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Abstract: Multi-level programming (MLP) is an important branch of operation research. The majority of optimization problems-

humans currently face- have very large numbers of variables and constraints and are called large-scale programming problems.

However, practical situations entail some imprecision regarding some decisions and performances. Neutrosophic sets play a vital

role by considering three independent degrees, namely, the truth membership degree, indeterminacy membership degree, and falsity

membership degree, of any aspect of an uncertain decision. The present study focuses on solving multi-level large-scale linear

programming problems with neutrosophic parameters in the constrains by considering the problem coefficients to be trapezoidal

neutrosophic numbers. The neutrosophic form of the problem is transformed into an equal crisp model in the first stage of the solution

methodology to reduce the problem’s complexity. In the second stage, a decomposition algorithm is used to obtain the Pareto optimal

solution among conflicted decision levels. The proposed algorithm is validated by an illustrative example.

Keywords: Large scale, Linear programming, Multi-level programming, Neutrosophic set, Trapezoidal neutrosophic number.

1 Introduction

Multi-level optimization problems include decentralized
planning problems with multiple decision makers (DMs)
in a multi-level or hierarchical organization where
decision makers interact with each other [1].

A key feature of multi-level programming problems
(MLPP) is that a planner at a certain level of the hierarchy
can have its objective function and decision space
partially defined by other levels. In addition, each planner
can use control instruments to influence the policies on
other levels to achieve their own objectives [1].

In real-world applications, most optimization problems
are large-scale programming problems that include
numerous variables and constraints [2]. The block angular
structure of constraints is a notable structure in major
large-scale programming problems [3]. In this structure, a
large problem is divided into smaller sub-problems that
appear together and share common resources in the
upper-most interconnected constraints. From this
perspective, Dantzig and Wolfe [4] proposed a

decomposition algorithm for large-scale programming
problems with block angular structures.

Neutrosophic sets are described by three independent
degrees, specifically, the truth membership degree (T),
indeterminacy membership degree (I), and falsity
membership degree (F), where T, I, and F are standard or
non-standard subsets of ]0−,1+[ [5].

Considerable studies have been conducted on multi-level
and multi-objective large-scale programming
problems [2, 3, 6–9]. In [8], Emam et al. proposed a
decomposition algorithm for solving a multi-level
large-scale quadratic programming problem with
stochastic parameters in the objective functions. In the
first stage, the stochastic nature of the problem is
transformed into an equivalent crisp problem to reduce
the complexity. In the second stage, Taylor series and a
decomposition algorithm are combined to produce the
optimal solution.

Sultan et al. [6] considered a three-level large-scale linear
programming problem in which the objective functions at
all levels must be maximized. A three-level programming
problem may be seen as a static version of the
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Stackelberg strategy. The authors proposed a procedure to
solve a three-planner model and obtained a solution to
this problem. On every level, the goal is to optimize the
problem independently as a large-scale programming
problem by means of the Dantzig and Wolfe
decomposition method. Consequently, the optimization
process is performed as a series of sub-problems that can
be solved independently.

Several studies have been conducted in the field of
neutrosophic linear programming problems [5, 10–13].

Hussian et al. [10] proposed linear programming
problems based on a neutrosophic environment. They
converted neutrosophic linear programming problems
into crisp programming models using neutrosophic set
parameters.

Abdel-Baset et al. [11] introduced the neutrosophic
integer programming problem (NIPP) in which the
parameters are trapezoidal neutrosophic numbers. The
degrees of the T, F and I membership functions of the
objectives are taken into account simultaneously. The
NIPP has been converted into a crisp programming model
using the T, F, and I membership functions and
single-valued triangular neutrosophic numbers.

This rest of this paper is arranged, as follows: Section 2
contains some preliminaries. In Section 3, a three-level
large-scale linear programming problem (TLLSLPP) with
neutrosophic parameters in the constraints
(N-TLLSLPP)is formulated. In Section 4, the
neutrosophic nature of the problem is simplified into an
equivalent crisp form. In Section 5, a decomposition
algorithm for the TLLSLPP is presented. An algorithm
for solving the (N-TLLSLPP) with neutrosophic
parameters in the constraints is proposed in Section 6.
Furthermore, the results and the solution algorithm are
illustrated with a numerical example in Section 7. Section
8 is devoted to conclusion and suggestions for further
research.

2 Preliminaries

This section presents a review of key neutrosophic set
concepts and definitions.

Definition 1. (A single-valued neutrosophic set) [14]

Let Y be a universe of discourse. A single-valued
neutrosophic set N over Y is an object having the form N
= {〈y, TN(y), IN (y), FN(y)〉: y∈Y}, where TN (y): Y
→[0,1], IN (y): Y →[0,1] and FN(y): Y →[0,1] with 0≤T

N(y)+ IN(y)+FN(y)≤3 for all y∈Y. The intervals TN (y),
IN(y) and FN(y) denote the T, I and the F membership
functions of y to N, respectively.

Definition 2 [13] The trapezoidal neutrosophic number G̃

is a neutrosophic set in R with the following T, I and F

membership functions:

TG̃(X) =





∝G̃

(
x−g1

g2−g1

)
(g1 ≤ x ≤ g2)

∝G̃ (g2 ≤ x ≤ g3)
∝G̃ (g3 ≤ x ≤ g4)
0 otherwise

(1)

IG̃(X) =





(g2−x+θG̃(X−g′1)
(g2−g′1)

(g′1 ≤ x ≤ g2)

θG̃ (g2 ≤ x ≤ g3)
(x−g3+θG̃(g

′
4−x))

(g′4− g3)
(g3 ≤ x ≤ g′4)

1 otherwise

(2)

FG̃(X) =





(
g2−x+βG̃(X−g

′′
1 )
)

(g2−g′1)
(g

′′

1 ≤ x ≤ g2)

βG̃ (g2 ≤ x ≤ g3)(
x−g3+βG̃(g

′′
4 −x)

)

(g
′′
4− g3)

(g3 ≤ x ≤ g
′′

4)

1 otherwise

(3)

where ∝G̃, θG̃ and βG̃ represent the maximum truthiness
degree, minimum indeterminacy degree, minimum falsity
degree, respectively, and ∝G̃, θG̃ and βG̃ ∈ [0, 1]. In

addition, g
′′

1 ≤ g1 ≤ g′1 ≤ g2 ≤ g3 ≤ g′4 ≤ g4 ≤ g
′′

4.

Fig. 1: The T, I, and F membership functions of the trapezoidal

neutrosophic number.

Definition 3 [15] A ranking function of neutrosophic
numbers is a function N (R) → R,where N(R) is a set of
neutrosophic numbers defined on the set of real numbers,
which maps each neutrosophic number onto the real line.

Let C̃ = 〈(c1,c2,c3,c4 ) ; ∝C̃,θC̃,βC̃〉 and

D̃ = 〈(d1,d2,d3,d4 ) ; ∝D̃,θD̃,βD̃〉 be two trapezoidal
neutrosophic numbers; then,

1.If R(C̃)> R(D̃) then C̃ > D̃,
2.If R(C̃)< R(D̃) then C̃ < D̃,
3.If R

(
C̃
)
= R(D̃) thenC̃ = D̃.
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3 Problem Formulation and Solution

Concept

The (N-TLLSLPP) be formulated with neutrosophic
parameters in the constraints as follows:

[First Level]

max
x1,x2

F1 = max
x1,x2

m

∑
j=1

c1 jx j , (4)

where x3, . . . ,xm solves
[Second Level]

max
x3,x4

F2 = max
x3,x4

m

∑
j=1

c2 jx j , (5)

where x5, . . . ,xm solves
[Third Level]

max
x5, x6

F3 = max
x5, x6

m

∑
j=1

c3 jx j , (6)

where x7, . . . ,xm solves
Subject to

x ∈ G. (7)

where

G = {a01x1 + a02x2 + a0mxm ≤ b̃0,

d1x1 ≤ b̃1,

d2x2 ≤ b̃2,

dmxm ≤ b̃m,

x1, . . . ,xm ≥ 0}.

In problems (4) - (7), x j ∈ R,( j = 1,2, ...,m) is a real
vector of variables, G is the large-scale linear constraint

set where b = (b̃0, . . . , b̃m)
T

are trapezoidal neutrosophic

numbers, b = (b̃0, . . . , b̃m)
T

is an (m + 1) vector, and
a01, ...,a0m,d1, ...,dm are constants. Therefore,
Fi : Rm → R ,(i = 1,2,3) represents the first-level
objective function, second-level objective function, and
third-level objective function, respectively. Furthermore,
the first-level decision maker (FLDM) has x1,x2 ,
representing the first decision level choice; as well as the
second-level decision maker (SLDM) and the third-level
decision maker (TLDM) have x3,x4 and x5,x6,
representing the second decision level choice and the
third decision level choice, respectively.
Definition 4

For any (x1,x2 ∈ G1 = { x1,x2| (x1, ...,xm) ∈ G} )
given by the FLDM and
(x3,x4 ∈ G2 = {x3,x4 | (x1, ...,xm) ∈ G}) given by the
SLDM, if the decision-making variable
(x5,x6 ∈ G3 = {x5,x6 | (x1, ...,xm) ∈ G}) is the Pareto
optimal solution of the TLDM, then (x1, ...,xm) is a
feasible solution of the TLLSLPP.

Definition 5
If x∗ ∈ Rm is a feasible solution of the TLLSLPP with

probability∏m
i=1 αi, no other feasible solution x ∈ G exists,

such thatF1 (x
∗) ≤ F1 (x). Thus, x∗ is the Pareto optimal

solution of the TLLSLPP.
The basic idea in treating the (N-TLLSLPP) is to use the
ranking function to transform each trapezoidal number
into an equivalent crisp number.
If an NTLLSLPP is in the maximization state, the ranking
function for this trapezoidal neutrosophic number can be
defined as follows [15]:

R(g̃) = |

(
− 1

3
(3g

l
− 9gu)+ 2(gm1 − gm2)

2

)
∗(Tg̃− Ig̃−Fg̃)|

(8)
If the NTLLSLPP is in the minimization state, the ranking
function for the trapezoidal neutrosophic number can be
defined as follows [15]:

R(g̃) =

(
(gl + gu)− 3(gm1 + gm2)

−4

)
∗(Tg̃− Ig̃−Fg̃) (9)

where (g̃ = gl ,gm1,gm2,gu; Tg̃, Ig̃,Fg̃) is a trapezoidal

neutrosophic number and gl,gm1,gm2, and gu are the
lower bound, the first and second median values as well
as upper bound for the trapezoidal neutrosophic number,
respectively. Moreover, Tg̃, Ig̃,and Fg̃ are the truth,
indeterminacy and falsity degree of the trapezoidal
number.
If the reader deals with a symmetric trapezoidal
neutrosophic number, which has the following form:
g̃ =

〈(
gm1,gm2

)
;α,β

〉
, where α = β and α,β > 0, the

ranking function for the neutrosophic number will be
defined as follows.

R(ã) =

(
(am1 + am2)+ 2(α +β )

2

)
∗Tã − Iã −Fã (10)

4 Deterministic Three-Level Large-Scale

Linear Programming Problem

The (N-TLLSLPP) can be simplified into the following
deterministic TLLSLPP after implementing the
maximization ranking function in Eq. (8):

[First Level]

max
x1,x2

F1 = max
m

∑
j=1

c1 jx j

x1,x2

, (11)

where x3, . . . ,xm solves
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[Second Level]

max
x3,x4

F2 = max
x3,x4

m

∑
j=1

c2 jx j , (12)

where x5, . . . ,xm solves
[Third Level]

max
x5, x6

F3 = max
x5, x6

m

∑
j=1

c3 jx j , (13)

where x7, . . . ,xm solves

Subject to

x ∈ G. (14)

where

G = {a01x1 + a02x2 + a0mxm ≤ b0,

d1x1 ≤ b1,

d2x2 ≤ b2,

dmxm ≤ bm,

x1, . . . ,xm ≥ 0}.

5 Decomposition Algorithm for the

Three-Level Large-Scale Linear

Programming Problem

The TLLSLPP is solved by adopting the leader-follower
Stackelberg strategy in combination with the Dantzig and
Wolf decomposition method ( [2, 4]).To solve the FLDM
we will use decomposition technique to split the large
scale into smaller n sub problems making it handled more
efficiently.

The decomposition principle is based on demonstrating
TLLSLPP in terms of the extreme points of the
setsd jx j ≤ b j, x j ≥ 0, j = 1,2, ..,m.Accordingly, the
solution space defined by each
d jx j ≤ b j,x j ≥ 0, j = 1,2, ..,m should be bounded and
closed.

Afterwards, the FLDM decision variable is introduced to
the SLDM to search for the optimal solution using the
Dantzig and Wolf decomposition method [4]. The
decomposition method breaks down the large-scale
problem into n sub-problems that can be solved directly.

Last, the exact steps are followed by TLDM till the
optimal solution to his problem , which is the optimal for
the TLLSLPP.

Theorem 1

The decomposition algorithm terminates within a finite
number of iterations, yielding a solution of the large-scale
problem.
For the proof of theorem 1, the reader is referred to [4].

6 An Algorithm for Solving the

(N-TLLSLPP) with Neutrosophic

Parameters in the Constraints

An algorithm for solving the (N-TLLSLPP) is outlined in
the following sequence of steps.

Step 1:

DMs enter their (N-TLLSLPP) with neutrosophic
parameters in the constraints.

Step 2:

If the (N-TLLSLPP) is in the maximization state, every
neutrosophic parameter in the constraints is converted into
its equivalent crisp value by means of Eq. (8); otherwise,
Eq. (9) is used. If trapezoidal neutrosophic number is a
symmetric, use Eq. (10)

Step 3:

The (N-TLLSLPP) with neutrosophic parameters in the
constraints is simplified into the equivalent deterministic
TLLSLPP.

Step 4:

Begin with the FLDM problem and proceed to Step 5.

Step 5:

Transform the master problem in terms of the extreme
points of the setsd jx j ≤ b j,x j ≥ 0, j = 1,2,3.

Step 6:

Define the extreme points x j = ∑
k j

k=1β jk

∧
x jk., j = 1,2,3 by

means of Balinski
′
s algorithm.

Step 7:

Set k = 1.

Step 8:

Calculate z jk − c jk = CBB−1P jk − c jk and proceed to
Step 9.

Step 9:

If
∗
z jk −

∗
c jk ≤ 0, proceed to Step 10; otherwise, the optimal

solution is obtained, proceed to Step 15.

Step 10:

Specify
∧

X jk related to min {
∗
z jk −

∗
c jk}, then proceed to

Step 11.

Step 11:

B jk related to extreme point
∧

X jk must enter the
solution, then proceed to Step 12.

Step 12:

Define the leaving variable, then proceed to Step 13.

Step 13:

By substituting, the vector related to the leaving variable
with vector B jk

The new basis is settled.

Step 14:

Set k = k+ 1, proceed to Step 8.

Step 15:

If the SLDM obtains the optimal solution, proceed to
Step 19; otherwise, proceed to Step 16.

Step 16:
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Set (x1,x2) = (xF
1 ,x

F
2 ) as the SLDM constraints, then

proceed to Step 17.

Step 17:

The SLDM formulates his problem; proceed to Step 7.

Step 18:

If the TLDM obtains the optimal solution, proceed to Step
21; otherwise, proceed to Step 19.

Step 19:

Set (x1,x2,x3,x4) = (xF
1 ,x

F
2 ,x

S
3,x

S
4) as the TLDM

constraints, then proceed to Step 20.

Step 20:

The TLDM formulates his problem,then proceed to
Step 7.

Step 21:(
xF

1 ,x
F
2 ,x

S
3,x

S
4,x

T
5 ,x

T
6,...,x

T
m

)
is the optimal solution for the

three-level large-scale linear programming problem, then
stop.

7 Numerical Example

[First Level]

Max
x1,x2

F1 (x1,x2 ) = Max
x1,x2

8x1 + 20x2 + x5 + x6 − 24

where x3,x4,x5,x6 solves

[Second Level]

Max
x3,x4

F2 (x3,x4 ) = Max
x3,x4

x1 + 18x3+ 18x4 + 2x5− 2620\

where x5,x6 solves,6,
[Third Level]

Max
x5,x6

F3 (x5,x6 ) = Max
x5,x6

x1 + 2x2 + 18x5+ 14x6 − 16

Subject to

x1 + x2 + x3 + x4 + x5 + x6 ≤ (8,22,25,38),
3x1 + x2 ≤ (18,24,30,40),
4x3 + 2x4 ≤ (6,10,17,20),
x5 + 4x6 ≤ (2,8,12,20),
x1,x2,x3,x4,x5,x6 ≥ 0.

In this example, we solve a (N-TLLSLPP) with
trapezoidal neutrosophic numbers in the constraints. The
order of elements for trapezoidal neutrosophic numbers is
as follows: lower bound, first median value, second
median value and upper bound. The decision makers’
confirmation degree for each trapezoidal neutrosophic
number is (0.9, 0.05, 0.05).

First step:

Because this NLP problem is a maximization problem,
each trapezoidal number will be transformed into its
equivalent crisp number using Eq. (8).

Then, the crisp model of the previous problem is defined
as follows:

[First Level]

Max
x1,x2

F1 (x1,x2 ) = Max
x1,x2

8x1 + 20x2+ x5 + x6 − 24

where x3,x4,x5,x6 solves
[Second Level]

Max
x3,x4

F2 (x3,x4 ) = Max
x3,x4

x1 + 18x3+ 18x4+ 2x5 − 2620\

where x5,x6 solves, 1,086, 0

[Third Level]

Max
x5,x6

F3 (x5,x6 ) = Max
x5,x6

x1 + 2x2 + 18x5+ 14x6 − 16

Subject to
x1 + x2 + x3 + x4 + x5 + x6 ≤ 40,
3x1 + x2 ≤ 36,

4x3 + 2x4 ≤ 16,
x5 + 4x6 ≤ 20,
x1,x2,x3,x4,x5,x6 ≥ 0

First, the FLDM solves his/her problem as follows:
Identify the solution space of each sub-problem

Table 1: The problem divided into sub-problems

Sub-problem 1 Sub-problem 2 Sub-problem 3

3x1 +x2 ≤ 36

x1,x2 ≥ 0

4x3 +2x4 ≤ 16

x3,x4 ≥ 0

x5 +4x6 ≤ 20

x5,x6 ≥ 0

C1 = (8,20)
A1 = (1,1)
∗
X2 = (0,10.5)T

C2 = (0,0)
A2 = (1,1)
X2 = (x3,x4)

C3 = (1,1)
A3 = (1,1)
X3 = (x5,x6)

Second, slack variable x7 is used to convert the common

constraints into the equation, and x8,x9,x10 are artificial

variables

x1 +x2 +x3 +x4 +x5 +x6 +x7 = 40

Iteration 0

XB = (x7,x8,x9,x10)
T

XB = (40,1,1,1)T

CB = (0,−M,−M,−M)
B = 1 B−1 = 1

Iteration 1

For sub-problem 1, where j=1

Z1 −C1 =CBB−1




A1X1

1

0

0


−C1X1 =−8x1 −20x2 −M

Thus, the equivalent linear programming problem is

Minw1 =−8x1 −20x2 −M

Subject to

3x1 +x2 ≤ 36

x1,x2 >= 0
∧
x11 = (0,36)

∗
w1 =−720−M
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For sub-problem 2, where j=2

Z2 −C2 =CBB−1




A2X2

0

1

0


−C2X2 =−M

Thus, the equivalent linear programming problem is

Minw2 =−M

Subject to

4x3 +2x4 ≤ 16

x3,x4 ≥ 0
∧
x21 = (0,0)

∗
w2 =−M

For sub-problem 3, where j=3

Z3 −C3 =CBB−1




A3X3

0

0

1


−C3X3 =−x5 −x6 −M

Thus, the equivalent linear programming problem is

Minw3 =−x5 −x6 −M

Subject to

x5 +4x6 ≤ 20

x5,x6 ≥ 0
∧
x31 = (20,0)w∗

3 =−20−M Define new basic variables

w∗
1 <w∗

2&w∗
1 <w∗

3&w∗
1 < 0, so β 11related to

∧
x11must enter

the basic solution.

After 5 iterations, the FLDM obtains his optimal solution.

(
x1

F
, x2

F
, x3

F
,x4

F
, x5

F
, x6

F
)
= (0,36,0,0,4,0).

Now, set (x1,x2) = (0,36) to the SLDM constraints.

Second, the SLDM solves his/her problem as follows:

MaxF2 = Max
x3,x4

18x3 +18x4 +2x5 −26

Subject to

x3 +x4 +x5 +x6 ≤ 4,

4x3 +2x4 ≤ 16,

x5 +4x6 ≤ 20,

x3,x4,x5,x6 ≥ 0

The SLDM takes the same action as the FLDM until the optimal

solution is obtained
(

x3
S ,x4

S, x5
S , x6

S
)
= (0,4,0,0), . Now,set

(x3,x4) = (0,4) to the TLDM constraints.

Finally, the TLDM solves his/her problem as follows:

MaxF3 = Max
x5,x6

18x5 +14x6 +56

Subject to

x5 +x6 ≤ 0,

x5 +4x6 ≤ 20,

The TLDM takes the same action as the FLDM and SLDM until

he obtains the optimal solution
(

x5
T , x6

T
)
= (0,0).

Thus,
(
x1

F
, x2

F
, x3

S
,x4

S
, x5

T
, x6

T
)
= (0,36,0,4,0,0) is the

optimal solution for the TLLSLPP, whereF1 = 696,F2 = 46 and

F3 = 58.

8 Conclusion

This paper presented a solution algorithm for solving the

(N-TLLSLPP) . The neutrosophic nature of the problem was

transformed into an equivalent crisp model in the first stage of

the solution algorithm to reduce the difficulty. In the second

stage, the decomposition algorithm was used to reach the

optimal solution among conflicted decision levels. Finally, a

numerical example was presented to validate the accuracy of the

suggested solution algorithm.

However, a number of points open to future debate should be

examined and investigated in neutrosophic multi-level linear

optimization:

1.Multi-level large-scale linear decision-making problems

with neutrosophic parameters in both the objective functions

and constraints.

2.Multi-level large-scale linear multi-objective

decision-making problems with neutrosophic parameters in

both the objective functions and constraints and with

integrality conditions.
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