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Abstract: Estimations of the unknown parameters of the generalized linear exponential distribution (GLED) using type-Π progressive

hybrid censored (HC) data are obtained. The maximum likelihood estimation (MLE) and Bayes estimation for all parameters and some

lifetime functions (reliability, hazard function and reversed hazard function) are obtained. Also, we apply Markov chain Monte Carlo

(MCMC) technique and Lindely’s approximation technique to carry out a Bayesian estimation. Under the assumptions of informative

and non-informative priors, estimates of Bayes and credible intervals are obtained. Different methods have been compared using Mont

Carlo simulations. Real data set has been investigated for illustrative purpose.
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1 Introduction

In parametric estimation problems, we often assume that
a set of randomly selected samples of pre-specified
number of units, say n, is available. It is further assumed
that random observations follow a specified distribution.
However, in practice observations on all the units may be
unavailable because observations corresponding to some
units are either not recorded or lost during intermediate
transmission. The resulting data are termed as censored
sample. The two most common and popular censoring
schemes are Type-I and type-II censoring schemes. The
mixture of type-I and type-II censoring schemes is known
as the hybrid censoring scheme (HCS). The HCS was first
introduced by [1] and became quite popular in reliability
and life testing experiments.

[2] presented details and additional references on
some of the statistical inferences and applications for the
exponential distribution with HCS. [1]introduced the
type-I HCS in which the experimental time is T ∗ =
min{xm:n, T}for a pre-fixed value of T. The main
disadvantage of type-I HCS is that most of the inferential

results need to be developed in this case under the
condition that the number of observed failures is at least
one. Moreover, there may be very few failures occurring
up to the pre-fixed time T which results in the estimator(s)
of the model parameter(s) with low efficiency. For this
reason, [3] introduced an alternative HCS that would
terminate the experiment at the random time T ∗ =
max{xm:n, T}. This HCS is called type-II hybrid
censoring scheme (type-II HCS), and it has the advantage
of guaranteeing at least m failures to be observed by the
end of the experiment. If m failures occur before time T ,
the experiment will continue up to time T which may end
up yielding more than m failures in the data.

On the other hand, if the m−th failure does not occur
before time T , the experiment will continue until the time
when the mth failure occurs. In this case, we would
exactly observe m failures in the data. [4] combined
type-I HCS and type-II HCS schemes and introduced the
so-called unified HCS. [5] presented detailed description
on hybrid and adaptive censoring schemes as well as
inferential methods and pointed out their advantages and
disadvantages. Type-II progressively hybrid censoring
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scheme, which is a mixture of Type-II progressive and
hybrid censoring schemes was introduced by [6]. It can be
described as follows: Consider n identical items which
put on a test. Each unit in a randomly selected sample is
subjected under identical environmental conditions.

The lifetimes of the sample units are independent and
identically distributed random variables . The integer
m < n and R1,R2, ...,Rm satisfying
R1 +R2 + ...+Rm +m = n are fixed at the beginning of
the experiment. The time point T is also fixed before
hand. At the time of first failure, X1:m:n , R1 of the
remaining units are randomly removed. Similarly, at the
time of the second failure, say X2:m:n, R2 of the remaining
units are randomly removed and so on. If the mth failure ,
say Xm:m:n occurs before the time point T , the experiment
stops at the time point Xm:m:n. On the other hand if the
m-th failure does not occur before time point T and only J

failure occurs before the time point T , where m > 0, then
at the time point T all the remaining R∗

J units are removed
and the experiment terminates at the time point T . Note
that R∗

J = n−R1 −R2 − ...−RJ − J We denote these two
cases as Case I and Case II, respectively,and call these
censoring schemes as progressively Type-II hybrid
censoring schemes. Therefore, in the presence of
progressively Type-II hybrid censoring schemes,we have
one of the following types of observations:

case I: {X1:m:n, ...,Xm:m:n} if Xm:m:n < T

case II: {X1:m:n, ...,Xm:m:n} if XJ:m:n < T < XJ+1:m:n.
Note that for Case II ,XJ:m:n < T < XJ+1:m:n < ... <

Xm:m:n and XJ+1:m:n, ...,Xm:m:n are not observed.
The exponential distribution is the most widely used

lifetime model in reliability theory, because of its
simplicity and mathematical feasibility. The exponential
distribution was generalized by introducing a shape
parameter, and extensively explored by [7] and [8]. [9]
studied generalized exponential distribution from a
Bayesian point of view. Similarly, [10] introduced a shape
parameter in the Inverted exponential distribution to
obtain generalized inverted exponential distribution. They
derived many distributional properties and reliability
characteristics of generalized inverted exponential
distribution. [11] addressed generalized inverted
exponential distribution based on progressively Type-II
hybrid censored data. [12] covered the statistical
inference on Weibull parameters when the observed data
are progressively Type-II hybrid censored.They derived
the maximum likelihood estimators (MLEs) and the
approximate maximum likelihood estimators (AMLEs) of
the Weibull parameters. Then, they used the asymptotic
distributions of the maximum likelihood estimators to
construct approximate confidence intervals. Bayes
estimates and the corresponding highest posterior density
credible intervals of the unknown parameters were
obtained under suitable priors on the unknown parameters
and using the Gibbs sampling procedure. [13] derived the
maximum likelihood estimators of Weibull distribution
parameters and the acceleration factors were discussed
based on two different types of progressively hybrid

censoring schemes under step-stress partially accelerated
life test model. [14] considered the statistical inference of
a two-parameter exponential distribution under the
Type-II progressively hybrid censoring scheme.
Distributions of the maximum likelihood estimators
(MLEs) in Type-II (progressive) hybrid censoring based
on two-parameter exponential distributions were obtained
using a moment generating function approach by [15].
The statistical inference for the Gompertz distribution
based on Type-II progressively hybrid censored data was
addressed by [16].

Recently, [17] has investigated the point and interval
estimates of the parameters from Weibull distribution
based on adaptive Type-II progressively hybrid censored
data in constant-stress accelerated life test using
maximum likelihood estimation (MLE) methods and
Bayesian estimation (BE). [18] introduced the
generalized linear exponential distribution. They derived
some statistical properties such as moments, modes and
quartiels.

The paper is organized as follows: Section 2 presents
the importance of GLED and some statistical functions.
The ML estimators of the unknown parameters, reliability
and hazard functions are presented. The corresponding
approximate confidence intervals for the parameters are
presented in Section 3. Section 4 comprises description of
the priors, posteriors, Gibbs sampling and
Metropolis-Hasting (MH) algorithm. Moreover, the
proposed hybrid algorithm with resulting Bays estimators
are discussed. Numerical example and real data sets have
been analyzed in Sections 5 and 6. Conclusion is
presented in Section 7.

2 Generalized Linear Exponential

Distribution

The generalized linear exponential distribution can be
used for modeling bathtub, increasing and decreasing
hazard rate behavior. It was first proposed by [18]. This
distribution is important because it involves some widely
well-known distributions such as exponential distribution,
Rayleigh distribution, the linear exponential distribution
and the Weibull distribution. The three parameter
generalized linear exponential distribution has a
probability density function (pdf)

f (x;α,θ ,λ ) =α

(

λ x+
θ

2
x2

)α−1

(λ +θx)e−(λ x+ θ
2 x2)

α

,

α,θ > 0 and λ ≥ 0,

(1)

cumulative distribution function (cdf)

F(x,α,θ ,λ ) = 1− e−(λ x+ θ
2 x2)

α

,α,θ > 0 and λ ≥ 0,
(2)
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the survival function R(t)

R(t) = e−(λ t+ θ
2 t2)

α

, t > 0, (3)

the hazard function H(t)

H(t) = α(λ +θ t)

(

λ t +
θ

2
t2

)α−1

, t > 0, (4)

and the reversed hazard function Q(t)

Q(t) =
α(λ +θ t)

(

λ t + θ
2

t2
)α−1

e−(λ t+ θ
2 t2)

α

1− e−(λ t+ θ
2 t2)

α , t > 0, (5)

3 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is often the most
feasible method, which is used when doing statistical
inference. In this section, we study MLEs of the GLE
distribution based on Type-II progressively hybrid
censored scheme with pdf given in (1). Also, we construct
Approximate confidence intervals (ACIs) of the
parameters of GLE distribution based on Type-II
progressively hybrid censored scheme. The likelihood
function in case I is given

L(α,θ ,λ ) = k1

m

∏
ı=1

f (xi:m:n) [1−F (xi:m:n)]
Ri , (6)

for case II,

L(α,θ ,λ )= k2

d

∏
ı=1

f (xi:m:n) [1−F (xi:m:n)]
Ri [1−F (T )]R

∗
j ,

(7)

where k1 =
n

∏
ı=1

[n −
i−1

∑
k=1

(1+Rk)] and

k2 =
j

∏
ı=1

[n−
i−1

∑
k=1

(1+Rk)] both are constant. Here f(x) is

presented in (1). We present likelihood function (6) and
(7) by:

L(α,θ ,λ ) =C
r

∏
ı=1

f (xi) [1−F (xi)]
Ri [1−F (T )]

R∗
( j) , (8)

where

r =







m for case I

j for case II
, (9)

and

C =







k1 for case I

k2 for case II
. (10)

R∗
( j) =







0 for case I

R∗
j for case II

. (11)

By substituting (1) and (2) in Equation (8) and taking
the logarithm, the log likelihood function can be written as

log L(α,θ ,λ ) =const.+ r logα

+(α − 1)
r

∑
i=1

log

(

λ xi +
θ

2
x2

i

)

−
r

∑
i=1

(Ri + 1)

(

λ xi +
θ

2
x2

i

)α

+
r

∑
i=1

log(λ +θxi)−R∗
( j)

(

λ T +
θ

2
T 2

)α

.

(12)

Applying the first derivative with respect to α, θ and
λ and equating by zero, we get the normal equations as
follows:

r

α̂
+

r

∑
i=1

log

(

λ̂ xi +
θ̂

2
x2

i

)

−
r

∑
i=1

(Ri + 1)

(

λ̂ xi +
θ̂

2
x2

i

)α̂

× log

(

λ̂ xi +
θ̂

2
x2

i

)

−R∗
( j)

(

λ̂ T +
θ̂

2
T 2

)α

× log

(

λ̂ T +
θ̂

2
T 2

)α

= 0,

(13)

(α̂ − 1)
r

∑
i=1

x2
i

2
(

λ̂ xi +
θ̂
2

x2
i

) +
r

∑
i=1

xi
(

λ̂ + θ̂xi

)

− α̂
r

∑
i=1

(Ri + 1)

(

λ̂xi +
θ̂

2
x2

i

)α̂−1
x2

i

2

− α̂R∗
( j)

(

λ̂ T +
θ̂

2
T 2

)α̂−1
T 2

2
= 0,

(14)
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and

(α̂ − 1)
r

∑
i=1

xi
(

λ̂xi +
θ̂
2

x2
i

) +
r

∑
i=1

1
(

λ̂ + θ̂xi

)

− α̂
r

∑
i=1

(Ri + 1)

(

λ̂ xi +
θ̂

2
x2

i

)α̂−1

xi

− α̂R∗
( j)

(

λ̂ T +
θ̂

2
T 2

)α̂−1

T = 0.

(15)

Because Equations (13), (14) and (15) are nonlinear

equations in three parameters α̂, θ̂ and λ̂ , it is difficult to
compute the exact solution. Thus, some numerical
methods must be employed.

By invariance property of ML estimators, the ML
estimators of reliability function R(t), hazard rate function
H(t) and reversed hazard rate function Q(t) can be
obtained by substituting the MLE’s of the parameters α,

θ and λ in (3), (4) and (5), respectively. Hence,

R̂(t, α̂, θ̂ , λ̂ ) = e
−
(

λ̂ t+ θ̂
2 t2
)α̂

, t > 0, (16)

Ĥ(t, α̂, θ̂ , λ̂ ) = α̂(λ̂ + θ̂t)

(

λ̂ t +
θ̂

2
t2

)α̂−1

,

t > 0, (17)

and

Q̂(t, α̂, θ̂ , λ̂ ) =
α̂(λ̂ + θ̂t)

(

λ̂ t + θ̂
2

t2
)α̂−1

e
−
(

λ̂ t+ θ̂
2 t2
)α̂

1− e
−
(

λ̂ t+ θ̂
2 t2
)α̂

,

t > 0, (18)

3.1 Approximate confidence interval

The asymptotic variance-covariance matrix of the
estimators of the parameters ϕ = (ϕ1, . . .ϕn) is obtained
by inverting the Fisher information matrix (given by
taking the expectation of the second derivative of the log-
likelihood functions) in which elements are negatives. In
the present situation, it seems appropriate to approximate
the expected values by their maximum likelihood (ML)
estimates. Accordingly, the approximate
variance-covariance matrix is given by [19]











− ∂ 2l

∂ 2ϕ2
1

. . . − ∂ 2l
∂ 2ϕ1ϕn

...
...

...

− ∂ 2l
∂ 2ϕn

. . . − ∂ 2l
∂ 2ϕ2

n











−1

(ϕˆ
1,...,ϕ

ˆ
n)

From the log-likelihood equation (12), we get

∂ 2l

∂α2
=−

r

α2
−

r

∑
i=1

[(Ri + 1)

(

λ xi +
θ

2
x2

i

)α

×

(

log

(

λ xi +
θ

2
x2

i

))2

−R∗
( j)

(

λ T +
θ

2
T 2

)α(

log

(

λ T +
θ

2
T 2

))2

],

(19)

∂ 2l

∂θ 2
=− (α − 1)

r

∑
i=1

1
(

λ xi +
θ
2

x2
i

)2

(

x4
i

4

)

−
r

∑
i=1

x2
i

(

λ +θx2
i

)2
−

r

∑
i=1

[α(α − 1)(Ri+ 1)

×

(

λ xi +
θ

2
x2

i

)α−2(
x4

i

4

)

−α(α − 1)R∗
( j)

(

λ T +
θ

2
T 2

)α−2(
T 4

4

)

],

(20)

∂ 2l

∂λ 2
=− (α − 1)

r

∑
i=1

x2
i

(

λ xi +
θ
2

x2
i

)2

−
r

∑
i=1

1

(λ +θxi)
−

r

∑
i=1

[α(α − 1)(Ri+ 1)

×

(

λ xi +
θ

2
x2

i

)α−2
(

x2
i

)

−α(α − 1)R∗
( j)

(

λ T +
θ

2
T 2

)α−2

T 2],

(21)

∂ 2l

∂αθ
=

r

∑
i=1

1
(

λ xi +
θ
2

x2
i

)

(

x2
i

2

)

−
r

∑
i=1

[(Ri + 1)

(

λ xi +
θ

2
x2

i

)α−1(
x2

i

2

)

× [α

(

log

(

λ xi +
θ

2
x2

i

))

+ 1]

+R∗
( j)

(

λ T +
θ

2
T 2

)α−1(
T 2

2

)

×

(

α log

(

λ T +
θ

2
T 2

)

+ 1

)

],

(22)

∂ 2l

∂αλ
=

r

∑
i=1

xi
(

λ xi +
θ
2

x2
i

) −
r

∑
i=1

[(Ri + 1)
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(

λ xi +
θ

2
x2

i

)α−1

xi ×

(

α log

(

λ xi +
θ

2
x2

i

)

+ 1

)

+R∗
( j)

(

λ T +
θ

2
T 2

)α−1

T

(

α log

(

λ T +
θ

2
T 2

)

+ 1

)

],

(23)

∂ 2l

∂θλ
=−(α − 1)

r

∑
i=1

x3
i

2
(

λ xi +
θ
2

x2
i

) −
r

∑
i=1

xi

(λ +θxi)
2

−
r

∑
i=1

α(α − 1)(Ri+ 1)

(

λ xi +
θ

2
x2

i

)α−2(
x3

i

2

)

−α(α − 1)R∗
( j)

(

λ T +
θ

2
T 2

)α−2(
T 3

2

)

. (24)

Then, the asymptotic variance-covariance matrix of
the estimators of the parameters α,θ and λ is obtained by
inverting the Fisher information matrix given by taking
the expectation of Equations (19), (20), (21), (22), (23)
and (24) in which elements are negatives. In the present
situation, it seems appropriate to approximate the
expected values by their ML estimates. Accordingly, the
approximate variance -covariance matrix is given as





σ ˆ
αα σ ˆ

αθ σ ˆ
αλ

σ ˆ
αθ σ ˆ

θθ σ ˆ
θλ

σ ˆ
αλ σ ˆ

θλ σ ˆ
λ λ



=









− ∂ 2l(α ,λ ,θ)

∂ 2α2 − ∂ 2l(α ,λ ,θ)

∂ 2αθ
− ∂ 2l(α ,λ ,θ)

∂ 2αλ

−
∂ 2l(α ,λ ,θ)

∂ 2αθ
−

∂ 2l(α ,λ ,θ)

∂ 2θ 2 −
∂ 2l(α ,λ ,θ)

∂ 2θλ

− ∂ 2l(α ,λ ,θ)
∂ 2αλ

− ∂ 2l(α ,λ ,θ)
∂ 2θλ

− ∂ 2l(α ,λ ,θ)
∂ 2λ 2









−1

(α̂,θ̂ ,λ̂ )

.

(25)

The ACIs for the parameters α,θ and λ are
respectively given as:

α̂ ±Z α
2

√

σ̂αα , θ̂ ±Z α
2

√

σ̂θθ and λ̂ ±Z α
2

√

σ̂λ λ ,

where Z α
2

is the percentile of the standard normal

distribution with right tail probability α
2
.

4 Bayesian Estimation of the Parameters

In Bayesian estimation, we study two types of loss
functions. The first is the squared error loss (quadratic
loss) function which is know as a symmetric function and
associates equal importance to the losses for
overestimation and underestimation of equal magnitude.
However, in most practical circumstances such a

limitation may be impractical. For instance, in the
estimation of reliability and failure rate function , an
overestimation is usually much more serious than an
underestimation. In this situation, the use of symmetrical
loss function might be inappropriate as highlighted
by [20]. The second is LINEX (linear-exponential) loss
function which is asymmetric and was introduced by [21].
These loss functions were widely used by several authors,
including [20], [22], [23], [24], [25]. [26] and [27]. This
function rises roughly exponentially on one side of zero
and roughly linearly on the other hand. It can also be
noted that for a specific choice of the loss function
parameter, the squared error loss function can be obtained
as a specific member of the LINEX loss function. The
squared error loss function and the LINEX loss function
for a parameter δ are as follows:

LBS

(

δ , δ̂
)

=
(

δ − δ̂
)2

, (26)

and

LBL (∆) = a
(

eh∆ − h∆ − 1
)

, a > 0 , h 6= 0, (27)

where a and h are shape and scale parameters of the loss

function, respectively and ∆ =
(

δ − δ̂
)

denotes the

scalar estimation error using δ̂ to estimate δ . The sign
and magnitude of h in LINEX loss function affect the
direction and degree of asymmetry. This was introduced
by [28] and further properties of this loss function were
investigated by [29]. For small values of h (near to zero),
the LINEX loss function is almost the same as the
squared error loss function and for the choice of negative
or positive values of h , the LINEX loss function gives
more weight to overestimation or underestimation (for
details, see [29]).

Bayesian estimates of δ against the squared error loss
function and the LINEX loss function are as follows:

δ̂BS = E [δ | x] , (28)

and

δ̂BL =−
1

h
log{E

[

e−hδ | x
]

}. (29)

Now we propose the Bayesian estimator of
parameters (α,θ , λ ) as well as reliability R(t), hazard
H(t) and reversed hazard Q(t) functions of the GLE. It is
assumed that α, θ and λ have the following independent
prior:

π1 (α)∝ αw2−1e−αw1 ,w1 > 0,w2 > 0 α > 0,

π2 (θ )∝ θ w4−1e−θw3 , w3 > 0,w4 > 0, θ > 0, (30)
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and

π3 (λ )∝ λ w6−1e−λ w5 , w6 > 0,w5 > 0, λ ≥ 0,

where w1,w2,w3,w4,w5,w6 are chosen to reflect prior
knowledge on α,θ and λ . When
w1 = w2 = w3 = w4 = w5 = w6 = 0, non-informative
priors of α, θ and λ exist.

From Equations (12) and (30) , the joint prior density
function of α, θ and λ is of the form

π (α,θ ,λ )∝αw2−1e−αw1 θ w4−1e−θw3 λ w6−1e−λ w5 ,

α,θ > 0, λ ≥ 0,

w1,w2,w3,w4,w5,w6 > 0.

Then the posterior distribution α, θ and λ can be
written as

π∗ (α,θ ,λ | x) =
1

k
αw2+r−1e−αw1θ w4−1e−θw3λ w6−1

e−λ w5 ×
r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

(λ +θxi)e−(λ xi+
θ
2 x2

i )
α

e−(n−r)(λ c+ θ
2 c2)

α

, (31)

where

k =

∞
∫

0

∞
∫

0

∞
∫

0

[

αw2+r−1e−αw1θ w4−1e−θw3λ w6−1e−λ w5×

r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

(λ +θxi)e−(λ xi+
θ
2 x2

i )
α

×

e−(n−r)(λ c+ θ
2 c2)

α ]

dαdθdλ .

In Bayesian statistics the posterior distribution
π∗ (α,θ ,λ | x) contains all information on the unknown
parameters given the observed data. From the posterior
distribution, all statistical inference can be deduced. We
observe that equation (31) can not be solved explicitly, so
two different procedures are introduced Lindley’s
approximation and MCMC technique that can be used to
obtain the Bayes estimator for α, θ and λ and the
corresponding credible intervals. For any function
u (α,θ ,λ ) of α, θ and λ , the Bayes estimates are given
by

û (α,θ ,λ ) =
1

k

∞
∫

0

∞
∫

0

∞
∫

0

u (α,θ ,λ )L(α,θ ,λ )×

π (α,θ ,λ )dαdθdλ .

(32)

4.1 Lindely approximation

Lindley’s approximation, which was introduced by [30]
can approximate the Bayes estimators into a form
containing no integral. For our estimation problem we
describe this method below. As noticed the Bayesian
estimates involve the ratio of two integrals, we consider
I (x) defined as

I (x) = E [u(γ1,γ2,γ3)]

=

∫

γ3

∫

γ2

∫

γ1

u(γ1,γ2,γ3)eL(γ1,γ2,γ3)+ρ(γ1,γ2,γ3)dγ1dγ2dγ3

∫

γ3

∫

γ2

∫

γ1

eL(γ1,γ2,γ3)+ρ(γ1,γ2,γ3)dγ1dγ2dγ3

,

where u(γ1,γ2,γ3) is a function of γ1,γ2 or γ3 only.
L(γ1,γ2,γ3) is log of likelihood function.
ρ (γ1,γ2,γ3) is log joint prior of γ1,γ2 and γ3.

Utilizing the Lindley’s method I (x) can be
approximated as

I (x) =u(γ̂1, γ̂2, γ̂3)+ (u1a1 + u2a2 + u3a3 + a4 + a5)

+
1

2
[A(u1σ11 + u2σ12 + u3σ13)

+B(u1σ21 + u2σ22 + u3σ23)

+C (u1σ31 + u2σ32 + u3σ33)] ,
(33)

where γ̂1, γ̂2 and γ̂3 are the MLE of of γ1,γ2 and γ3

respectively.

ai = ρ1σi1 +ρ2σi2 +ρ3σi3, i = 1,2,3,

a4 = u12σ12 + u13σ13 + u23σ23,

a5 =
1

2
(u11σ11 + u22σ22 + u33σ33) ,

A =σ11L111 + 2σ12L121 + 2σ13L131 + 2σ23L231

+σ22L221 +σ33L331,

B =σ11L112 + 2σ12L122 + 2σ13L132 + 2σ23L232

+σ22L222 +σ33L332,

C =σ11L113 + 2σ12L123 + 2σ13L133 + 2σ23L233

+σ22L223 +σ33L333,

and subscripts 1,2,3 on the right-hand sides refer to γ1,γ2

,γ3 respectively and

ρi =
∂ρ

∂γi
, ui =

∂u(γ1,γ2,γ3)

∂γi
, i = 1,2,3 ,

ui j =
∂ 2u(γ1,γ2,γ3)

∂γi∂γ j

, i, j = 1,2,3,

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 5, 931-946 (2020) / www.naturalspublishing.com/Journals.asp 937

Li j =
∂ 2L(γ1,γ2,γ3)

∂γi∂γ j

, i, j = 1,2,3 ,

Li jk =
∂ 3L(γ1,γ2,γ3)

∂γi∂γ j∂γk

, i, j,k = 1,2,3,

and σi j is the (i, j)−th element of the inverse of the matrix
{

Li j

}

. All are evaluated at the MLE of parameters. With
the above-mentioned defined expressions, we can obtain
the values of the Bayes estimates of various parameters .

If u
(

α̂, θ̂ , λ̂
)

= α̂ , the Bayes estimate of the

parameter α under the squared error loss (SEL) function
from (33) is

α̂BS = α̂ + a1 +
1

2
[Aσ11 +Bσ21 +Cσ31] (34)

If u
(

α̂, θ̂ , λ̂
)

= θ̂ , the Bayes estimate of the parameter

θ under the squared error loss (SEL) function is

θ̂BS = θ̂ + a2 +
1

2
[Aσ12 +Bσ22 +Cσ32] . (35)

If u
(

α̂, θ̂ , λ̂
)

= λ̂ , the Bayes estimate of the parameter

λ under the squared error loss (SEL) function is

λ̂BS = λ̂ + a3 +
1

2
[Aσ13 +Bσ23 +Cσ33] . (36)

If u
(

α̂, θ̂ , λ̂
)

= e−hα̂ ,the Bayes estimate of the

parameter α under the LINEX loss function from (33) is

α̂BL =−
1

h
log

{

e−hα̂

[

1− ha1+
1

2
h2σ11

−
1

2
h(Aσ11 +Bσ21 +Cσ31)

]}

.

(37)

If u

(

α̂ , θ̂ , λ̂
)

= e−hθ̂ , the Bayes estimate of the

parameter θ under the LINEX loss function is

θ̂BL =−
1

h
log

{

e−hθ̂

[

1− ha2+
1

2
h2σ22

−
1

2
h(Aσ12 +Bσ22 +Cσ32)

]}

.

(38)

If u
(

α̂, θ̂ , λ̂
)

= e−hλ̂ , the Bayes estimate of the

parameter λ under the LINEX loss function is

λ̂BL =−
1

h
log

{

e−hλ̂

[

1− ha3+
1

2
h2σ33

−
1

2
h(Aσ13 +Bσ23 +Cσ33)

]}

.

(39)

The estimators of reliability function R(t), hazard rate
function H(t) and reversed hazard rate function Q(t) can
be obtained by substituting the Lindely’s approximate

under the squared error loss (SEL) function and LINEX
loss function of the parameters α, θ and λ in (3), (4) and
(5).

The approximate Bayes estimator of α, θ and λ can
be obtained using Lindley approximation , but it is
impossible to construct highest posterior density(HPD)
confidence intervals using this method. Thus, we use the
following Markov Chain Mont Carlo (MCMC) method to
generate samples from the posterior density function, and
obtain the Bayes estimators as well as HPD confidence
intervals.

4.2 MCMC Method

We study the Markov Chain Monte Carlo (MCMC)
methods to draw samples from the posterior density
function, then compute the Bayes estimators and
construct HPD credible intervals of α, θ and λ .Several
conventional ways define such Markov Chains exist,
including Gibbs sampling, Metropolis-Hastings (MH)
and reversible jump. Using these algorithms it is possible
to implement posterior simulation, which allows point
wise evaluation of the prior distribution and likelihood
function in any issue. From Equation (31), the marginal
posterior density of α is proportional to

π∗
1 (α | θ ,λ , x)∝αw2+r−1e−αw1

r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

× (λ +θxi)e−(λ xi+
θ
2 x2

i )
α

e−(λ c+ θ
2 c2)

α(n−r)

(40)
Similarly, the posterior conditional distributions for θ

and λ are respectively

π∗
2 (θ | α,λ , x)∝θ w4+r−1e−θw3

r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

× (λ +θxi)e−(λ xi+
θ
2 x2

i )
α

e−(λ c+ θ
2 c2)

α(n−r)

(41)
and

π∗
3 (λ | α,θ , x)∝θ w6+r−1e−θw5

r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

× (λ +θxi)e−(λ xi+
θ
2 x2

i )
α

e−(λ c+ θ
2 c2)

α(n−r)

(42)
We can see the posteriors conditional distributions for

α, θ and λ are log-concave and can not be reduced
analytically to well-known distributions. Consequently, as
suggested by [31], a common way to solve this problem is
to use the hybrid algorithm by combining a Metropolis-
Hasting ( MH) sampling with Gibbs sampling scheme
using normal distribution. Hence, the algorithm works as
follows:

1-Set the initial values of α, θ and λ say (α0, θ0,λ0).
2-Set j = 1.
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3-Using MH, generate α j
1 from π∗

1 (α j−1 | θ j−1,λ j−1,x)

with normal distribution, N(α j−1,KαVα).

4-Using MH, generate θ
j

1 from π∗
2 (θ j−1 | α j−1,λ j−1,x)

with normal distribution, N(θ j−1,Kθ Vθ ).

5-Using MH, generate λ j
1 from π∗

3 (λ j−1 | α j−1,θ j−1,x)

with normal distribution, N(λ j−1,Kλ Vθ ), where
Kα,Kθ and Kλ are scaling factor and Vα , Vθ and
Vθ are variances-co variances matrix.

6-Set j = j+ 1.
7-Repeat steps from 1 to 5 N times.
8-The Bayes estimators of u(α, θ , λ ) can be

approximated as:

ûMc ≈
1
N ∑N

i=1 u (α j ,θ j,λ j) f1(α j,θ j ,λ j)
1
N ∑N

i=1 f1(α j,θ j ,λ j)
(43)

where

f1(α j ,θ j,λ j) =
r

∏
ı=1

(

λ xi +
θ

2
x2

i

)α−1

(λ +θxi)

× e−(λ xi+
θ
2 x2

i )
α

e−(λ c+ θ
2 c2)

α(n−r)

,

9-Order α j , θ j and λ j , j = 1, . . .N and suppose that we
would like to construct the HPD credible intervals of
α,θ and λ Now, we construct all 100(1-α)% credible
intervals of α say (α[1],α[N(1−α)]),. . . (α[Nα ],α[N]).

Here [X] denotes the largest integer less than or equal
to X. Then the HPD credible interval of α is the interval
which has the shortest duration. Similarly, the HPD
credible interval of θ and λ can also be constructed. Now,
two loss functions define the Bayes estimates based on
MCMC method from (35).

4.2.1 Bayes estimate based on MCMC under LINEX loss
function

1-For estimating α, consider u (α j ,θ j,λ j) = exp[−hα j],
so

α̂BL =
−1

h
log

[

1
N ∑N

i=1 u (α j,θ j ,λ j) f1(α j,θ j ,λ j)
1
N ∑N

i=1 f1(α j,θ j ,λ j)

]

.

(44)
2-For estimating θ , consider u (α j,θ j ,λ j) = exp[−hθ j],

so

θ̂BL =
−1

h
log

[

1
N ∑N

i=1 u (α j ,θ j,λ j) f1(α j ,θ j,λ j)
1
N ∑N

i=1 f1(α j ,θ j,λ j)

]

.

(45)
3-For estimating λ , consider u (α j ,θ j,λ j) = exp[−hλ j],

then

λ̂BL =
−1

h
log

[

1
N ∑N

i=1 u (α j ,θ j,λ j) f1(α j ,θ j ,λ j)
1
N ∑N

i=1 f1(α j ,θ j,λ j)

]

.

(46)

The estimators of reliability function R(t), hazard rate
function H(t) and reversed hazard rate function Q(t) can be
obtained by substituting the MCMC under the LINEX loss
function of the parameters α, θ and λ in (3), (4) and (5).

4.2.2 Bayes estimate based on MCMC under Squared
Error loss function

1-For estimating α, consider u (α j ,θ j,λ j) = α j, so

α̂SL =
1
N ∑N

i=1 u (α j,θ j ,λ j) f1(α j,θ j ,λ j)
1
N ∑N

i=1 f1(α j,θ j ,λ j)
. (47)

2-For estimating θ , consider u (α j,θ j ,λ j) = θ j, so

θ̂SL =
1
N ∑N

i=1 u (α j ,θ j,λ j) f1(α j ,θ j,λ j)
1
N ∑N

i=1 f1(α j ,θ j,λ j)
. (48)

3-For estimating λ , consider u (α j,θ j ,λ j) = λ j, then

λ̂SL =
1
N ∑N

i=1 u (α j ,θ j,λ j) f1(α j ,θ j,λ j)
1
N ∑N

i=1 f1(α j ,θ j,λ j)
. (49)

The estimators of reliability function R(t), hazard rate
function H(t) and reversed hazard rate function Q(t) can
be obtained by substituting the MCMC under the Squared
Error loss(SEL) function of the parameters α, θ and λ in
(3), (4) and (5).

5 Simulation Study

In this section, we carry out a simulation study to
compare the performance of ML estimators and Bays
estimators. We estimate the unknown parameters using
the ML estimate and Bayes estimators obtained by
Lindley approximations and MCMC method. The
performances of different estimators with MSE are
compared. Also, the average length of the asymptotic
confidence intervals and the HPD confidence intervals are
obtained. The comparison between the estimates occurs
according to the following steps:

1-For the given parameters w1,w2,w3,w4,w5 and w6

generate random values of α,θ and λ .
2-For given values of n and r with initial values of α,θ

and λ given in step 1, we generate random samples
from inverse cumulative distribution function of GLE
distribution, then we order them.

3-The ML estimates of α,θ and λ are then obtained by
solving the nonlinear equations (13), (14) and (15).

4-The ML estimates of the hazard function, survival
function and reversed hazard function are obtained
from equations (16),( 17) and (18) with t=0.25.

5-The Bayes estimates of α,θ and λ using Lindley’s
approximation forms under Secured Error (SE) loss
function are given by (34) - (36), and under LINEX
loss function are given by (37) - (39).
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6-The Bayes estimates of α,θ , λ , hazard function,
survival function and reversed hazard function are
computed by applying MCMC method with 1100
observations under Secured Error (SE) loss function
and LINEX loss function .

7-The quantities (κ̂ −κ)2 are computed where κ̂ stands
for an estimate of κ (ML or Bayes).

Steps 1-7 are repeated at least 1000 times for
informative prior and non-informative prior and for
different sample sizes n and r at T=2 . A simulation data
for progressive hybrid type-II censored sample from
GLED is generated with α = 2,θ = 2.6 , λ = 1.1 and
T = 1 for different choices of n and m using the
following scheme with informative priors

Table 1: Different Schemes

n m R

10 5 (0 1 4 0 0)

50 15 (3*5,0,5*4,0*5)

100 25 (10*3,5*9,0*13)

w1 = 0.05,w2 = 0.05, w3 = 0.01,w4 = 0.01,w5 = 0.01 ,
w6 = 0.01, and non-informative priors
w1 = w2 = w3 = w4 = w5 = w6 = 0, the MSE’s, the
average asymptotic confidence intervals and the HPD
confidence intervals length from the MCMC technique
are computed with informative priors and
non-informative priors. The MSE of the estimates were
estimated by

MSE(κ̂) =
1000

∑
1

(κ̂ −κ)2

1000
.

The results are reported in Tables 2- 8 for the
informative priors and Tables 9- 15 for non-informative
priors.

From Tables 2-4, the following observations are made
for MLE and Bayes estimates: as n and m increase, the
MSEs decrease for all choices. The MSEs estimates of
survival function and hazard function decrease as n and m
increase in Tables 5-7. Now we compare different
confidence/credible intervals in terms of their average
lengths and coverage probability. From Table 8,we
observed that the average confidence/credible lengths
decrease as n and m increase. The average confidence
lengths for HPD confidence intervals are smaller than the
asymptotic confidence intervals for all sample sizes. For
non-informative priors we can see the same results for
MSEs for all cases Table 8-13. The Bayes credible
intervals with respect to the non-informative priors also
work very well. Table 15 indicates that the average
credible lengths are also smaller than the likelihood
ratio-based confidence intervals. It is noticeable that both
methods work well even for small n and m. The Bayes
estimates of the three parameters α,θ and λ using

MCMC method are generally make no sense their MLEs
and Bayes estimates using Lindley approximation, based
on MSEs.

6 Real Data Analysis

In this section, two data analysis are presented for
illustrative purpose. EXAMPLE 1: we use the lifetime
data set presented in Table 15 to compare between
proposed methods. The data set presented in Table 16
represents 50 observed failure times that were initially
reported in [32] and later by a number of authors
including [33], [34], [35], [31] and [36].

Before progressing, we would like to check whether
the GLED fits this data or not. The calculated value of the
K-S test is 0.18497 for the GLED, is smaller than their
corresponding values expected at 5% significance level,
which is 0.29407 at n = 50. We have just plotted the
empirical survival function and the fitted survival
functions in Figure 1. Observe that the GLED can be a
good model fitting this data. Figure 2 shows that all the
points of a Q-Q plot are inside the unit square, so, it is
noticeable that the GLED fits the data very well.

Fig. 1: Empirical and fitted distribution function for completed

data set.
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Fig. 2: Q-Q plot compare data to a specific distribution.

The unknown parameters using the ML estimates and
the Bayes procedure are estimated. For computing the
ML estimates, we use the numerical method and compute
the 95% ACIs using the observed Fisher information
matrix. For computing the Bayes estimates we consider
the SE loss function and LINEX loss function. For
comparison purpose, the informative and the
non-informative priors were assumed. The Bayes
estimates are obtained using importance samples of size
N=11000. In all cases α = 0.7,θ =0.0009,
λ = 0.009,c = 1,−1,4. are considered. First, the
informative priors are considered with
w1 = 0.05,w2 = 0.05,w3 = 0.01,w4 = 0.01,w5 = 0.01
and w6 = 0.01 ,(Tables 16 and 17). Second, the non
informative priors w1 = w2 = w3 = w4 = w5 = w6 = 0,,
(Tables 19 and 20).

Using the estimates we obtain the 95% ACIs based on
the observed Fisher information matrix. For computing
the Bayes estimates we consider the SE loss function and
LINEX loss function. (Table 22).

From Tables 17 and 19, The Bayes estimates of the three
parameters α,θ and λ using MCMC are similar to MLEs
in all cases informative and non informative priors.
According to Tables 18 and 20, the length of the HPD
credible intervals of α,θ and λ based on informative
priors is almost smaller than the corresponding length of
the HPD credible intervals based on non-informative
priors.

EXAMPLE 2:We use a data set obtained through
realistic experiment. The research started when people
realized that guinea pigs are highly susceptible to human
tuberculosis.Although guinea pigs acquire resistance, a
few deadly tubercle bacilli will cause progressive disease
and death. The investigation aims to identify the relation
between numbers of tubercle bacilli infected individuals
and survival time [37].The listed values are the survival
times (in days) of the guineas placed in the environment

of 4.0 ∗ 106 bacillary units per 0.5 mL. 72 observations
are shown as follows:
12,15,22,24,24,32,32,33,34,38,38,43,44,48,52,53,54,
54,55,56,57,58,58,59,60,60,60,60,61,62,63,65,65,67,
68,70,70,72,73,75,76,76,81,83,84,85,87,91,95,96,98,
99,109,110,121,127,129,131,143,146,146,175,175,211,
233,258,258,263,297,341,341,376. We will created
type-II progressively hybrid censored sample from the
aforementioned uncensored data set. Before progressing,
we would like to check whether the GLED fits this data or
not. The calculated value of the K-S test is 0.146312 for
the GLED and this value is smaller than their
corresponding values expected at 2% significance level,
which is 1.51743 at n = 72. In this case n = 72 and we
take m = 28, T = 60.5,R1 = R2 = ... = R11 = 4,R12 =
R13 = ...= R28 = 0. Thus the type-II progressively hybrid
censored sample is: 12,15,22,24,24,32,32,33,34,38,38
,43,44,48,52,53,54,54,55,56,57,58,58,59,60,60,60,60.

From the above-mentioned sample the unknown
parameters using the MLEs and the Bayes procedure are
estimated with informative priors w1 = 0.1 , w2 = 0.6 ,
w3 = 0.2 , w4 = 0.1 , w5 = 0.6 and w6 = 0.2,
α = 1,θ = 1, λ = 0.01,c = 2,−2. (Table 20).

According to Table 20, the Bayes estimates of the three
parameters α,θ and λ using MCMC are similar to MLEs.
We can see that the length of HDP credible intervals of
α,θ and λ is almost smaller than the corresponding length
of the ACI intervals.

7 Conclusion

The present paper addressed, MLE and Bayes estimation
of the unknown parameter for the progressive Type-II
hybrid censored GLE distribution. We provided the
maximum likelihood estimators and it was observed that
the maximum likelihood estimators of the unknown
parameters can not obtained in the closed form and we
used the numerical method to compute them. Also, we
found the Bayes estimators of the unknown parameters,
which can not be obtained in explicit forms. We proposed
two approximation methods to compute them. Lindley
approximations and the MCMC method were used. We
used Monte Carlo simulations to compare the
performance of the different methods, it was quite
satisfactory. Although we have assumed that the lifetime
distributions are generalized linear exponential
distribution, most of the methods can be extended to other
distributions.
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Table 2: Estimates of the parameters α and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 2.3191 1.7707 2.0685 1.7543 1.6904 1.7864 2.3158 2.3158 2.3197 2.3158 2.3244

0.1018 0.0526 0.0047 0.0604 0.0958 0.1 0.0998 0.0998 0.1022 0.0998 0.1052

50 15 1.9614 1.8633 1.9126 1.8588 1.823 1.7644 1.9607 1.9607 1.9615 1.9607 1.9596

0.0015 0.0187 0.0076 0.0199 0.0313 0.0555 0.0015 0.0015 0.0015 0.0015 0.0016

100 25 1.9985 1.9421 1.9735 1.9391 1.9141 1.8611 2.0102 1.9984 1.9984 1.9984 1.8611

2.∗10−6 0.0033 0.0007 0.0073 0.0074 0.0193 0.0001 3∗10−6 2.79*10−6 3∗10−6 3.45*10−6

Table 3: Estimates of the parameters θ and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 2.1839 1.8735 2.3318 1.8328 0.1038 1.6144 2.1553 2.1554 2.1884 2.1553 2.1909

0.1731 0.5278 0.072 0.5886 0.9856 0.9713 0.1978 0.1977 0.1695 0.1978 0.1677

50 15 2.5713 2.4387 2.692 2.4139 2.2395 2.136 2.5598 2.5598 2.5664 2.5596 2.56

0.0008 0.026 0.0085 0.0346 0.13 0.2153 0.0019 0.0019 0.0012 0.002 0.0022

100 25 2.5845 2.4902 2.6581 2.4902 2.3496 2.2313 2.5844 2.5844 2.5928 2.5844 2.6072

0.0002 0.012 0.0033 0.012 0.0627 0.0185 0.0002 0.0003 0.0001 0.0003 0.0001

Table 4: Estimates of the parameters λ and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=–0.2 c3=1 c4=4

10 5 0.8688 0.8144 0.855 0.8105 0.7779 0.7123 0.8683 0.8683 0.8725 0.8683 0.8687

0.1 0.0816 0.06 0.1 0.1038 0.1503 0.1 0.1 0.1 0.1 0.1

50 15 0.8147 0.7929 0.8108 0.7911 0.7757 0.7351 0.815 0.815 0.8179 0.815 0.8133

0.0814 0.0943 0.0836 0.0954 0.1052 0.1331 0.0812 0.0812 0.0796 0.0812 0.0822

100 25 0.934 0.9181 0.9305 0.9733 0.9061 0.8759 0.9344 0.9344 0.9341 0.9344 0.9339

0.0276 0.0331 0.0287 0.0161 0.0376 0.0502 0.0274 0.0274 0.0275 0.0274 0.02758

Table 5: Estimates of survival function R(t) and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 0.9113 0.8699 0.8853 0.8696 0.8738 0.8984 0.9118 0.9118 0.9106 0.9118 0.9116

0.0085 0.0026 0.0044 0.003 0.003 0.0063 0.0086 0.0086 0.0084 0.0086 0.0086

50 15 0.8738 0.8697 0.865 0.8702 0.8736 0.8768 0.874 0.874 0.8733 0.874 0.8742

0.003 0.0026 0.0021 0.0026 0.003 0.0034 0.003 0.003 0.003 0.003 0.0031

100 25 0.8543 0.8533 0.8496 0.8537 0.8564 0.8591 0.8542 0.8542 0.8541 0.8542 0.8536

0.0013 0.0012 0.0009 0.0012 0.0014 0.0016 0.0012 0.0012 0.0012 0.0012 0.0012

. .
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Table 6: Estimates of hazard function H(t) and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 0.9147 1.0338 1.084 1.0237 0.9398 0.7996 0.9062 0.9063 0.9219 0.9062 0.9142

0.5868 0.4185 0.356 0.4316 0.549 0.7764 0.5998 0.5998 0.5758 0.5999 0.5876

50 15 1.1654 1.1408 1.232 1.132 1.0688 1.0079 1.1622 1.1622 1.1689 1.1622 1.1602

0.2655 0.2915 0.2013 0.3011 0.3744 0.4526 0.2689 0.2688 0.262 0.2689 0.271

100 25 1.3563 1.3238 1.3933 1.3171 1.2659 1.2023 1.3572 1.3572 1.3596 1.3572 1.3654

0.105 0.1274 0.0826 0.1322 0.1721 0.2289 0.1047 0.1047 0.1031 0.1047 0.0995

Table 7: Estimates of reversed hazard function Q(t) and the corresponding MSE for informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c1=-1 c2=0.1 c3=1 c4=4

10 5 9.3969 6.9116 8.3655 6.8287 6.5086 7.0729 9.3676 9.3677 9.3924 9.3676 9.4247

3.2317 0.4728 0.5872 0.5937 1.1895 0.2771 3.1276 3.1278 3.2153 3.1273 3.3324

50 15 8.0688 7.6148 7.8934 7.5886 7.3905 7.1737 8.0604 8.0604 8.0597 8.0604 8.0598

0.2205 0.0002 0.0865 0.0001 0.0436 0.1811 0.2128 0.2128 0.212 0.2128 0.2121

100 25 7.9554 7.7015 7.8738 7.6848 7.5504 7.333 7.9537 7.9537 7.9592 7.9537 7.9621

0.1269 0.0001 0.0754 0.0001 0.0024 0.005 0.1256 0.1256 0.1296 0.1256 0.1316

Table 8: The 95% ACI’s and HPD credible intervals and the corresponding length of α,θ and λ for informative priors

n m parameter ACI HPD

10 5 α 6.1298 0.0047

θ 16.8645 0.0324

λ 5.3752 0.0084

50 15 α 4.1488 0.0047

θ 16.2651 0.03

λ 4.9875 0.0038

100 25 α 2.5644 0.0017

θ 11.0182 0.0212

λ 3.2047 0.0019

Table 9: Estimates of the parameters α and the corresponding MSE for non-informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 2.3191 1.7893 2.0921 1.7719 1.7004 1.7886 2.3146 2.3146 2.3211 2.3146 2.3157

0.1018 0.0444 0.0085 0.0521 0.0898 0.1 0.099 0.099 0.1031 0.099 0.0997

50 15 1.9614 1.8658 1.9151 1.8613 1.8251 1.7655 1.9627 1.9627 1.9628 1.9627 1.9611

0.0015 0.018 0.0072 0.0192 0.0306 0.055 0.0014 0.0014 0.0014 0.0014 0.0015

100 25 1.9985 1.9437 1.9751 1.9407 1.9156 1.862 1.9984 1.9984 1.9985 1.9984 1.9986

2.∗10−6 0.0032 0.0006 0.0035 0.0071 0.019 3.∗10−6 3.∗10−6 3.∗10−6 3.∗10−6 2.∗10−6

. .
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Table 10: Estimates of the parameters θ and the corresponding MSE for non-informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 2.1839 1.8786 2.3361 1.8377 1.6101 1.615 2.1801 2.1802 2.1744 2.18 2.1589

0.1731 0.5204 0.0696 0.5811 0.9799 0.9703 0.1769 0.1768 0.1817 0.177 0.1947

50 15 2.5713 2.4419 2.6948 2.417 2.2418 2.1366 2.579 2.579 2.5753 2.579 2.5496

0.0008 0.025 0.009 0.0335 0.1283 0.2148 0.0005 0.0005 0.0008 0.0005 0.0025

100 25 2.5845 2.4923 2.66 2.4759 2.3512 2.2318 2.5869 2.5869 2.5833 2.5869 2.5654

0.0002 0.0116 0.0036 0.0154 0.0619 0.1356 0.0002 0.0002 0.0003 0.0002 0.0012

Table 11: Estimates of the parameters λ and the corresponding MSE for non-informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 0.8688 0.8143 0.8549 0.8104 0.7778 0.7123 0.8694 0.8694 0.8692 0.8694 0.8689

0.1 0.1 0.1 0.1 0.1038 0.1503 0.1 0.1 0.1 0.1 0.1

50 15 0.8147 0.7928 0.8108 0.791 0.7756 0.7351 0.8172 0.8172 0.8156 0.8172 0.815

0.0814 0.0944 0.0837 0.0955 0.1025 0.1332 0.08 0.08 0.0809 0.08 0.0812

100 25 0.934 0.9181 0.9305 0.9169 0.9061 0.8759 0.9344 0.9344 0.9335 0.9344 0.9341

0.0276 0.0331 0.0287 0.0335 0.0376 0.0502 0.0274 0.0274 0.0277 0.0274 0.0275

Table 12: Estimates of survival function R(t) and the corresponding MSE for non-informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 0.9113 0.8723 0.8877 0.8719 0.8752 0.8987 0.9109 0.9109 0.9116 0.9109 0.9116

0.0085 0.0028 0.0047 0.0028 0.0032 0.0064 0.0085 0.0085 0.0086 0.0085 0.0086

50 15 0.8738 0.8699 0.8652 0.8704 0.8739 0.8769 0.8729 0.8729 0.8737 0.8729 0.8743

0.003 0.0026 0.0021 0.0027 0.003 0.0034 0.0029 0.0029 0.003 0.0029 0.0031

100 25 0.8543 0.8535 0.8498 0.8538 0.8566 0.8593 0.8542 0.8542 0.8545 0.8542 0.8549

0.0013 0.0012 0.001 0.0012 0.0014 0.0016 0.0012 0.0012 0.0013 0.0012 0.0013

Table 13: Estimates of hazard rate function H(t) and the corresponding MSE for non- informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 0.9147 1.0248 1.0717 1.0153 0.935 0.7984 0.9169 0.9169 0.9111 0.9169 0.9087

0.5868 0.4303 0.3709 0.4428 0.5562 0.7785 0.5836 0.5836 0.5924 0.5836 0.596

50 15 1.1654 1.1404 1.2314 1.1315 1.0682 1.0074 1.1763 1.1763 1.1675 1.1763 1.1583

0.2655 0.292 0.2019 0.3017 0.3751 0.4534 0.2545 0.2544 0.2634 0.2545 0.2729

100 25 1.3563 1.3237 1.3931 1.317 1.2656 1.2019 1.3582 1.3582 1.3551 1.3582 1.349

0.105 0.1275 0.0827 0.1323 0.1723 0.2293 0.1041 0.1041 0.1061 0.1041 0.1101

Table 14: Estimates of reversed hazard rate function Q(t) and the corresponding MSE for non-informative priors

n m MLEs BAYES MCMC
SEL LINEX SEL LINEX

c1=-1 c2=0.1 c3=1 c4=4 c1=-1 c2=0.1 c3=1 c4=4

10 5 9.3969 6.9969 8.4757 6.9092 6.5538 7.0832 9.3728 9.3728 9.3996 9.3727 9.3672

3.2317 0.3628 0.7682 0.4761 1.0929 0.2663 3.1454 3.1456 3.242 3.1452 3.1258

50 15 8.0688 7.6277 7.9068 7.6014 7.4015 7.1793 8.0766 8.0766 8.0749 8.0766 8.0587

0.2205 0.0008 0.0946 0.0005 0.0391 0.1764 0.2279 0.2279 0.2263 0.2279 0.2111

100 25 7.9554 7.7095 7.882 7.6095 7.5577 7.3374 7.9546 7.9546 7.9557 7.9546 7.9488

0.1269 0.0001 0.0799 0.0001 0.0017 0.0686 0.1263 0.1263 0.1271 0.1263 0.1222

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


944 M. A. W. Mahmoud et al.: Parameter estimation for the generalized linear...

Table 15: The 95% ACI’s and HPD credible intervals and the corresponding length of α,θ and λ for non -informative priors

n m parameter ACI HPD

10 5 α 6.1298 0.0059

θ 16.8645 0.0476

λ 5.3752 0.0041

50 15 α 4.1488 0.0028

θ 16.2651 0.0464

λ 4.9875 0.0037

100 25 α 2.3878 0.0012

θ 9.8212 0.0168

λ 2.8937 0.0016

Table 16: Progressively censored sample generated from data in [32].

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xi:35:50 0.1 0.2 1 1 1 1 1 2 3 6 7 11 18 18 18 18 21 32

Ri 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 3

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

xi:35:50 36 45 47 50 55 60 63 63 67 67 75 79 82 84 84 85 86

Ri 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0

Table 17: Estimates of the parameters α,θ , λ for different methods under the informative priors

Parameters MLEs BAYES MCMC
SEL LINEX SEL LINEX

c=-1 c=4 c=1 c=-1 c=4 c=1

α 0.6185 0.5951 0.5915 0.5821 0.5988 0.6184 0.6184 0.6184 0.6184

θ 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

λ 0.0086 0.009 0.0089 0.0089 0.009 0.0086 0.0086 0.0086 0.0086

Table 18: The 95% ACI and the HPD credible interval of the parameters α,θ , λ under the informative priors

α Lenght θ Lenght λ Lenght

ACI (0.3903,0.8466) 0.4564 (0.,0.0007) 0.0008 (-0.0015,0.0186) 0.0201

HPD (0.6184,0.6185) 0.0000358 (0.0004,0.0004) 0.0 (0.0086,0.0086) 9.*10−8

Table 19: Estimates of the parameters α,θ , λ for different methods under the non- informative priors

Parameters MLEs BAYES MCMC

SEL LINEX SEL LINEX

c=-1 c=4 c=1 c=-1 c=4 c=1

α 0.6185 0.5949 0.5913 0.5819 0.5986 0.6185 0.6185 0.6185 0.6185

θ 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

λ 0.0086 0.009 0.0089 0.0089 0.0089 0.0086 0.0086 0.0086 0.0086

Table 20: The 95% ACI and the HPD credible interval of the parameters α,θ , λ under the non-informative priors

α Lenght θ Lenght λ Lenght

ACI (0.3903,0.8466) 0.4564 (0.,0.0007) 0.0008 (-0.0015,0.0186) 0.0201

HPD (0.6184,0.6185) 0.000031 (0.0004,0.0004) 0.00 (0.0086,0.0086) 7.*10−8
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Table 21: Estimates of the parameters α,θ , λ for different methods under the informative priors

Parameters MLEs BAYES MCMC
SEL LINEX SEL LINEX

c=2 c=-2 c=2 c=-2

α 0.9998 1.0016 1.0016 1.0016 0.9998 0.9998 0.9998

θ 1.3649 1.64 1.5965 1.6388 1.2371 1.2335 1.2407

λ 0.0109 0.0241 0.0248 0.02014 0.02562 0.02595 0.01875

Table 22: The 95% ACI and the HPD credible interval of the parameters α,θ , λ under the informative priors

α Lenght θ Lenght λ Lenght

ACI (0.9996,1) 0.00042726 (-0.8403,2.5701) 3.4104 (-0.426, 0.404) 0.83

HPD (0.9996,, 0.9999) 0.00003 (1.1868,1.372) 0.1852 (-0.0629,0.1237) 0.1866
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