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Abstract: In this paper, Homotopy Analysis Method (HAM) is applied to obtain approximate analytical solution of modified
Kuramoto–Sivashinsky (KS) equation. HAM provides a simple way to adjust and control the convergence region of the series so-
lution by introducing several parameters, namely, the auxiliary parameter,h, the auxiliary function,H(x, t), the initial guess,u0(x, t)
and the auxiliary linear operator,L, as stated in [1]. The obtained results show that HAM yields approximate analytical solutions which
are quite close to the exact solution of KS equation, which proves the strength of HAM.

Keywords: Kuramoto−Sivashinsky equation, homotopy analysis method, approximate analytical solutions, Maple.

1. Introduction

HAM [1,2], devised by Shi-Jun Liao in 1992, is a gen-
eral analytical approach to obtain approximate analytical
solutions of various types of nonlinear equations, includ-
ing ordinary and partial differential equations, algebraic
equations, differential-integral equations and differential-
difference equations. The method distinguishes itself from
other analytical methods in the following four aspects: (i.)
It is a series expansion method, but is independent of small
physical parameters. Thus, it is applicable for not only
weakly but also strongly nonlinear problems. (ii.) HAM
unifies three methods: Lyapunov artificial small parameter
method, delta expansion method and Adomian decompo-
sition method. (iii.) HAM provides a simple way to ensure
the convergence of the solution. Furthermore, it provides
some degree of freedom to choose the base function of the
desired solution. (iv.) HAM can easily be associated with
some other mathematical methods including series expan-
sion methods, integral transform methods and some other
numerical methods.

In this paper, HAM is used to obtain approximate ana-
lytical solution of modified KS equation. The Generalized

Kuramoto-Sivashinsky (GKS) equation is defined [3] as

ut + βuαux + γuτuxx + δuxxxx = 0, (1)

whereα, β, γ, τ, δ ∈ R andα, β, γ, δ 6= 0. Whenα =
β = 1 andτ = 0, (1) reduces to original KS equation [4,
5]. This equation was derived by Kuramoto in the study
of phase turbulence in the Belousov-Zhabotinsky reaction
[3]. An extension of this equation to two or more spatial
dimensions was given by Sivashinsky in the study of prop-
agation of a frame front for the case of mild combustion.
The KS equation has some application areas including the
representation of one class of pattern formation [6,7] and
in model of bifurcation and chaos [8,9].

In the past several decades, various methods have been
proposed to solve the KS equation. Some of these meth-
ods are Chebyshev spectral collocation scheme [10], lat-
tice Boltzmann technique [11], method of radial basis func-
tions [12], local discontinuous Galerkin method [13], tanh
function method [14], variational iteration method [15],
Perturbation methods [16]. Recently, various other meth-
ods [17]-[20] have also been proposed to construct exact
solutions of the KS equation. Some other methods [21]
have been developed for finding exact solutions of some
other similar nonlinear evolution equations. KS equation
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is also known as KdV–Burgers–Kuramoto (KBK) equa-
tion [22]. Numerical techniques [23,24] based on the fi-
nite difference and collocation methods are proposed for
the solution of GKS equation. Using B-spline functions, a
method to solve GKS equation is proposed in [25].

The organization of this paper is as follows: In Sec-
tion 2, a short description of HAM is presented. Section
3 provides some experimental results as an application of
HAM to obtain approximate analytical solution of the KS
equation. Conclusions and discussions are given in the fi-
nal section.

2. Homotopy Analysis Method

In this section we describe the HAM shortly. Let us con-
sider the following nonlinear partial differential equation

ND[u(x, t)] = 0 (2)

whereND is a nonlinear operator,x andt denote indepen-
dent variables andu(x, t) is an unknown function. Using
(2) and by means of generalizing the traditional concept
of homotopy, Liao [2] constructs the so called zero-order
deformation equation:

(1−q)L(U(x, t; q)−u0(x, t)) = qhH(x, t)ND(U(x, t; q))
(3)

whereq ∈ [0, 1] is embedding parameter,h 6= 0 is an
auxiliary parameter,H(x, t) 6= 0 is an auxiliary function,
L is an auxiliary linear operator,u0(x, t) is an initial guess
of u(x, t) and U(x, t; q) is an unknown function on the
independent variablesx, t andq.

If we write q = 0 andq = 1, then, we get following
two equations, respectively:

U(x, t; 0) = u0(x, t), U(x, t; 1) = u(x, t). (4)

Using the parameterq, we can expandU(x, t; q) into Tay-
lor series as follows:

U(x, t; q) = u0(x, t) +
∞∑

m=1

um(x, t)qm (5)

where

um =
1
m!

∂mu(t, q)
∂qm

∣∣∣∣
q=0

.

Assume that the auxiliary linear operator, the initial guess,
the auxiliary parameter,h, and the auxiliary function,H(x, t),
are selected such that the series (5) is convergent atq = 1,
then due to (4), we have

u(x, t) = u0(x, t) +
∞∑

m=1

um(x, t). (6)

Let us define the vector

um(x, t) = (u0(x, t), u1(x, t), u2(x, t), ..., un(x, t)) .
(7)

Differentiating (3)m times with respect toq, then setting
q = 0, and dividing the resulting equation bym!, we have
the so calledmth-order deformation equation as follows:

L [um(x, t)− χmum−1(x, t)] = hH(x, t)Rm(um−1)
(8)

where

Rm (um−1) =
1

(m− 1)!
∂m−1ND(u(t; q))

∂qm−1

∣∣∣∣
q=0

. (9)

Now, for m ≥ 1, the solution of (8) becomes

um (x, t) = χmum−1 (x, t) + hL−1NR [−→u m−1 (x, t)]

where

χm =
{

0
1

m ≤ 1
m > 1.

The so-calledmth-order deformation equation (8) is a lin-
ear equation which can be easily solved with a computer
algebra system, for example, Maple as we do in this paper.

3. Experimental Results: Application of
HAM to KS Equation

In this section we apply the HAM to the modified KS
equation to obtain approximate analytical solutions of this
equation. Consider the modified Kuramoto-Sivashinsky equa-
tion

ut + uux + uxx + uxxxx = 0 (10)

with initial condition

u(x, 0) = c + 5
19

√
11
19[

11 tanh3(k(x− x0))− 9 tanh(k(x− x0))
]
.

In [26], the exact solution of (10) is given as

u(x, t) = c +
5
19

√
11
19

[11 tanh3(k(x− ct− x0)) (11)

−9 tanh(k(x− ct− x0))].

Next, based on (10) we are motivated to define the follow-
ing nonlinear fractional partial differential operator:

ND (u (x, t; q)) = ut (x, t; q) + u (x, t; q) ux (12)

(x, t; q) + puxx (x, t; q) + quxxxx (x, t; q) .

Using (12), we construct a0th-order deformation equation
as

(1− q) L (u (x, t; q)− u0 (x, t)) = hqNDu (x, t; q) .
(13)
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Figure 1 Figures from top to bottom: exact solution, approxi-
mate solution and error function.

For q = 0 and q = 1, respectively, we can write

u(x, t; 0) = u0(x, t) = u(x, 0), u(x, t; 1) = u(x, t).
(14)

According to (8) and (9), we obtain themth-order defor-
mation equation

L (um (x, t)− χmum−1 (x, t)) = hNR (um−1 (x, t))
(15)

where

NR (um(x, t)) = Dtum (x, t)+
m−1∑

i=0

ui(x, t)(um−1−i)x(x, t) +

p(um−1)xx(x, t) + q(um−1)xxxx(x, t).

Thus, form ≥ 1, the solution of (15) becomes

um (x, t) = χmum−1 (x, t) + hL−1NR [−→u m−1 (x, t)] .
(16)

For p = q = 1 andh = −1, from (10), (14) and (16), the
initial condition ofu(x, t) is given by

u0(x, t) = c+
55
361

√
209 (tanh (k (x− x0)))3−9 tanh (k (x− x0)) .

Using the recurrence equation (16), we obtainu1(x, t) =
By using the first two terms of the Taylor expansion

u(x, t) = u0(x, t) + u1(x, t) + ...

we can write:

u(x, t) ≈ u0(x, t) + u1(x, t)

Table 1 shows the application of HAM to the approximate
analytical solution of KS equation and exact solution for
different values ofx, t andc = 0.1, k = 1

2

√
11/19,x0 =

−25. Figure 1 illustrates the exact and approximate solu-
tions and error functions for the same values ofx, t, c, k
andx0.

Table 1 Solutions obtained by HAM and exact solution of KS
eq.

x t HAM solution Exact solution

-1 1 -6.697435131 -6.697435464
-0.1 0.1 -6.697435480 -6.697435496
-0.01 0.01 -6.697435496 -6.697435497
-0.001 0.001 -6.697435498 -6.697435498

0 0 -6.697435498 -6.697435498
0.001 0.001 -6.697435498 -6.697435498
0.01 0.01 -6.697435496 -6.697435498
0.1 0.1 -6.697435485 -6.697435499
1 1 -6.697435439 -6.697435511

4. Conclusion

In this paper, we first described HAM shortly, and then
used it to obtain approximate analytical solutions of modi-
fied GKS equation. We wrote these analytical solutions ex-
plicitly and compared them with the exact solutions of KS
equation. We used the Maple Computer Algebra System
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(
c + 55

361

√
209 (tanh (k (x− x0)))

3 − 9 tanh (k (x− x0))
)

· ( 165
361

√
209 (tanh (k (x− x0)))

2 (
1− (tanh (k (x− x0)))

2) k−)

+ 330
361

√
209 tanh (k (x− x0))

(
1− (tanh (k (x− x0)))

2)2
k2

− 330
361

√
209 (tanh (k (x− x0)))3

(
1− (tanh (k (x− x0)))

2) k2

+18 tanh (k (x− x0))
(
1− (tanh (k (x− x0)))

2) k2

− 6600
361

√
209

(
1− (tanh (k (x− x0)))

2)3
k4 tanh (k (x− x0))

+ 11880
361

√
209 (tanh (k (x− x0)))

3 (
1− (tanh (k (x− x0)))

2)2
k4

− 1320
361

√
209 (tanh (k (x− x0)))

5 (
1− (tanh (k (x− x0)))

2) k4

−144
(
1− (tanh (k (x− x0)))

2)2
k4 tanh (k (x− x0))

+72 (tanh (k (x− x0)))
3 (

1− (tanh (k (x− x0)))
2) k4




· t

in the numerical computations and observed that the al-
gorithm works quite fast and only a small number of itera-
tions are needed to obtain satisfactory results which proves
the strength of HAM and Maple. In a future work we plan
to exploit this method to approximate analytical solutions
of some other nonlinear equations.
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