ is continuous on R+,

(b) ϕ is non-decreasing, and
(c) ϕ(t) < t for each t > 0.

Theorem 2.1. Let P1, P2, . . . , P2n, Q0 and Q1 be mapping from 2-metric space (X, d)
into itself, satisfying conditions:

(I) Q0(X) ⊆ P1P3 · · ·P2n−1(X), Q1(X) ⊆ P2P4 · · ·P2n(X);
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(II)
P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,

P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,
...

P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,

Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0,

Q0(P6 · · ·P2n) = (P6 · · ·P2n)Q0,
...

Q0P2n = P2nQ0,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,

P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,
...

P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,

Q1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Q1,

Q1(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Q1,
...

Q1P2n−1 = P2n−1Q1;

(III) P2 · · ·P2n or Q0 is continuous;
(IV) The pair (Q0, P2 · · ·P2n) is compatible and the pair (Q1, P1 · · ·P2n−1) is weakly
compatible;
(V) There exists ϕ ∈ Φ such that

d(Q0u,Q1v, C) ≤ Max
{

ϕ[d(P2P4 · · ·P2nu,Q0u,C)], ϕ[d(P1P3 · · ·P2n−1v, Q1v, C)],

ϕ[d(P2P4 · · ·P2nu, P1P3 · · ·P2n−1v, C)],

ϕ
[1
2
[
d(P1P3 · · ·P2n−1v, Q0u,C) + d(P2P4 · · ·P2nu,Q1v, C)

]]}

for all u, v, C ∈ X .
Then P1, P2, . . . , P2n, Q0 and Q1 have a unique common fixed point in X .

Proof. Let x0 ∈ X . From condition (I) there exists x1, x2 ∈ X such that Q0x0 =
P1P3 · · ·P2n−1x1 = y0 and Q1x1 = P2P4 · · ·P2nx2 = y1. Inductively, we can construct
sequence {xn} and {yn} in X

Q0x2k = P1P3 · · ·P2n−1x2k+1 = y2k

and
Q1x2k+1 = P2P4 · · ·P2nx2k+2 = y2k+1,
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for k ∈ N.
Putting u = xp = x2k, v = xq+1 = x2m+1, P

′
1 = P2P4 · · ·P2n and P ′2 =

P1P3 · · ·P2n−1 in condition (V), we have

d(Q0x2k, Q1x2m+1, C) ≤ Max
{

ϕ[d(P ′1x2k, Q0x2k, C)], ϕ[d(P ′2x2m+1, Q1x2m+1, C)],

ϕ[d(P ′1x2k, P ′2x2m+1, C)],

ϕ
[1
2
[
d(P ′2x2m+1, Q0x2k, C) + d(P ′1x2k, Q1x2m+1, C)

]]}
,

i.e.,

d(y2k, y2m+1, C) ≤ Max
{

ϕ[d(y2k−1, y2k, C)], ϕ[d(y2m, y2m+1, C)], ϕ[d(y2k−1, y2m, C)],

ϕ
[1
2
[
d(y2m, y2k, C) + d(y2k−1, y2m+1, C)

]]}
.

Thus,

d(yp, yq+1, C) ≤ Max
{

ϕ[d(yp−1, yp, C)], ϕ[d(yq, yq+1, C)], ϕ[d(yp−1, yq, C)]

ϕ
[1
2
[
d(yq, yp, C) + d(yp−1, yq+1, C)

]]}
. (2.1)

If q = p, then

1
2

[
d(yp, yp, C) + d(yp−1, yp+1, C)

]
≤ 1

2

[
d(yp−1, yp, C) + d(yp, yp+1, C)

]

≤ Max
{

d(yp−1, yp, C), d(yp, yp+1, C)
}

.

Thus, from (2.1) and the property (b) of ϕ,

d(yp, yp+1, C) ≤ ϕ
[
Max

{
d(yp−1, yp, C), d(yp, yp+1, C)

}]
.

Since by the property (c) of ϕ, d(yp, yp+1, C) ≤ ϕ[d(yp, yp+1, C)] is impossible for
d(yp, yp+1, C) > 0, we have

d(yp, yp+1, C) ≤ ϕ
[
d(yp−1, yp, C)

]
.

This means that
d(y2k, y2k+1, C) ≤ ϕ

[
d(y2k−1, y2k, C)

]
.

Similarly,
d(y2k+1, y2k+2, C) ≤ ϕ

[
d(y2k, y2k+1, C)

]
.

Therefore, for all n, even or odd, we have

d(yn, yn+1, C) ≤ ϕ
[
d(yn−1, yn, C)

]
. (2.2)
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Hence {d(yn, yn+1, C)} is non-decreasing and, therefore, d(yn, yn+1, C) → α ≥ 0 as
n →∞. Taking the limit in (2.2) we get α ≤ ϕ(α), and from (c), α = 0. Thus

lim
n→∞

d(yn, yn+1, C) = 0.

Now, we show that {yn} is a Cauchy sequence in X .
Let ε > 0 be arbitrary. We need to show that there exists an integer N ≥ 2 such that

d(yn, ym, C) < ε for all m ≥ n ≥ N. (2.3)

Since by the property (c) of ϕ, ε− ϕ(ε) > 0, and as ϕ is continuous, there exists a δ > 0
such that

ε < t < ε + 5δ ⇒ ϕ(t) < ϕ(ε) +
ε − ϕ(ε)

3
. (2.4)

Without loss of generality, we may assume that δ < [ε− ϕ(ε)]/3. Since

d(yn, yn+1, C) → 0

there exists an integer N ≥ 1 such that

d(yn−2, yn−1, C) < δ for all n ≥ N. (2.5)

By induction we shall show that

d(yn, ym, C) < ϕ(ε) +
ε − ϕ(ε)

3
+ 2δ for all m ≥ n ≥ N. (2.6)

Let n ≥ N be fixed. Obviously, for m = n + 1, (2.6) holds from ( 2.5). Assuming that
(2.6) holds for an integer m ≥ n + 1, we shall prove that (2.6) holds for m + 1. We have
to consider the following cases:

(i) n = 2k and m = 2q. Then d(yn, ym, C) = d(y2k, y2q, C) and

d(yn, ym+1, C) = d(y2k, y2q+1, C).

(ii) n = 2k and m = 2q + 1. Then

d(yn, ym+1, C) ≤ d(y2k, y2q+1, C) + d(ym, ym+1, C).

(iii) n = 2k + 1 and m = 2q. Then

d(yn, ym+1, C) ≤ d(y2k, y2q+1, C) + d(yn−1, yn, C).

(iv) n = 2k + 1 and m = 2q + 1. Then

d(yn, ym+1, C) ≤ d(y2k, y2q+1, C) + d(yn−1, yn, C) + d(ym, ym+1, C). (2.7)
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Consider the most complex case (iv). Since

d(y2k, y2q+1, C) = d(Q0x2k, Q1x2q+1, C),

then by (2.7) and (2.5),

d(yn, ym+1, C) ≤ d(Q0x2k, Q1x2q+1, C) + 2δ. (2.8)

Now we show that

d(Q0x2k, Q1x2q+1, C) ≤ ϕ(ε) +
ε − ϕ(ε)

3
. (2.9)

From (V),

d(Q0x2k, Q1x2q+1, C) ≤ Max
{

ϕ[d(y2k−1, y2k, C)], ϕ[d(y2q, y2q+1, C)],

ϕ
[
d(y2k−1, y2q), C)

]
,

ϕ
[1
2
[
d(y2q, y2k, C) + d(y2k−1, y2q+1, C)

]]}
.

If we denote

tn,m = Max
{

d(y2k−1, y2k, C), d(y2q, y2q+1, C), d(y2k−1, y2q, C),

1
2

[
d(y2q, y2k, C) + d(y2k−1, y2q+1, C)

]}
,

then by the property (b) of ϕ,

d(Q0x2k, Q1x2m+1, C) ≤ ϕ(tn,m). (2.10)

Next we estimate tn,m. Since n = 2k + 1, m = 2q + 1, by the induction hypotheses we
have

d(y2k+1, y2q+1, C) < ϕ(ε) +
ε − ϕ(ε)

3
+ 2δ. (2.11)

From (2.5), we find that

d(y2k−1, y2k, C) = d(yn−2, yn−1, C) < δ,

d(y2q, y2q+1, C) = d(ym−1, ym, C) < δ.

Further, by the triangle inequality, (2.11) and (2.5), we get

d(y2k−1, y2q, C) ≤ d(y2k+1, y2q+1, C) + d(yn−2, yn−1, C) + d(yn−1, yn, C)

+ d(ym−1, ym, C)

≤ ϕ(ε) +
ε − ϕ(ε)

3
+ 2δ + 3δ < ε + 5δ
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and, by (2.10), we have

1
2

[
d(y2q, y2k, C) + d(y2k−1, y2q+1, C)

]
≤ 1

2

[
d(y2k+1, y2q+1, C) + d(yn−1, yn, C)

+ d(ym−1, ym, C) + d(y2k+1, y2q+1, C)

+ d(yn−2, yn−1, C) + d(yn−1, yn, C)
]

≤ ϕ(ε) +
ε − ϕ(ε)

3
+ 4δ

< ε + 4δ.

Thus tn,m < ε + 5δ. Then from (2.4), we find that

ϕ(tn,m) < ϕ(ε) +
ε − ϕ(ε)

3
.

Now that (2.10) implies (2.9), and (2.8) and (2.9) imply (2.6). Since δ < [ε − ϕ(ε)]/3,
then (2.6) implies (2.3). Hence we conclude that {yn} is a Cauchy sequence in X .

Since X is complete, there exists some z ∈ X such that yn → z. Also, for its sub-
sequences we have

Q1x2k+1 → z and P1P3 · · ·P2n−1x2k+1 → z,

Q0x2k → z and P2P4 · · ·P2nx2k → z.

Case 1. P2P4 · · ·P2n is continuous.

Denote P ′1 = P2P4 · · ·P2n. Since P ′1 is continuous, P ′1 ◦ P ′1x2k → P ′1z and
P ′1Q0x2k → P ′1z. Also, as (Q0, P

′
1) is compatible, it implies that Q0P

′
1x2k → P ′1z.

a) Putting u = P2P4 · · ·P2nx2k = P ′1x2k, v = x2k+1, and P ′2 = P1P3 · · ·P2n−1 in
condition (V), we have

d(Q0P
′
1x2k, Q1x2k+1, C)

≤ Max
{

ϕ[d(P ′1P ′1x2k, Q0P
′
1x2k, C)], ϕ[d(P ′2x2k+1, Q1x2k+1, C)],

ϕ[d(P ′1P ′1x2k, P ′2x2k+1, C)],

ϕ
[1
2
[
d(P ′2x2k+1, Q0P

′
1x2k, C) + d( P ′1P ′1x2k, Q1x2k+1, C)

]]}
.

Letting k →∞, we get

d(P ′1z, z, C) ≤ Max
{

ϕ[d(P ′1z, P ′1z, C)], ϕ[d(z, z, C)],

ϕ[d(P ′1z, z, C)], ϕ
[1
2
[
d(z, P ′1z, C) + d(P ′1z, z, C)

]]}
.

Hence d(P ′1z, z, C) ≤ ϕ[d(P ′1z, z, C)]. If we suppose that d(P ′1z, z, C) > 0, then we
have

d(P ′1z, z, C) ≤ ϕ[d(P ′1z, z, C)] < d(P ′1z, z, C),
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which is a contradiction. Thus P ′1z = z, i. e., P2P4 · · ·P2nz = z.

b) Putting u = z, v = x2k+1, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in
condition (V), we have

d(Q0z,Q1x2k+1, C) ≤ Max
{

ϕ[d(P ′1z, Q0z, C)], ϕ[d( P ′2x2k+1, Q1x2k+1, C)],

ϕ[d(P ′1z, P ′2x2k+1, C)],

ϕ
[1
2
[
d(P ′2x2k+1, Q0z, C) + d(P ′1z,Q1x2k+1, C)

]]}
.

Letting k →∞, we get

d(Q0z, z, C) ≤ Max
{

ϕ[d(z, Q0z, C)], ϕ[d(z, z, C)], ϕ[d(z, z, C)],

ϕ
[1
2
[
d(z, Q0z, C) + d(z, z, C)

]]}

= ϕ[d(z, Q0z, C)].

So, d(Q0z, z, C) ≤ ϕ[d(Q0z, z, C)]. Hence d(Q0z, z, C) = 0, and Q0z =
P2P4 · · ·P2nz = z.

c) Putting u = P4 · · ·P2nz, v = x2k+1, P ′1 = P2P4 · · ·P2n and P ′2 =
P1P3 · · ·P2n−1 in condition (V), and using the condition P2(P4 · · ·P2n) = (P4 · · ·P2n)P2

and Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0 in condition (II), we get

d(Q0P4 · · ·P2nz, Q1x2k+1, C)

≤ Max
{

ϕ[d( P ′1P4 · · ·P2nz, Q0P4 · · ·P2nz, C)], ϕ[d(P ′1P4 · · ·P2nz, P ′2x2k+1, C)],

ϕ[d(P ′2x2k+1, Q1x2k+1, C)],

ϕ
[1
2
[
d(P ′2x2k+1, Q0P4 · · ·P2nz, C) + d(P ′1P4 · · ·P2nz, Q1x2k+1, C)

]]}
.

Letting k →∞, we get

d(P4 · · ·P2nz, z, C) ≤ Max
{

ϕ[d(P4 · · ·P2nz, P4 · · ·P2nz, C)],

ϕ[d(z, z, C)], ϕ[d(P4 · · ·P2nz, z, C)],

ϕ
[1
2
[
d(z, P4 · · ·P2nz, C) + d(P4 · · ·P2nz, z, C)

]]}

= ϕ[d(P4 · · ·P2nz, z, C)].

Hence it follows that P4 · · ·P2nz = z. Then P2(P4 · · ·P2nz) = P2z and so P2z =
P2P4 · · ·P2nz = z.

Continuing this procedure, we obtain

Q0z = P2z = P4z = · · · = P2nz = z.
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d) As Q0(X) ⊆ P1P3 · · ·P2n−1(X), there exists v ∈ X such that z = Q0z =
P1P3 · · ·P2n−1v. Putting u = x2k, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in
condition (V), we have that

d(Q0x2k, Q1v, C) ≤ Max
{

ϕ[d(P ′1x2k, Q0x2k, C)], ϕ[d(P ′2v, Q1v, C)],

ϕ[d(P ′1x2k, P ′2v, C)],

ϕ
[1
2
[
d(P ′2v, Q0x2k, C) + d(P ′1x2k, Q1v, C)

]]}
.

Letting k →∞, we get

d(z, Q1v, C) ≤ Max
{

ϕ[d(z, z, C)], ϕ[d(z, Q1v, C)], ϕ[d(z, z, C)],

ϕ
[1
2
[
d(z, z, C) + d(z,Q1v, C)

]]}
.

So, d(z, Q1v, C) ≤ ϕ[d(z,Q1v, C)]. Therefore Q1v = z. Hence P1P3 · · ·P2n−1v =
Q1v = z. As (Q1, P1 · · ·P2n−1) is weakly compatible, we have

P1P3 · · ·P2n−1Q1v = Q1P1P3 · · ·P2n−1v.

Thus P1P3 · · ·P2n−1z = Q1z.

e) Putting u = x2k, v = z, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in condition
(V), we have

d(Q0x2k, Q1z, C) ≤ Max
{

ϕ[d(P ′1x2k, Q0x2k, C)], ϕ[d(P ′2z, Q1z, C)],

ϕ[d(P ′1x2k, P ′2z, C)],

ϕ
[1
2
[
d(P ′2z, Q0x2k, C) + d(P ′1x2k, Q1z, C)

]]}
.

Letting k →∞, we get

d(z, Q1z, C) ≤ Max
{

ϕ[d(z, z, C)], ϕ[d(Q1z, Q1z, C)], ϕ[d(z, Q1z, C)],

ϕ
[1
2
[
d(Q1z, z, C) + d(z,Q1z, C)

]]}

= ϕ[d(z, Q1z, C)].

So, d(z, Q1z, C) ≤ ϕ[d(z,Q1z, C)]. Therefore Q1z = z. Hence, P1P3 · · ·P2n−1z =
Q1z = z.

f) Putting u = x2k, v = P3 · · ·P2n−1z, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1

in condition (V), we have

d(Q0x2k, Q1P3 · · ·P2n−1z, C)
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≤ Max
{

ϕ[d( P ′1x2k, Q0x2k, C)], ϕ[d(P ′2P3 · · ·P2n−1z, Q1P3 · · ·P2n−1z, C)],

ϕ[d(P ′1x2k, P ′2P3 · · ·P2n−1z, C)],

ϕ
[1
2
[
d(P ′2P3 · · ·P2n−1z,Q0x2k, C) + d(P ′1x2k, Q1P3 · · ·P2n−1z, C)

]]}
.

Letting k →∞, we get

d(z, P3 · · ·P2n−1z, C) ≤ Max
{

ϕ[d(z, z, C)], ϕ[d(P3 · · ·P2n−1z, P3 · · ·P2n−1z, C)],

ϕ[d(z, P3 · · ·P2n−1z, C)],

ϕ
[1
2
[
d(P3 · · ·P2n−1z, z) + d(z, P3 · · ·P2n−1z, C)

]]}

= ϕ[d(z, P3 · · ·P2n−1z, C)].

So d(z, P3 · · ·P2n−1z, C) ≤ ϕ[d(z, P3 · · ·P2n−1z, C)]. Therefore P3 · · ·P2n−1z = z.
Hence P1z = z. Continuing this procedure, we have

Q1z = P1z = P3z = · · · = P2n−1z.

Thus we haveproved

Q0z = Q1z = P1z = P2z = · · · = P2n−1z = P2nz = z.

Case 2. Q0 is continuous.
Since Q0 is continuous, Q2

0x2k → Q0z. As (Q0, P2P4 · · ·P2n) is compatible, we have
(P2P4 · · ·P2n)Q0x2k → Q0z.

g) Putting u = Q0x2k, v = x2k+1, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in
condition (V), we have

d(Q0Q0x2k, Q1x2k+1, C)

≤ Max
{

ϕ[d(P ′1Q0x2k, Q0Q0x2k, C)], ϕ[d(P ′2x2k+1, Q1x2k+1, C)],

ϕ[d(P ′1Q0x2k, P ′2x2k+1, C)],

ϕ
[1
2
[
d(P ′2x2k+1, Q0Q0x2k, C) + d(P ′1Q0x2k, Q1x2k+1, C)

]]}
.

Letting k →∞, we get

d(Q0z, z, C) ≤ Max{ϕ[d(Q0z, Q0z, C)], ϕ[d(z, z, C)], ϕ[d(Q0z, z, C)],

ϕ
[1
2
[
d(z,Q0z, C) + d(Q0z, z, C)

]]}

= ϕ[d(Q0z, z, C)].
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So d(Q0z, z, C) ≤ ϕ[d(Q0z, z, C)]. Therefore Q0z = z. Now, using steps d), e) and f),
and continuing step f) give us

Q1z = P1z = P3z = · · · = P2n−1z = z.

h) As Q1(X) ⊆ P2 · · ·P2n(X) there exists w ∈ X such that z = Q1z = P2 · · ·P2nw.
Putting u = w, v = x2k+1, P ′1 = P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in condition
(V), we have

d(Q0w, Q1x2k+1, C) ≤ Max
{

ϕ[d(P ′1w, Q0w, C)],

ϕ[d(P ′2x2k+1, Q1x2k+1, C)], ϕ[d(P ′1w, P ′2x2k+1, C)],

ϕ
[1
2
[
d(P ′2x2k+1, Q0w, C) + d(P ′1w, Q1x2k+1, C)

]]}
.

Letting k →∞, we get

d(Q0w, z, C) ≤ Max
{

ϕ[d(z, Q0w,C)], ϕ[d(z, z, C)], ϕ[d(z, z, C)],

ϕ
[1
2
[
d(z, Q0w,C) + d(z, z, C)

]]}

= ϕ[d(z, Q0w, C)].

So d(Q0w, z, C) ≤ ϕ[d(Q0w, z, C)]. Therefore Q0w = z = P2 · · ·P2nw. As
(Q0, P2 · · ·P2n) is weakly compatible, we have

Q0z = P2P4 · · ·P2nz = z.

Similarly as in the step c) it can be shown that P2z = P4z = · · · = P2nz = Q0z = z.

Thus we proved that

Q0z = Q1z = P1z = P2z = P3z = · · · = P2nz = z.

Proof of uniqueness. Let z′ be another common fixed point of mentioned maps, then
Q0z

′ = Q1z
′ = P1z

′ = P2z
′ = · · · = P2nz′ = z′. Putting u = z, v = z′, P ′1 =

P2P4 · · ·P2n and P ′2 = P1P3 · · ·P2n−1 in condition (V), we have

d(Q0z, Q1z
′, C) ≤Max

{
ϕ[d(P ′1z, Q0z, C)], ϕ[d(P ′2z′, Q1z

′, C)], ϕ[d(P ′1z, P ′2z′, C)]

ϕ
[1
2
[
d(P ′2z′, Q0z, C) + d(P ′1z, Q1z

′, C)
]]}

= ϕ[d(z, z′, C)].

It means that
d(z, z′, C) ≤ ϕ[d(z, z′, C)].

Thus z = z′ and this shows that z is a unique common fixed point of the maps.
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Now we shall prove a common fixed point theorem, which is a slight generalization of
Theorem 2.1.

Theorem 2.2. Let (X, d) be a complete 2-metric space and let {Tα}α∈J and {Pi}2n
i=1 be

two families of self-mappings of X. Suppose that there exists a fixed β ∈ J such that

(I) Tα(X) ⊆ P2P4 · · ·P2n(X) for each α ∈ J and Tβ(X) ⊆ P1P3 · · ·P2n−1(X) for
some β ∈ J;

(II)
P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,

P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,
...

P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,

Tβ(P4 · · ·P2n) = (P4 · · ·P2n)Tβ ,

Tβ(P6 · · ·P2n) = (P6 · · ·P2n)Tβ ,
...

TβP2n = P2nTβ ,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,

P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,
...

P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,

Tα(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Tα,

Tα(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Tα,
...

TαP2n−1 = P2n−1Q1;

(III) P2 · · ·P2n or Tβ is continuous;

(IV) The pair (Tβ , P2 · · ·P2n) is compatible and the pairs (Tα, P1 · · ·P2n−1) are weakly
compatible;

(V) There exists ϕ = ϕ(α) ∈ Φ such that for all u, v ∈ X

d(Tβu, Tαv, C) ≤ Max
{

ϕ[d(P2P4 · · ·P2nu, Tβu,C)], ϕ[d(P1P3 · · ·P2n−1v, Tαv, C)],

ϕ[d(P2P4 · · ·P2nu, P1P3 · · ·P2n−1v, C)],

ϕ
[1
2
[
d(P1P3 · · ·P2n−1v, Tβu, C) + d(P2P4 · · ·P2nu, Tαv, C)]

]]}

Then all Pi and Tα have a unique common fixed point in X .
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Proof. Let Tα0 be a fixed element in {Tα}α∈J . By Theorem 2.1 with Q0 = Tβ and Q1 =
Tα0 it follows that there exists some z ∈ X such that

Tβz = Tα0z = P2P4 · · ·P2nz = P1P3 · · ·P2n−1z = z.

Let α ∈ J be arbitrary. Then from (V)

d(Tβz, Tαz, C) ≤ Max
{

ϕ[d(P2P4 · · ·P2nz, Tβz, C)], ϕ[d(P1P3 · · ·P2n−1z, Tαz, C)],

ϕ[d(P2P4 · · ·P2nz, P1P3 · · ·P2n−1z, C)],

ϕ
[1
2
[
d(P1P3 · · ·P2n−1v, Tβz, C) + d(P2P4 · · ·P2nu, Tαz, C)]

]]}

and hence

d(z, Tαz, C) ≤ Max
{

ϕ(d(z, z, C)), ϕ[d(z, Tαz, C)], ϕ[d(z, z, C)],

ϕ
[1
2
[
d(z, z, C) + d(z, Tαz, C)]

]]}

≤ ϕ[d(z, Tαz, C)].

If we suppose that d(z, Tαz, C) > 0, then property (c) of ϕ shows that

d(z, Tαz, C) ≤ ϕ[d(z, Tαz, C)] <d(z, Tαz, C),

which is a contradiction. Thus Tαz = z for each α ∈ J. Since (V) implies the uniqueness
of common fixed point and Theorem 2.2 is proved.

References

[1] M. E. Abd El-Monsef, H. M. Abu-Donia and Kh. Abd-Rabou, Common fixed point
theorems of single and set-valued mappings on 2-metric spaces, Appl. Math. Inf. Sci.
2 (2007), 185–194.
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