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Abstract: The extended simplest equation method has been employed to obtain optical soliton solutions to the improved Gerdjikov-

Ivanov equation in dense wavelength division multiplexed (DWDM) system for both kerr law and parabolic law nonlinearities. The

procedure reveals new singular soliton solutions, bright soliton solutions, solutions in terms of Jacobi’s elliptic function. Moreover, in

the limiting case of the modulus of ellipticity, new singular and singular-periodic soliton solutions are obtained.
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1 Introduction

The Gerdjikov-Ivanov (GI) model is one of the models
that investigate the dynamics of optical soliton
propagation for transmission technology along with
transcontinental and transoceanic distances, optical fibers,
data transmission across, and telecommunications
industry. This model has been studied for
polarization-preserving fibers along with strategic
algorithms such as modified simple equation scheme, the
csch method, the extended tanh−coth method,
G
′

G2 -expansion method, sine-cosine method, trial and
extended trial equation methods, trial equation integration
architecture, Kudryashov method, extended Kudryashov’s

method, tan( φ(ζ )
2

)-expansion method, and the
exp(−(φ))-expansion method [1–16]. DWDM
technology is an essential feature that needs to be
integrated in fiber-optic communication system [17–22].
This multiplies the information carrying capacity through
these fibers. Thus, parallel transmission of data is possible
across trans-continental and trans-oceanic distances in
just a matter of a few femto-seconds. Only perfecting
DWDM technology can achieve such an engineering
marvel. The extended simplest equation method has been
applied to the extended GI model in DWDM system for

both kerr law and parabolic law nonlinearities which also
improve the model. Strategic singular and bright soliton
solutions are retrieved. Also, solutions in terms of
Jacobi’s elliptic function and, in the limiting case of the
modulus of ellipticity, singular and singular-periodic
soliton solutions have been listed with their respective
existence criteria.

2 Governing model

The Gerdjikov-Ivanov equation [1− 11] is represented as

iψt + aψxx + b |ψ |4 ψ + ieψ2 ψ∗
x = 0. (1)

The first term denotes the temporal evolution of pulses
when the existence of group velocity dispersion is
supplied by the coefficient of a in this quite important
governing model. The complex valued function ψ(x, t)
signifies the wave profile. The coefficient of b is named as
the nonlinear term that signifies quintic nonlinearity. The
existence of a form of dispersive phenomenon is ensured
with the coefficient of e.
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2.1 Kerr law nonlinearity

For Kerr law nonlinearity in DWDM system Eq. (1)
generalizes to

iψ
(l)
t + alψ

(l)
xx + bl|ψ(l)|4ψ(l)+ iel(ψ

(l))2(ψ
(l)
x )∗

+

{

clψ
(l)
xt + dl|ψ(l)|2ψ(l)+

N

∑
n 6=l

αln|ψ(n)|2ψ(l)

}

= 0.
(2)

The coefficients of al and cl correspond to group velocity
dispersion and the spatio-temporal dispersion
respectively. Moreover, the coefficients of dl are indicated
by self-phase modulation while the coefficients of αln

stand for cross-phase modulation effect. The dependent

variable ψ(l)(x, t) represents soliton profile in every single
channel for 1 ≤ l ≤ r and r is the number of channels.

In this subsection we obtain singular soliton solutions,
bright soliton solutions, and solutions in terms of Jacobi’s
elliptic function to Eq.(2) by the extended simplest
equation method [4,5,17,20]. To solve Eq.(2), we use the
following wave transformation.

ψ(l)(x, t) = wl(ζ (x, t))e
iθ(x,t)

, (3)

where ζ represents the amplitude component of the
soliton and θ is the phase component of the soliton that is
described as

ζ (x, t) = k1x−νt, (4)

θ (x, t) =−k2x+ µt + k3. (5)

Here, ν is the velocity of the soliton, k2 is the frequency of
the solitons in each of the two components while w is the
solution wave number and k3 is the phase constant. Putting
(3) along with (4),(5) into (2) we get

− µwl − iνw
′
l − k2

2alwl − 2ialk1k2w
′
l + k2

1alw
′′
l

+ blw
5
l + k2clµwl + iclk1w

′
l + iclk2νw

′
l − k1clνw

′′
l

+ dlw
3
l − k2elw

3
l + ik1elw

2
l w

′
l +

(

N

∑
n 6=l

αlnw2
n

)

wl = 0, (6)

The Balancing principle leads to
wn = wl .

Breaking down into real and imaginary parts we get

(−µ − k2
2al + k2cl µ)wl + blw

5
l +(k2

1al − k1clν)w
′′
l

+(dl − k2el +αl)w3
l = 0, (7)

(−ν − 2alk1k2 + k1clµ + k2clν + k1elw
2
l )w

2
l = 0, (8)

from (8) the velocity of the soliton solution is

ν =
2alk1k2 − k1clµ

k2cl − 1
, (9)

and we obtain the conditions k2cl − 1 6= 0 and el = 0.

Balancing w
′′
l with w5

l in equation (7) gives N = 1
2

Since

N is not integer we set wl =
√

ϕl . Substituting into (7)
and multiplying by 4ϕl

√
ϕl we get

4(−µ −k2
2al +k2cl µ)ϕ

2
l +4blϕ

4
l (10)

+
2k2

1c2
l µ −2k2

1al −2k2
1k2alcl

k2cl −1
ϕlϕ

′′
l

− k2
1c2

l µ −k2
1al −k2

1k2alcl

k2cl −1
(ϕ

′
l )

2

+4(dl −k2el +αl)ϕ3
l = 0.

Balancing ϕlϕ
′′
l with ϕ4 gives N = 1.

2.2 The Application

The following assumption is made to retrieve singular
soliton solutions, bright soliton solutions, and solutions in
terms of Jacobi’s elliptic function to Eq.(10) using the
extended simplest equation method.

ϕl =
N

∑
i=0

A
(l)
i ui

, (11)

where

(u
′
)2 = Γ (u) =

Θ(u)

ϒ (u)
=

∑τ
i=0 λiu

i

∑
ρ
i=0 χiui

, (12)

with λi, χi, A
(l)
i are constants, λτ , χρ , A

(l)
N are non-zero,

and Θ(u),ϒ (u) are polynomials of u. We derive the terms

(ϕ
′
l )

2 and ϕ
′′
l from Eq. (11) and Eq. (12) as

(ϕ
′
l )

2 =
Θ(u)

ϒ (u)

(

N

∑
i=0

iA
(l)
i ui−1

)2

, (13)

and

ϕ
′′
l =

Θ
′
(u)ϒ (u)−Θ(u)ϒ

′
(u)

2ϒ (u)2

(

N

∑
i=0

iA
(l)
i ui−1

)

+
Θ(u)

ϒ (u)

(

N

∑
i=0

i(i− 1)A
(l)
i ui−2

)

. (14)

Equation (12) can be formulated as

±(ζ − ζ0) =

∫

du
√

Γ (u)
=

∫

√

ϒ (u)

Θ(u)
du. (15)

The balancing principle applied to (10) implies

τ = ρ + 2N + 2, (16)
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setting N = 1 and ρ = 0 we get τ = 4. Thus, from (11) we
have

ϕl = A
(l)
0 +A

(l)
1 u, (17)

(ϕ
′
l )

2 =
(A

(l)
1 )2 ∑4

i=0 λiu
i

χ0

, (18)

ϕ
′′
l =

A
(l)
1 ∑4

i=0 iλiu
i−1

2χ0

, (19)

where λ4 6= 0 and χ0 6= 0. Substituting Eqs. (17)− (19)
into Eq. (10), we obtain a system of algebraic equations.
Solving the system, we get:

λ0 = λ0, λ1 = λ1, A
(l)
0 = A

(l)
0 , A

(l)
1 = A

(l)
1 , χ0 = χ0

λ2 =
R1

2k2
1((A

(l)
0 )4blc

2
l − (A

(l)
0 )2al +(4A

(l)
0 )3c2

l (dl − k2el +αl))
,

λ3 =
R2

(6A
(l)
0 k2

1((A
(l)
0 )3blc

2
l −A

(l)
0 al +(A

(l)
0 )2c2

l (dl − k2el +αl))
,

λ4 =
R3

3k2
1((A

(l)
0 )4blc

2
l − (A

(l)
0 )2al +(A

(l)
0 )3c2

l (dl − k2el +αl))
,

µ =
R4

4χ0(A
(l)
0 )2c2

l k2
2 −8χ0(A

(l)
0 )2cl k2 +4χ0(A

(l)
0 )2 +λ1A

(l)
0 A

(l)
1 c2

l k2
1 −λ0(A

(l)
1 )2c2

l k2
1

.

Where

R1 =8(A
(l)
0 )4bl χ0 +4(A

(l)
0 )3χ0(dl − k2el +αl)

+2(A
(l)
1 )2λ0al k

2
1 +8(A

(l)
0 )4bl cl χ0k2(clk2 +2)

−2A
(l)
0 A

(l)
1 λ1al k

2
1(1+2(A

(l)
0 )2a−1

l bl c
2
l )

+4(A
(l)
0 )3c2

l χ0k2
2(dl − k2el −2c−1

l k−1
2 +αl(1−2c−1

l k−1
2 ))

−3A
(l)
0 (A

(l)
1 )2λ0c2

l k2
1(dl − k2el +αl)

+3(A
(l)
0 )2A

(l)
1 λ1c2

l k2
1(dl − k2el +αl)−4(A

(l)
0 )2(A

(l)
1 )2λ0bl c

2
l k2

1,

R2 =(3A
(l)
1 dl − k2el +3A

(l)
1 αl +8A

(l)
0 A

(l)
1 bl)(4χ0(A

(l)
0 )2c2

l k2
2

−8χ0(A
(l)
0 )2clk2 +4χ0(A

(l)
0 )2 +λ1A

(l)
0 A

(l)
1 c2

l k2
1 −λ0(A

(l)
1 )2c2

l k2
1),

R3 =(A
(l)
1 )2bl(4χ0(A

(l)
0 )2c2

l k2
2 −8χ0(A

(l)
0 )2cl k2 +4χ0(A

(l)
0 )2

+λ1A
(l)
0 A

(l)
1 c2

l k2
1 −λ0(A

(l)
1 )2c2

l k2
1),

R4 =(4(A
(l)
0 )4bl χ0 −4(A

(l)
0 )2al χ0k2

2)(1− clk2)

+4(A
(l)
0 )3χ0(dl − k2el − cl dl k2 +(1− cl k2)αl)

− ((A
(l)
1 )2λ0al k

2
1 −A

(l)
0 A

(l)
1 λ1al k

2
1)(1+ clk2).

Substituting into (12) and (15), we get

±(ζ − ζ0) = Q

∫

du
√

Γ (u)
, (20)

where Q =
√

χ0

λ4
, Γ (u) = ∑4

i=0
λi

λ4
ui.

Therefore the traveling wave solutions to Eq.(2) are:
When Γ (u) = (u−ϑ1)

4

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 ± A

(l)
1 Q

k1x−(
2alk1k2−k1cl µ

k2cl−1 )t−ζ0

× ei(−k2x+µt+k3),

(21)

When Γ (u) = (u−ϑ1)
3(u−ϑ2), and ϑ2 > ϑ1

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 +

4A
(l)
1 Q2(ϑ2−ϑ1)

4Q2−M2 × ei(−k2x+µt+k3),

(22)
When (u−ϑ1)

2(u−ϑ2)
2

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ j +

(−1) j+1A
(l)
1 (ϑ1−ϑ2)

exp(M
Q )−1

× ei(−k2x+µt+k3),

(23)

where M = (ϑ1 −ϑ2)(k1x− ( 2alk1k2−k1cl µ
k2cl−1

)t −ζ0), and j =

1,2. When Γ =(u−ϑ1)
2(u−ϑ2)(u−ϑ3), and ϑ1 >ϑ2 >

ϑ3

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 − 2A

(l)
1 (ϑ1−ϑ2)(ϑ1−ϑ3)

2ϑ1−ϑ2−ϑ3+(ϑ3−ϑ2)cosh(Y1)
× ei(−k2x+µt+k3),

(24)

where Y1 =
k1

√
(ϑ1−ϑ2)(ϑ1−ϑ3)

Q
(k1x− ( 2alk1k2−k1cl µ

k2cl−1
)t).

When Γ = (u−ϑ1)(u−ϑ2)(u−ϑ3)(u−ϑ4), and ϑ1 >

ϑ2 > ϑ3 > ϑ4

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ2 +

A
(l)
1 (ϑ1−ϑ2)(ϑ4−ϑ2)

ϑ4−ϑ2+(ϑ1−ϑ4)sn2(Y2)
× ei(−k2x+µt+k3),

(25)
where

Y2 =

[

±
√

(ϑ1−ϑ3)(ϑ2−ϑ4)

2Q
(k1x− ( 2alk1k2−k1cl µ

k2cl−1
)t − ζ0),m

]

and m2 = (ϑ2−ϑ3)(ϑ1−ϑ4)
(ϑ1−ϑ3)(ϑ2−ϑ4)

.

Note that ϑi, i = 1, ...,4 are the roots of Γ (u) = 0.

When A
(l)
0 =−A

(l)
1 ϑ1 and ζ0 = 0, the solutions (21)−

(25) are reduced to the following plane wave solutions

ψ(l)(x, t) =

√

√

√

√± A
(l)
1 Q

k1x− ( 2alk1k2−k1cl µ
k2cl−1

)t
× ei(−k2x+µt+k3),

(26)

ψ(l)(x, t) =

√

√

√

√

4A
(l)
1 Q2(ϑ2 −ϑ1)

4Q2 −M2
0

× ei(−k2x+µt+k3), (27)

singular soliton solutions

ψ(l)(x, t) =

√

A
(l)
1 (ϑ2 −ϑ1)

2
(1∓coth(

M0

2Q
))×ei(−k2x+µt+k3),

(28)

and bright soliton solutions

ψ(l)(x, t) =

√

(

D

C+ cosh(B(k1x− 2a1k1k2t))

)

×ei(−k2x+µt+k3),

(29)

where M0 = (ϑ1 − ϑ2)(k1x − ( 2alk1k2−k1cl µ
k2cl−1

)t),

D =
2A

(l)
1 (ϑ1−ϑ2)(ϑ1−ϑ3)

(ϑ3−ϑ2)
,

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


904 S. M. Hassan, A. A. Altwaty: Optical solitons of the extended Gerdjikov ...

B =
k1

√
(ϑ1−ϑ2)(ϑ1−ϑ3)

Q
, and C = 2ϑ1−ϑ2−ϑ3

ϑ3−ϑ2
.

The amplitude of the soliton is given by D where the
inverse width of the soliton is given by B. The solitons

will exist for A
(l)
1 < 0. Furthermore, when A

(l)
0 = −A

(l)
1

and ζ0 = 0, Jacobi’s elliptic function solution (25) is
written as

ψ(l)(x, t) =

√

(

D1

C1 + sn2(B jS)

)

× ei(−k2x+µt+k3), (30)

where

D1 =
A
(l)
1 (ϑ1 −ϑ2)(ϑ4 −ϑ2)

(ϑ1 −ϑ4)
,

B j =
(−1) jk1

√

(ϑ1 −ϑ3)(ϑ2 −ϑ4)

2Q
,

C1 =
2ϑ4 −ϑ2

ϑ1 −ϑ4
,

S = (k1x− (
2alk1k2 −k1cl µ

k2cl −1
)t),

(ϑ2 −ϑ3)(ϑ1 −ϑ4)

(ϑ1 −ϑ3)(ϑ2 −ϑ4)
, j = 1,2.

Remark-1: When the modulus m → 1, singular optical
soliton solutions are obtained as

ψ(l)(x, t) =

√

√

√

√

(

D1

C1 + tanh2(B j(k1x− ( 2alk1k2−k1cl µ
k2cl−1

)t))

)

×ei(−k2x+µt+k3),

(31)

where ϑ3 = ϑ4.

Remark-2: When the modulus m → 0,
singular-periodic solutions are obtained as

ψ(l)(x, t) =

√

√

√

√

(

D1

C1 + sin2(B j(k1x− ( 2alk1k2−k1cl µ
k2cl−1

)t))

)

×ei(−k2x+µt+k3),

(32)

where ϑ2 = ϑ3.

2.3 Parabolic law nonlinearity

This law, known also as the cubic-quintic nonlinearity,
arises in the nonlinear interaction between Langmuir
waves and electrons. It describes the nonlinear interaction
between the high frequency Langmuir waves and the ion
acoustic waves by pondermotive forces. For parabolic law

nonlinearity DWDM system, Eq. (1) generalizes to

iψ
(l)
t + alψ

(l)
xx + bl|ψ(l)|4ψ(l)+ iel(ψ

(l))2(ψ
(l)
x )∗

+

{

clψ
(l)
xt +δl |ψ(l)|4ψ(l)+(dl+

N

∑
n 6=l

γln|ψ(n)|2)|ψ(l)|2ψ(l)+

N

∑
n 6=l

(αln +βln|ψ(n)|2)|ψ(n)|2ψ(l)

}

= 0. (33)

The coefficients of al and cl correspond to group velocity
dispersion and the spatio-temporal dispersion
respectively. Moreover, the coefficients of dl and δln are
indicated by self-phase modulation while the coefficients
of γln, αln, and βln stand for cross-phase modulation

effect. The dependent variable ψ(l)(x, t) represents soliton
profile in every single channel for 1 ≤ l ≤ r, r ∈ [1,∞).
Substituting, (3) along with (4),(5) into (33), gives the
same imaginary part as given by (7) and so the speed will
be same as (9). However, the real part of equation (33) is

(−µ − k2
2al + k2clµ)wl +(bl + δl +(βl + γl))w

5
l

+(k2
1al − k1clν)w

′′
l + 4(dl − k2el +αl)w3

l = 0, (34)

Balancing w
′′
l with w5

l in equation (34) gives N = 1
2
. Since

N is unreal, we set wl =
√

ϕl . Substituting into (34) and
multiplying by 4ϕl

√
ϕl we get

4(−µ − k2
2al + k2cl µ)ϕ

2
l +4(bl +δl +(βl + γl))ϕ

4
l

+
2k2

1c2
l µ −2k2

1al −2k2
1k2al cl

k2cl −1
ϕlϕ

′′
l − k2

1c2
l µ − k2

1al − k2
1k2al cl

k2cl −1
(ϕ

′
l )

2

+4(dl − k2el +αl)ϕ3
l = 0, (35)

Balancing ϕlϕ
′′
l with ϕ4 gives N = 1.

2.4 The Application

We will apply the extended simplest equation method to
Eq.(34) to retrieve singular soliton solutions, bright
soliton solutions, and solutions in terms of Jacobi’s
elliptic function. The balancing principle applied to (34)
implies

τ = ρ + 2N + 2, (36)

setting N = 1 and ρ = 0 we get τ = 4. Hence, from (11)
we have

ϕl = A
(l)
0 +A

(l)
1 u, (37)

where A
(l)
0 and A

(l)
1 are constants to be defined later such

that A
(l)
1 6= 0 and u satisfies Eq.(12) Substituting Eq. (37)

into Eq. (35), we obtain a system of algebraic equations.
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Solving the system, we get:

λ0 =λ0, λ1 = λ1, A
(l)
0 = A

(l)
0 , A

(l)
1 = A

(l)
1 , χ0 = χ0

λ2 =
R1

2k2
1((A

(l)
0 )4(bl +δl)c2

l − (A
(l)
0 )2al +(A

(l)
0 )3c2

l (dl − k2el +αl))
,

λ3 =
R2

(6A
(l)
0 k2

1((A
(l)
0 )3(bl +δl +(βl + γl))c2

l −A
(l)
0 al +(A

(l)
0 )2c2

l (dl − k2el +αl))
,

λ4 =
R3

3k2
1((A

(l)
0 )4(bl +δl +(βl + γl))c2

l − (A
(l)
0 )2al +(A

(l)
0 )3c2

l (dl − k2el +αl))
,

µ =
R4

4χ0(A
(l)
0 )2c2

l k2
2 −8χ0(A

(l)
0 )2cl k2 +4χ0(A

(l)
0 )2 +λ1A

(l)
0 A

(l)
1 c2

l k2
1 −λ0(A

(l)
1 )2c2

l k2
1

.

Where

R1 =8(A
(l)
0 )4(bl +δl +(βl + γl))χ0 +4(A

(l)
0 )3χ0(dl − k2el +αl)

+2(A
(l)
1 )2λ0al k

2
1 +8(A

(l)
0 )4(bl +δl +(βl + γl))cl χ0k2(clk2 +2)

−2A
(l)
0 A

(l)
1 λ1al k

2
1(1+2(A

(l)
0 )2a−1

l (bl +δl +(βl + γln))c
2
l )

+4(A
(l)
0 )3c2

l χ0k2
2(dl − k2el −2c−1

l k−1
2 +αl(1−2c−1

l k−1
2 ))

−3A
(l)
0 (A

(l)
1 )2λ0c2

l k2
1(dl +−k2el αl)+3(A

(l)
0 )2A

(l)
1 λ1c2

l k2
1(dl − k2el +αl)

−4(A
(l)
0 )2(A

(l)
1 )2λ0(bl +δl +(βl + γl))c

2
l k2

1 ,

R2 =3A
(l)
1 (bl +δl +(βl + γl))+3A

(l)
1 αl +8A

(l)
0 A

(l)
1 (bl +δl +(βl + γl))

(4χ0(A
(l)
0 )2c2

l k2
2 −8χ0(A

(l)
0 )2cl k2 +4χ0(A

(l)
0 )2 +λ1A

(l)
0 A

(l)
1 c2

l k2
1

−λ0(A
(l)
1 )2c2

l k2
1,

R3 =(A
(l)
1 )2(bl +δl +(βl + γl))(4χ0(A

(l)
0 )2c2

l k2
2 −8χ0(A

(l)
0 )2clk2

+4χ0(A
(l)
0 )2 +λ1A

(l)
0 A

(l)
1 c2

l k2
1 −λ0(A

(l)
1 )2c2

l k2
1),

R4 =(4(A
(l)
0 )4(bl +δl +(βln + γl))χ0 −4(A

(l)
0 )2al χ0k2

2)(1− clk2)

+4(A
(l)
0 )3χ0(dl − cl dl k2 − k2

2el cl +(1− clk2)αl)

− ((A
(l)
1 )2λ0al k

2
1 −A

(l)
0 A

(l)
1 λ1al k

2
1)(1+ clk2).

Substituting into (12) and (15), we get

±(ζ − ζ0) = Q

∫

du
√

Γ (u)
, (38)

where Q =
√

χ0

∑4
i=0 λi

, Γ (u) = ∑4
i=0 ui.

Therefore the traveling wave solutions to Eq.(33) are:
When Γ (u) = (u−ϑ1)

4

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 ± A

(l)
1 Q

k1x−(
2alk1k2−k1cl µ

k2cl−1
)t−ζ0

× ei(−k2x+µt+k3),

(39)

When Γ (u) = (u−ϑ1)
3(u−ϑ2), and ϑ2 > ϑ1

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 +

4A
(l)
1 Q2(ϑ2 −ϑ1)

4Q2 −M2

×ei(−k2x+µt+k3),

(40)

When (u−ϑ1)
2(u−ϑ2)

2

ψ(l)(x, t) =

√

√

√

√A
(l)
0 +A

(l)
1 ϑ j +

(−1) j+1A
(l)
1 (ϑ1 −ϑ2)

exp(M
Q
)− 1

×ei(−k2x+µt+k3),

(41)

where j = 1,2.
When Γ = (u−ϑ1)

2(u−ϑ2)(u−ϑ3), and ϑ1 > ϑ2 > ϑ3

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ1 − 2A

(l)
1 (ϑ1−ϑ2)(ϑ1−ϑ3)

2ϑ1−ϑ2−ϑ3+(ϑ3−ϑ2)cosh(Y1)
× ei(−k2x+µt+k3),

(42)

where Y1 =
k1

√
(ϑ1−ϑ2)(ϑ1−ϑ3)

Q
(k1x− ( 2alk1k2−k1cl µ

k2cl−1
)t

When Γ = (u − ϑ1)(u − ϑ2)(u − ϑ3)(u − ϑ4), and
ϑ1 > ϑ2 > ϑ3 > ϑ4

ψ(l)(x, t) =

√

A
(l)
0 +A

(l)
1 ϑ2 +

A
(l)
1 (ϑ1 −ϑ2)(ϑ4 −ϑ2)

ϑ4 −ϑ2 +(ϑ1 −ϑ4)sn2(Y2)

×ei(−k2x+µt+k3),

(43)

where Y2 =
[

±
√

(ϑ1−ϑ3)(ϑ2−ϑ4)

2Q
(k1x− ( 2alk1k2−k1cl µ

k2cl−1
)t − ζ0),m

]

, and

m2 = (ϑ2−ϑ3)(ϑ1−ϑ4)
(ϑ1−ϑ3)(ϑ2−ϑ4)

.

Note that ϑi, i = 1, ...,4 are the roots of Γ (u) = 0.

When A
(l)
0 = −A

(l)
1 ϑ1 and ζ0 = 0, the solutions (39)−

(42) are reduced to the following plane wave solutions

ψ(l)(x, t) =

√

√

√

√± A
(l)
1 Q

k1x− ( 2alk1k2−k1cl µ
k2cl−1

)t
× ei(−k2x+µt+k3),

(44)

ψ(l)(x, t) =

√

√

√

√

4A
(l)
1 Q2(ϑ2 −ϑ1)

4Q2 −M2
0

× ei(−k2x+µt+k3), (45)

singular soliton solutions

ψ(l)(x, t) =

√

A
(l)
1 (ϑ2 −ϑ1)

2
(1∓ coth(

M0

2Q
))

×ei(−k2x+µt+k3),

(46)

and bright soliton solutions

ψ(l)(x, t) =

√

(

D

C+ cosh(B(k1x− 2a1k1k2t))

)

×ei(−k2x+µt+k3),

(47)

where D =
2A

(l)
1 (ϑ1−ϑ2)(ϑ1−ϑ3)

(ϑ3−ϑ2)
, B =

k1

√
(ϑ1−ϑ2)(ϑ1−ϑ3)

Q
,

and C = 2ϑ1−ϑ2−ϑ3
ϑ3−ϑ2

.

The amplitude of the soliton is given by D where the
inverse width of the soliton is given by B. The solitons
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will exist for A
(l)
1 < 0. Furthermore, when A

(l)
0 =−A

(l)
1 and

ζ0 = 0, Jacobi’s elliptic function solution (43) is written as

ψ(l)(x, t) =

√

(

D1

C1 + sn2(B jS)

)

×ei(−k2x+µt+k3),

(48)

where

D1 =
A
(l)
1 (ϑ1 −ϑ2)(ϑ4 −ϑ2)

(ϑ1 −ϑ4)
,

B j =
(−1) jk1

√

(ϑ1 −ϑ3)(ϑ2 −ϑ4)

2Q
,

C1 =
2ϑ4 −ϑ2

ϑ1 −ϑ4

,and j = 1,2.

Remark-1: When the modulus m→ 1, singular optical
soliton solutions are obtained as

ψ(l)(x, t) =

√

√

√

√

(

D1

C1+tanh2(B j(k1x−(
2alk1k2−k1cl µ

k2cl−1
)t))

)

× ei(−k2x+µt+k3),

(49)
where ϑ3 = ϑ4.

Remark-2: When the modulus m → 0,
singular-periodic solutions are obtained as

ψ(l)(x, t) =

√

√

√

√

(

D1

C1+sin2(B j(k1x−(
2alk1k2−k1cl µ

k2cl−1
)t))

)

× ei(−k2x+µt+k3),

(50)
where ϑ2 = ϑ3.

3 Results and Discussion

The Gerdjikov-Ivanov equation has been improved in
DWDM for kerr law and parabolic law nonlinearities and
considered on account of acquiring optical soliton
solutions. New singular soliton and bright soliton
solutions were presented by applying the extended
simplest equation method. New singular and
singular-periodic soliton solutions were emerged using
the limiting of the modulus of ellipticity of the Jacobi’s
elliptic function.
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