
Appl. Math. Inf. Sci. 14, No. 5, 921-929 (2020) 921

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140520

On the Analytical and Numerical Study for Nonlinear

Fredholm Integro-Differential Equations

Amira Abd-Elall Ibrahim1, Afaf A. S. Zaghrout2, K. R. Raslan2 and Khalid K. Ali2,∗

1October High Institute for Engineering and Technology, Nasr-City, Cairo, Egypt
2Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt

Received: 6 Jan. 2020, Revised: 2 Aug. 2020, Accepted: 13 Aug. 2020

Published online: 1 Sep. 2020

Abstract: In this paper, we investigate the existence of a unique solution to nonlinear Fredholm integro-differential equation. The

exact solution of the proposed equation using the direct calculation method is given. We combine the finite difference method with the

composite Simpson method to find the numerical solution of the equation. The error estimate of our scheme is discussed in this article.

Finally, to illustrate the accuracy of the proposed method, we give five numerical examples and compare the exact solution with the

numerical solution.
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1 Introduction

Differential equations play an important role in many
branches of modern mathematics and appear in various
applications, including mechanics, engineering,
mathematical physics, chemistry, biology, . . . etc. Several
researchers are interested in discussing different types of
differential equations [1–9].

Numerical and analytical studies on different types of
nonlinear integro-differential equations have been
conducted, see [10–21].
Now, we consider a nonlinear Fredholm
integro-differential equation of the following form:

u′(x) = f (x)+
∫ b

a
g(x, t,(u′(t)))dt, u(a) = α (1)

where x, t ∈ [a,b], −∞ < a < b < ∞, f (x) is known
function, u(x) is unknown function and g is a continuous
function.

Many methods, such as a parametric iteration
method [22], Chebyshev finite difference method [23], a
combination of the finite difference method and the
trapezoidal method [24] have been used to discuss
Fredholm integro-differential equations. The
Newton-type method [25] and [26] used compact finite

difference formula.
In this work, the analytical and numerical solutions of
equation (1) are investigated using the direct computation
method [27] as well as the finite difference-Simpsons
method [28–30] . Also, the existence of a unique solution
is explored.

The present paper is organized, as follows: In Section
2, the existence of a unique solution will be discussed. In
Section 3, the analysis and the derivation of analytical and
numerical methods are presented. In Section 4, some
examples are given and the exact solutions are compared
to prove the applicability of the method. Section 5 is
devoted to conclusion.

2 Existence of a unique solution

Before we start and prove the main results, we introduce
the following assumptions: Consider the functional integro
differential equation (1) with the following assumptions:
(i) f : [a,b]→ R+ is continuous.
(ii) g : [a,b]× [a,b]×R → R+ is continuous and satisfies
the Lipschitz condition

|g(x, t,z)− g(x, t,w)|6 k1(x, t)|z−w|,
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sup
t∈[a,b]

∫ b

a
k1(x, t)dx ≤ M.

(iii) M ≤ 1. Now, we introduce the following theorem for
the existence of a unique positive continuous solution of
the integro-differential equation (1).

Theorem 1. Let the assumptions (i)-(iii) be satisfied,

then the integro differential equation (1) has a unique

positive continuous solution on [a,b]. Moreover, if the two

functions f and g are monotonic, then the solution is

monotonic

Proof. Let v(x) = u′(x), then equation (1) can be written
as

v(x) = f (x)+
∫ b

a
g(x, t,(v(t)))dt, (2)

and

u(x) = α +

∫ x

a
v(t)dt. (3)

Define the operator F by

Fv(x) = f (x)+

∫ b

a
g(x, t,v(t)))dt.

Let x1, x2 ∈ [a,b] such that |x2 − x1|< δ , then

∣
∣
∣
∣
Fv(x2)−Fv(x1)

∣
∣
∣
∣
=

∣
∣
∣
∣
f (x2)− f (x1)+

∫ b

a
g(x2, t,v(t))dt

−
∫ b

a
g(x1, t,v(t))dt

∣
∣
∣
∣

6

∣
∣
∣
∣
f (x2)− f (x1)

∣
∣
∣
∣

+
∫ b

a

∣
∣
∣
∣
g(x2, t,v(t))− g(x1, t,v(t))

∣
∣
∣
∣
dt.

This proves that F : C[a,b]→C[a,b].
Let w, z ∈C[a,b], then
∣
∣
∣
∣
Fw(x)−Fz(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a
g(x, t,w(t))dt −

∫ b

a
g(x, t,z(t))dt

∣
∣
∣
∣

≤

∫ b

a

∣
∣
∣
∣
g(x, t,w(t))− g(x, t,z(t))

∣
∣
∣
∣
dt

≤

∫ b

a
k1(x, t)

∣
∣
∣
∣
w− z

∣
∣
∣
∣
dt

=

∣
∣
∣
∣
w− z

∣
∣
∣
∣

∫ b

a
k1(x, t)dt

≤ M

∣
∣
∣
∣
w− z

∣
∣
∣
∣
.

Since M ≤ 1, then F is contraction. Then, using Banach
Fixed Point theorem [31], the integral equation (2) has a
unique solution v ∈ C[a,b]. Thus, based on equation (3),
the integro-differential equation (1) possess a unique
solution u ∈C[a,b].

Monotonicity
Here the monotonicity of the solution of equation (1) will
be studied.

Lemma 1. Let f and g be monotonic in the first

argument and equation (1) has a solution. Then, this

solution is monotonic.

Proof. Let v(x1) = u′(x1), v(x2) = u′(x2).
Let f and g be nonincreasing in x.
Let x1, x2 ∈ [a,b] such that x1 < x2, then

v(x2) = f (x2)+
∫ b

a
g(x2, t,v(t))dt

6 f (x1)+

∫ b

a
g(x2, t,v(t))dt

6 f (x1)+
∫ b

a
g(x1, t,v(t))dt = v(x1),

then,

v(x2)6 v(x1).

Similarly, if f ,g are nondecreasing in x and x1, x2 ∈ [a,b]
such that x1 < x2, we can prove that

v(x2)≥ v(x1).

3 Derivation of the analytical and numerical

methods

Now, we introduce the analytical and numerical methods
to solve this problem (1). In addition, we calculate the error
estimate of the scheme.

3.1 The direct computation method

It is important to point out that this method will be applied
only to the equations where the kernels are separable as

K(x, t) =
n

∑
k=1

Ak(x)Bk(t). (4)

We can use the direct computation method as follows:
Substituting (4) into (1) leads to

u′(x) = f (x)+A1(x)
∫ b

a
B1(t)u

′(t)dt

+A2(x)

∫ b

a
B2(t)u

′(t)dt + . . .+An(x)

∫ b

a
Bn(t)u

′(t)dt.

(5)

Each integral at the right side is equivalent to a constant.
Then, (5) can be written as

u′(x) = f (x)+α1A1(x)+α2A2(x)+ . . .+αnAn(x), (6)
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where

αi =

∫ b

a
Bi(t)u

′(t)dt, 1 ≤ i ≤ n. (7)

Substituting (6) into (7), we obtain a system of n algebric
equations which can be solved together to define αi.
Then, substituting the value of αi into (6) and integrating
the obtained result from 0 to x, we obtain the exact
solution of nonlinear Fredholm integro-differential
equation (1).

3.2 Finite difference method-composite

Simpson’s method

We divide the domain [a,b] of (1) into finite points as
a = t0 < t1 < ... < tn−1 < tn = b. We use uniform step
length h = (b − a)/n, such that xi = a + ih,
i = 0,1,2, ...,n. We use composite Simpson’s on the
integral part and finite difference on the differential part
of (1) to find the numerical solution.
The integral part of (1) can be approximated as:

∫ b

a
k(x, t)u′(t)dt ≃

h

3

[

k(x, t0)u
′(t0)

+ 2

n
2−1

∑
j=1

k(x, t2 j)u
′(t2 j)

+ 4

n
2

∑
j=1

k(x, t2 j−1)u
′(t2 j−1)

+ k(x, tn)u
′(tn)

]

.

By taking u′i = u′(xi), k(xi, t j) = ki, j, i = 0,1,2, ...,n, then
(1) can be written as

u′i ≃
h

3

[

ki,0u′0 + 2

n
2−1

∑
j=1

ki,2 ju
′
2 j

+ 4

n
2

∑
j=1

ki,2 j−1u′2 j−1 + ki,nu′n

]

.

(8)

We use forward difference to approximate the derivative
part of (8) as

u′i ≃
ui+1 − ui

h
, i = 0.

We use central difference to approximate the derivative
part of (8) as

u′i ≃
ui+1 − ui−1

2h
, i = 1,2, ...,n− 1.

At the end point n we use second Backward finite
difference

u′i ≃
3un − 4un−1+ un−2

2h
, i = n.

Substituting by u′i into (8) we have for i = 1,2, ...,n− 1.

ui+1 − ui−1

2h
≃ fi +

h

3

[

ki,0(
u1 − u0

h
)

+ 2

n
2−1

∑
j=1

ki,2 j

u2 j+1 − u2 j−1

2h

+ 4

n
2

∑
j=1

ki,2 j−1

u2 j − u2 j−2

2h

+ ki,n(
3un − 4un−1+ un−2

2h
)

]

.

(9)

3un − 4un−1+ un−2

2h
≃ fn +

h

3

[

kn,0(
u1 − u0

h
)

+ 2

n
2−1

∑
j=1

kn,2 j

u2 j+1 − u2 j−1

2h

+ 4

n
2

∑
j=1

kn,2 j−1

u2 j − u2 j−2

2h

+ kn,n(
3un − 4un−1+ un−2

2h
)

]

.

(10)

3.3 Error estimation

Suppose that ρ1, ρ2, ρ3, ρ4 ∈ (a,b) such that the errors e1

of forward difference, e2 of central difference, e3 of
second backward difference approximation and e4 of
composite Simpson’s rule respectively are given by
h
2
u(2)(ρ4),

h2

6
u(3)(ρ1),

h2

3
u(3)(ρ3) and

(b−a)
180

h4u(4)(ρ2).
Then, we obtain the error estimation for (1) by

e ≤

∣
∣
∣
∣

(b− a)2

2n2
M+

(b− a)

n
M+

(b− a)5

90n4
M

∣
∣
∣
∣
, (11)

where M = max{u(3)(ρ1),u
(3)(ρ3),u

(4)(ρ2),u
(2)(ρ4)} and

N is the number of subinterval.
From (9) and (10), the exact solution for i = 1,2,3, . . . ,n−
1.

ui+1 − ui−1

2h
+

h2

6
u(3)(ρ1) = fi +

h

3

[

ki,0(
u1 − u0

h
)

+ 2

n
2−1

∑
j=1

ki,2 j

u2 j+1 − u2 j−1

2h

+ 4

n
2

∑
j=1

ki,2 j−1

u2 j − u2 j−2

2h

+ ki,n(
3un − 4un−1+ un−2

2h
)

]

+
h

2
u(2)(ρ4)+

h2

6
u(3)(ρ1)

+
h2

3
u(3)(ρ3)+

(b− a)

180
h4u(4)(ρ2),

(12)
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and for i = n

3un − 4un−1+ un−2

2h
+

h2

3
u(3)(ρ3) = fn +

h

3

[

kn,0(
u1 − u0

h
)

+ 2

n
2−1

∑
j=1

kn,2 j

u2 j+1 − u2 j−1

2h

+ 4

n
2

∑
j=1

kn,2 j−1

u2 j − u2 j−2

2h

+ kn,n(
3un − 4un−1+ un−2

2h
)

]

+
h

2
u(2)(ρ4)+

h2

6
u(3)(ρ1)

+
h2

3
u(3)(ρ3)+

(b− a)

180
h4u(4)(ρ2),

(13)

where ρ1, ρ2, ρ3, ρ4 ∈ (a,b).
Substracting (9), (10) from (12), (13), we obtained the
error terms as follows:

e =

∣
∣
∣
∣

h2

6
u(3)(ρ1)+

h2

3
u(3)(ρ3)− 2

h

2
u(2)(ρ4)− 2

h2

6
u(3)(ρ1)

− 2
h2

3
u(3)(ρ3)− 2

(b− a)

180
h4u(4)(ρ2)

∣
∣
∣
∣
,

=

∣
∣
∣
∣
−

h2

6
u(3)(ρ1)−

h2

3
u(3)(ρ3)− hu(2)(ρ4)

−
(b− a)

90
h4u(4)(ρ2)

∣
∣
∣
∣
,

=

∣
∣
∣
∣
− (

h2

6
u(3)(ρ1)+

h2

3
u(3)(ρ3)+ hu(2)(ρ4)

+
(b− a)

90
h4u(4)(ρ2))

∣
∣
∣
∣
,

=

∣
∣
∣
∣

h2

6
u(3)(ρ1)+

h2

3
u(3)(ρ3)+ hu(2)(ρ4)

+
(b− a)

90
h4u(4)(ρ2)

∣
∣
∣
∣
.

Let M1 = u(3)(ρ1), M2 = u(3)(ρ3), M3 = u(2)(ρ4), and

M4 = u(4)(ρ2), then

e =

∣
∣
∣
∣

h2

6
M1 +

h2

3
M2 + hM3 +

(b− a)

90
h4M4

∣
∣
∣
∣
,

if we take M = max{M1,M2,M3,M4}, then we have

e ≤

∣
∣
∣
∣

h2

6
M+

h2

3
M+ hM+

(b− a)

90
h4M

∣
∣
∣
∣

=

∣
∣
∣
∣

h2

2
M+ hM+

(b− a)

90
h4M

∣
∣
∣
∣
.

(14)

Substituting h = b−a
n

in (14) we get

e ≤

∣
∣
∣
∣

(b− a)2

2n2
M+

(b− a)

n
M+

(b− a)5

90n4
M

∣
∣
∣
∣
.

It is the error estimation.

4 Applications

In this section, we apply the existence theorem to some
examples of nonlinear Fredhom integro-differential
equations, and use the direct calculation method as well
as the finite difference composite Simpson method to
solve them analytically and numerically. The results
obtained are listed in Table 1-5. All results of these
examples were performed using Mathematica.

Example 4.1 Consider the equation:

u′(x) =−1+
1

e

− cosh(x)+ xsinh(1)+

∫ 1

0
(x− t)u′(t)dt, u(0) = 1.

(15)

First, we prove that this example has a unique solution,
as follows:
∣
∣
∣
∣
g(x, t,v(t))− g(x, t,w(t)

∣
∣
∣
∣
=

∣
∣
∣
∣
(x− t)v(t)− (x− t)w(t)

∣
∣
∣
∣

=

∣
∣
∣
∣
(x− t)

∣
∣
∣
∣

∣
∣
∣
∣
(v(t)−w(t))

∣
∣
∣
∣
,

where k1(x, t) = (x− t).

Since sup
︸︷︷︸

t∈[0,1]

∫ 1
0 k1(x, t)dx = sup

︸︷︷︸

t∈[0,1]

∫ 1
0 (x − t)dx ≤ 1, then

from Theorem 1, we can deduce that example 4.1 has a
unique solution.
Therefore, we can use the direct computation method to
find the exact solution of this example. (15) can be writen
as

u′(x) =−1+
1

e
− cosh(x)+ xsinh(1)+ xα −β , (16)

where

α =
∫ 1

0
u′(t)dt, β =

∫ 1

0
tu′(t)dt. (17)

Substituting (16) into (17) and integrating the right side,
we obtain α and β as

α =
1

e
+

1

2
(−2+α − 2β − sinh(1)),

β =
8+ e2+ 2eα − 3e(3+β )

6e
.

(18)
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Solving (18) for α and β we obtain

(α,β ) = (−
−2+ 2e2+ 9e sinh(1)

13e
,

−
−12+ 13e− e2+ 2e sinh(1)

13e
).

(19)

Substituting (19) into (16) and integrating the resulting
equation from 0 to x, we obtain the exact solution

u(x) = 1− sinh(x). (20)

Now, we introduce the approximate and the exact solution
in Table 1 with n = 10 and we provide Figure 1 below to
show that the proposed numerical method is effective.

Table 1: The exact and approximate solution of example
4.1

xi Approximate
solution

Exact solution Absolute error

0.2 0.798645 0.798664 1.9129 E-5

0.4 0.589204 0.589248 4.3296 E-5

0.6 0.363288 0.363346 5.8509 E-5

0.8 0.111844 0.111894 4.9678 E-5

●

●

●

●

●

●

●

●

●

●

●

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

0.0 0.2 0.4 0.6 0.8 1.0

- 0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

u
(x
)

Δ App.

● Exact

Fig. 1: Comparison between the approximate and exact solutions

of example 4.1

Example 4.2 Consider the equation:

u′(x) = ex −
1

300
e12+x(−1+ e12)

+
1

50

∫ 4

2
ex(u′(t))6dt, u(2) = e2.

(21)

Now, we prove that this example has a unique solution: we
have

∣
∣
∣
∣
g(x, t,v(t))− g(x, t,w(t)

∣
∣
∣
∣
=

∣
∣
∣
∣

1

50
exv(t)−

1

50
exw(t)

∣
∣
∣
∣

=

∣
∣
∣
∣

1

50
ex

∣
∣
∣
∣

∣
∣
∣
∣
(v(t)−w(t))

∣
∣
∣
∣
,

where k1(x, t) = 1
50

ex, since

sup
︸︷︷︸

t∈[2,4]

∫ 4
2 k1(x, t)dx = sup

︸︷︷︸

t∈[2,4]

∫ 4
2

1
50

exdx ≤ 1, then from the

existence Theorem 1 we can deduce that example 4.2 has
a unique solution.
We use the direct computation method to find the exact
solution of this example. (21) can be written as

u′(x) = ex −
1

300
e12+x(−1+ e12)+

1

50
exα, (22)

where

α =
∫ 4

2
(u′(t))6dt. (23)

Substituting (22) into (23), integrating the right side and
solving the resulting equation we obtain

α =
1

6
(−e12 + e24). (24)

Substituting (24) into (22) and integrating the resulting
equation from 0 to x, we obtain the exact solution

u(x) = ex. (25)

Now, we find the approximate and the exact solutions in
Table 2 at n = 10 and we introduce Figure 2 below for the
solutions.

Table 2: The exact and approximate solution of example
4.2

xi Approximate
solution

Exact solution Absolute error

2.4 11.0232 11.0232 4.08732 E-7

2.8 16.4446 16.4446 7.40178 E-7

3.2 24.5325 24.5325 1.02885 E-6

3.6 36.5982 36.5982 7.77374 E-7

Example 4.3

Consider the eaquation:

u′(x) =−0.66sin(x)

+

∫ 1

−0.5
sin(x)u′(t)dt, u(−0.5) = cos(−0.5).

(26)

To prove that the example has a unique solution we have

∣
∣
∣
∣
g(x, t,v(t))− g(x, t,w(t)

∣
∣
∣
∣
= |sin(x)v(t)− sin(x)w(t)|

=

∣
∣
∣
∣
sin(x)

∣
∣
∣
∣

∣
∣
∣
∣
(v(t)−w(t))

∣
∣
∣
∣
,

where k1(x, t) = sin(x), since

sup
︸︷︷︸

t∈[−0.5,1]

∫ 1
−0.5 k1(x, t)dx = sup

︸︷︷︸

t∈[−0.5,1]

∫ 1
−0.5 sin(x)dx ≤ 1.
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●
●

●
●

●
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●

●
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Δ
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20

30

40

50

x

u
(x
)

Δ App.

● Exact

Fig. 2: Comparison between the approximate and exact solutions

of example 4.2

Using the existence Theorem 1, we can say that example
4.3 has a unique solution.

The exact solution for this example can be found using
the direct computation method. Now, we can write (26) as

u′(x) =−0.66sin(x)+α sin(x), (27)

where

α =

∫ 1

−0.5
(u′(t))dt. (28)

To find the value of α , we substitute (27) into (28). Then,
we obtain

α =−0.33728. (29)

Substituting (29) into (27) and integrating the resulting
equation from 0 to x, we get the exact solution for our
example

u(x) = cos(x). (30)

In Table 3, we introduce the values of approximate and the
exact solutions with n = 10. We introduce Figure 3 below
for the approximate and the exact solutions.

Table 3: The exact and approximate solution of example
6.3

xi Approximate
solution

Exact
solution

Absolute
error

-0.35 0.939373 0.939373 2.22045 E-16

-0.2 0.980067 0.980067 1.11022 E-16

-0.05 0.99875 0.99875 0.00000

0.1 0.995004 0.995004 0.00000

0.25 0.968912 0.968912 1.11022 E-16

0.4 0.921061 0.921061 2.22045E-16

0.55 0.852525 0.852525 2.22045 E-16

0.7 0.764842 0.764842 1.11022 E-16

0.85 0.659983 0.659983 0.00000

●

●

●
●
●
● ● ● ● ●

●
●
●

●

●

●

●

●

●

●

●

Δ

Δ

Δ
Δ
Δ Δ

Δ Δ Δ
Δ
Δ
Δ
Δ
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Δ

Δ

Δ

Δ

Δ
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0.5

0.6

0.7

0.8

0.9

1.0

x

u
(x
)

Δ App.

● Exact

Fig. 3: Comparison between the approximate and exact solutions

of example 4.3

Example 4.4
Consider the equation:

u′(x) =−5.7 ex + 0.5

∫ 1

0
ex(u′(t))4dt, u(0) = 1. (31)

First, we prove that this example has a unique solution:

∣
∣
∣
∣
g(x, t,v(t))− g(x, t,w(t)

∣
∣
∣
∣
=

∣
∣
∣
∣
0.5exv(t)− 0.5exw(t)

∣
∣
∣
∣

=

∣
∣
∣
∣
0.5ex

∣
∣
∣
∣

∣
∣
∣
∣
(v(t)−w(t))

∣
∣
∣
∣
,

where k1(x, t) = 0.5ex, since

sup
︸︷︷︸

t∈[0,1]

∫ 1
0 k1(x, t)dx = sup

︸︷︷︸

t∈[0,1]

∫ 1
0 0.5exdx ≤ 1, then from the

existence theorem, we can deduce that example 4.4 has a
unique solution.
Then, we use the direct computation method to find the
exact solution of this example. (31) can be written as

u′(x) =−5.7 ex + 0.5αex, (32)

where

α =
∫ 1

0
(u′(t))4dt. (33)

To find the value of α , we substitute (32) into (33),
integrate the right side, and solve the resulting equation.
Then, we obtain

α = 13.3995. (34)

Substituting (34) into (32) and integrating the resulting
equation from 0 to x, we obtain the exact solution

u(x) = ex. (35)
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The approximate and the exact solutions are introduced in
Table 4 with n = 10. We introduce Figure 4 below for the
approximate and the exact solutions.

Table 4: The exact and approximate solution of example
4.4

xi Approximate
solution

Exact solution Absolute error

0.2 1.2214 1.2214 0.00000

0.4 1.49182 1.49182 0.00000

0.6 1.82212 1.82212 2.22045 E-16

0.8 2.22554 2.22554 4.44089 E-16

●
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●
●

●

●

●

●

●

●

●

Δ
Δ

Δ
Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0��

1.0

1��

2�0

2��

x

u
(x
)

Δ App.

● Exact

Fig. 4: Comparison between the approximate and exact solutions

of example 4.4

Example 4.5
Consider the equation :

u′(x) = cos(x)−cos(x)sin(1)+
∫ 1

0
cos(x)u′(t)dt, u(0) = 0.

(36)

First, we prove that this example has a unique solution:
We have
∣
∣
∣
∣
g(x, t,v(t))− g(x, t,w(t)

∣
∣
∣
∣
=

∣
∣
∣
∣
cos(x)v(t)− cos(x)w(t)

∣
∣
∣
∣

=

∣
∣
∣
∣
cos(x)

∣
∣
∣
∣

∣
∣
∣
∣
(v(t)−w(t))

∣
∣
∣
∣
,

where k1(x, t) = cos(x), since

sup
︸︷︷︸

t∈[0,1]

∫ 1
0 k1(x, t)dx = sup

︸︷︷︸

t∈[0,1]

∫ 1
0 cos(x)dx ≤ 1, then from the

existence theorem we can deduce that example 4.5 has a
unique solution.
Then, we use the direct computation method to find the
exact solution of this example. (36) can be written as

u′(x) = cos(x)− cos(x)sin(1)+α cos(x), (37)

where

α =

∫ 1

0
u′(t)dt. (38)

To find the value of α , we substitute (37) into (38),
integrate the right side, and solve the resulting equation.
Then, we obtain

α = sin(1). (39)

Substituting (39) into (37) and integrating the resulting
equation from 0 to x, we obtain the exact solution

u(x) = sin(x). (40)

Now, we find the numerical solution of this example.
We introduce the approximate and the exact solution in
Table 5 with n = 10, and we introduce Figure 5 below to
show that the method is effective.

Table 5: The exact and approximate solution of example
4.5

xi Approximate
solution

Exact solution Absolute error

0.2 0.198669 0.198669 8.3267 E-17

0.4 0.389418 0.389418 1.6653 E-17

0.6 0.564642 0.564642 1.1102 E-16

0.8 0.717356 0.717356 1.1102 E-16

●

●

●

●

●

●

●

●

●

●

●

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

x

u
(x
)

Δ App.

● Exact

Fig. 5: Comparison between the approximate and exact solutions

of example 4.5

Based on discussions of the numerical examples above as
an application to the proposed methods in this paper, We
can say that we have provided an accurate numerical study
of the proposed equation using finite difference method-
composite Simpson’s method.
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5 Conclusion

The analytical and numerical solutions of nonlinear
Fredholm integro-differential equations have been
discussed using direct calculation method and finite
difference-Simpson method. In addition, we have
examined the existence of a unique solution of the
proposed system, and obtained the estimated error of the
scheme. Five numerical examples have been presented
and compared with the exact solution to show the
accuracy of the proposed method.
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