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Abstract: In this paper, we introduce a generalization of the Fuchs-Peres-Brandt (FPB) attack which is the most powerful individual-

photon attack against Bennett-Brassard 1984 (BB84) quantum key distribution protocol. We suppose that Eve sets up her C-NOT gate

with its control-qubit computational basis {|0〉C , |1〉C} given by an α rotation from the BB84 (H −V ) basis.
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1 Introduction

Key distribution is the term applied techniques that allow
two parties to acquire a random bit sequence (the key)
with a high level of confidence that no one else knows or
has significant partial information [1]. The best-known
quantum key distribution (QKD) protocol (BB84) was
published by Bennett and Brassard in 1984 [2], while its
idea goes back to Stephen Wiesner in the 1970’s [3]. In
this protocol, the first party (the sender Alice) sends a
sequence of signals (single-photon pulses) each randomly
chosen from one of the four polarization states of the
horizontal/vertical (H − V ) and ±45◦

diagonal/antidiagonal (D−A) bases. For each signal, the
second party (the receiver Bob) randomly chooses one of
the two measurement devices to perform a measurement.
Alice and Bob announce their polarization bases for each
signal. They discard all events that are detected by Bob
using different bases. Alice randomly chooses a fraction
of all remaining events as test events. For those test
events, she transmits the positions and the corresponding
polarization data to Bob. Bob compares his polarization
data with those of Alice and tells him whether their
polarization for the test events agrees. In case of
agreement, Alice and Bob convert the polarization data of
the remaining set of events into binary form. Such a
generated binary string is their secret key now.

Since then, the BB84 protocol has been implemented
in free space [4] and in optical fibers [5]. Its security has

been analyzed [6, 7], particularly for configurations that
involve non-ideal operating conditions, such as the use of
weak laser pulses instead of single photons [8]. An
eavesdropper (Eve) may try to break the scheme to share
or gain Alice and Bob’s information. For quantum
cryptography, the security of some QKD protocol in the
presence of external noises [9, 10] as well as the
robustness BB84 for distributing a QKD [11] are
investigated. Papers of Fuchs and Peres [12], Slutsky et

al. [13], and Brandt [14] show that the most powerful
individual-photon attack can be accomplished with a
controlled-NOT (C-NOT) gate. In this scheme, Eve
supplies the target qubit to the C-NOT gate, which
entangles it with the BB84 qubit that Alice is sending to
Bob. Eve then makes her measurement of the target qubit
to obtain information on the shared key bit at the expense
of imposing detectable errors between Alice and
Bob [14, 15]. It is shown that single-photon two-qubit
(SPTQ) quantum logic can be used to implement [15]
Fuchs-Peres-Brandt (FPB) entangling probe, in which a
single photon carries two independent qubits: the
polarization and the momentum (or spatial path) states of
the photon [16].

It is interesting to report that, SPTQ gates are
deterministic and can be efficiently implemented using
only linear optical elements [17, 18]. Also, they are
distinct from standard two-photon quantum gates.

Kim et al. [16] use SPTQ logic to implement the FPB
probe as a complete physical simulation of the most
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powerful individual-photon attack on the BB84 protocol,
including physical errors. This is the first experiment on
attacking the BB84 protocol, and its results are consistent
with theoretical predictions. In the paper [16], they regard
that Eve breaks the connection between Alice and Bob by
setting up her C-NOT gate with its control-qubit
computational basis {|0〉C, |1〉C} given by a π

8
rotation

from the BB84 (H −V ) basis. The SPTQ probe could
become a true attack if quantum non-demolition
measurements were available to Eve [8]. The present
paper aims to show how Eve can share Alice and Bob’s
information without making any disturbance of Bob’s
measurements by setting up C-NOT gate of Eve. In Sec.2,
Fuchs-Peres-Brandt (FPB) attack is investigated and
discussion is presented in Sec 3.

2 FPB Attack

In the paper by Kim et al. [16], Eve sets up her C-NOT
gate with its control-qubit computational basis
{|0〉C, |1〉C} given by a π

8
rotation from the BB84 (H −V )

basis. But in this work, we assume that Eve sets up her
C-NOT gate with any rotation angle of α, s.t. π ≥ α ≥ 0,
from the BB84 (H −V) basis, as shown in Fig. 1,

|H〉= cosα|0〉C − sinα|1〉C, (1)

|V 〉= sinα|0〉C + cosα|1〉C, (2)

|D〉= cos(
π

4
−α)|0〉C + sin(

π

4
−α)|1〉C, (3)

|A〉=−sin(
π

4
−α)|0〉C + cos(

π

4
−α)|1〉C. (4)

Fig. 1: Relations between control-qubit computational basis for

Eve’s C-NOT gate and BB84 polarization states

We suppose that Eve prepares her probe qubit to creat
an error probability PE in the initial state

|Tin〉=
1√
2
{(C+ S)|0〉T +(C− S)|1〉T} (5)

where C =
√

1− 2PE,C2 +S2 = 1, and {|0〉T , |1〉T} is the
target qubit’s computational basis.

Now, when Eve applies the C-NOT gate which
entangles with Alice’s photon states, we can get four
possible outputs of the C-NOT gate in the form

|Hout〉 ≡ |H〉|T1〉+ |V〉|TE1〉, (6)

|Vout〉 ≡ |V 〉|T2〉+ |H〉|TE1〉, (7)

|Dout〉 ≡ |D〉|T3〉− |A〉|TE2〉, (8)

|Aout〉 ≡ |A〉|T4〉− |D〉|TE2〉, (9)

where |T1〉, |T2〉, |T3〉, |T4〉, |TE1〉, and |TE2〉 are given by

|T1〉=
1√
2

(

(

C+ S cos2α

)

|0〉T +
(

C− S cos2α

)

|1〉T

)

(10)

|T2〉=
1√
2

(

(

C− S cos2α

)

|0〉T +
(

C+ S cos2α

)

|1〉T

)

(11)

|T3〉=
1√
2

(

(

C+ S sin2α

)

|0〉T +
(

C− S sin2α

)

|1〉T

)

(12)

|T4〉=
1√
2

(

(

C− S sin2α

)

|0〉T +
(

C+ S sin2α

)

|1〉T

)

(13)

|TE1〉=
S√
2

sin2α

(

|0〉T −|1〉T

)

(14)

|TE2〉=
S√
2

cos2α

(

|0〉T −|1〉T

)

(15)

If Eve sets up her C-NOT gate with a rotation α = π

8
from

the (H − V ) basis, she has to wait Alice and Bob’s
comparison for their basis selections over a classical
channel [13] to know exactly which state she has gotten
|H〉 (|V 〉) or |D〉 (|A〉). Whereas, for any rotation angle
α 6= π

8
, using Eqs (6)-(9), Eve can share Alice and Bob in

the same qubits without waiting the comparison will
occur between them for their basis selections, but she can
directly get the share qubits from her measurements using
the distinguishing between |T1〉, |T2〉, |T3〉, and (|T4〉) to
obtain |H〉, |V 〉, |D〉, or (|A〉), respectively. Eve’s
information gain may cause an error whenever Alice and
Bob choose a common basis and Eve’s probe output states
are |TEi〉, where i = 1,2. For instance, if Alice sends Bob
a state |H〉 and Bob uses the (H −V ) basis to measure,
Eq. (6) will show that Alice and Bob get an error event
when the measured output state is |V 〉|TE1〉. The

probability that this will occur is 〈|TE1|TE1〉= S2

2
sin2 2α

Now, we consider two special cases for the rotation
angle α . In the first one, we assume that Eve sets up her
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C-NOT gate in the same direction of the state |H〉
(α = 0). In this case, |TE1〉 = 0, which means that when
Alice sends Bob one of the states |H〉 or |V 〉, Eve can
break their connection to gain the same state, without
making any perturbation for their measurements. Thus,
for the rotation angle α = 0, the probability for Eve to
cause an error event whenever Alice and Bob choose the
basis (H −V ) is zero. To do so, she just distinguishes
between |T1〉 and |T2〉 by performing a projective
measurements along |0〉T and |1〉T , then Eve can correlate
the measurement of |0〉T with |T1〉 and |1〉T with |T2〉.
Hence, Eve needs only to distinguish between |0〉T and
|1〉T which means that she does not need any quantum
memory to measure her probe qubit. Unfortunately, in
this case, we have gotten |T3〉= |T4〉. That means Eve can
not distinguish between the states |D〉 and |A〉 as well as
she makes error event for Alice and Bob if the measured
out state is |A〉|TE2〉 or |D〉|TE2〉, i.e. Eve can not gain any
information when Alice sends Bob using (D− A) basis.
In the second one, Eve sets up her C-NOT gate in the
same direction of the state |D〉 (α = π

4
). In this case, we

get |TE2〉 = 0 which means that Eve can share Alice and
Bob for both states |D〉 and |A〉 without making any error
event for the measurements of Alice and Bob. Eve can
benefit from these two cases by comparing between them.
Eve needs a device to tell her which basis is used by Alice
to send Bob a photon. Then, Eve can define in which
angle (α = 0 or α = π

4
) she needs to set up her C-NOT

gate. If Alice sends Bob using (H −V ) basis, Eve will set
up her C-NOT gate in the same direction of |H〉 (α = 0).
Similarly, if Alice uses (D−A) basis, Eve will set up her
C-NOT gate in the direction of the state |D〉 (α = π

4
).

Here, the most powerful point is that Eve can share Alice
and Bob without making any disturbance, which means
that Alice and Bob do not feel that Eve is eavesdropping.

3 Conclusion

Accordingly, when Eve sets up her C-NOT gate in the
same direction of a basis, she can share Alice and Bob in
qubits of this basis without making any error event for
Bob’s measurements, but she can not get any information
about the other basis.
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