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Abstract: Network Intrusion Detection System (NIDS) is a hardware or software application that allows computer networks to detect,

recognize and avoid the harmful activities, which attempt to compromise the integrity, privacy or accessibility of computer network.

Two detection techniques are used by the NIDSs, namely, the signature-based and anomaly-based. Signature-based intrusion detection

depends on the detection of the signature of the known attacks. On the other hand, the anomaly-based intrusion detection depends on

the detection of anomalous behaviours in the networks. Snort is an open source signature-based NIDS and can be used effectively to

detect and prevent the known network attacks. It uses a set of predefined signatures (rules) to trigger an alert if any network packet

matches one of its rules. However, it fails to detect new attacks that do not have signatures in its predefined rules. Thus, it requires

constant update of its rules to detect new attacks. To overcome this deficiency, the present paper recommends using Danger Theory

concepts inspired from biological immune system with a machine learning algorithm to automatically create new Snort rules, which

can detect new attacks. Snort NIDS as a software as a Service (NIDSaaS) in cloud computing has been suggested. Experimental results

showed that the proposed modifications of the Snort improved its ability to detect the new attacks.
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1 Introduction

Currently, the daily life dramatically relies on the
complicated computer networks, which have been
established for businesses, social media and governments.
The computer networks, related to technology such as
cloud computing, are the backbone of several applications
and services that are needed in all our modern life
activities. As regard cyber-security, these computer
networks are more vulnerable than before and the modern
attackers are more organised and have time, capability
and funds to create the attacks that could not be detected
even by secure networks [1–3]. Traditional methods,
including data encryption techniques, user authentication
mechanisms, and firewalls, cannot provide effective
protection. Hence, the NIDS should be used to guard
computer networks security [4]. NIDSs are based on two
detection techniques; signature-based detection and
anomaly-based detection [5]. The signature-based NIDS
has signatures database of all known attacks. It observes
the network packets. If there are any packets that
resemble the existing signatures of the database, the
system will release an attack alarm [6]. Signature-based

NIDS has high accuracy and low rate of missing detection
for known attacks. On the other hand, for unknown
attacks not included in the signatures database, the
signature-based NIDS has low accuracy and high rate of
missing detection. The security administrator should
always keep the signature database up-to-date [7].

The anomaly-based NIDS generates patterns of the
behaviour of unpenetrated networks, i.e. normal profiles.
These profiles are used to detect patterns that significantly
deviate from them. These deviations may be actual
intrusions or new behaviour that need to be added to the
normal profiles [8]. One of the advantages of
anomaly-based NIDS is its ability to detect new attacks.
On the other hand, systems based on this technique has a
high rate of false alarms [9].

Snort is one of the most prevalent and actively
evolving open-source signature-based NIDS that uses a
set of signatures known as Snort’s rules, which are
frequently updated on the Snort website [10]. Despite the
Snort’s efficiency in detection of known attacks, it suffers
in detecting new attacks.
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Negative Selection Algorithm (NSA) is one of the
main algorithms of Artificial Immune System (AIS),
which is inspired by the biological immune system (BIS).
The NSA is a substantial detector generation algorithm, it
mimics the immune tolerance in the T-cell maturation
operation of the BIS, and achieves effective
discrimination of nonself antigens by deleting
self-reactive candidate detectors. Because it effectively
distinguishes between self and non-self patterns, the NSA
is widely used in the field of anomaly detection and
computer security [11].

The Clonal Selection Algorithm (CSA) is an immune
system inspired algorithm that simulates the basic
response of the adaptive immune system. The CSA
inspires the principles of the adaptive immune system,
such as mutation and clones’ reselection. The basic idea
of the CSA is that it reproduces only the detectors capable
of detecting an antigen. The main objective of the CSA is
to evolve the memory set of detectors that represents a
solution of a problem [12].

Elshafie et al. [6, 13] used both NSA and CSA to
improve the efficiency of Snort through increasing its
ability to detect new attacks.

This paper expands our previous work in many
significant ways. In addition to using the NSA and the
CSA in the improved Snort intrusion detection technique,
the concepts of danger theory and some machine learning
algorithms are used to enhance the performance of
detectors set. Then, they are used to automatically
generate new Snort’s rules. Finally cloud computing is
used to improve the performance of the Snort NIDS.

The rest of this paper is organized as follows: Section
2 addresses the previous pieces of literature. Section 3
presents the theoretical background. In section 4, the
proposed model is introduced with details. Section 5
shows experimental results to validate the effectiveness of
the proposed improvement. Conclusion and future work
are presented in Section 6.

2 Related Works

Several studies addressed enhancing the performance of
Snort NIDS. Aickelin et al. [10] developed the Snort by
generalising rules to recognise new attacks. The classic
rule learning operators, such as generalisation and
specialisation, were used to release and vary the
conditions and parameters of current Snort rules. The
experimental results using KDD cup99 dataset showed
the effectiveness of this proposed approach to detect
variants of various attacks depending on the processing
time and the false rate alarm.

Muthuregunathan et al. [14] proposed a parallel
clustering technique followed by usage of evolutionary
computing comprising of Genetic Algorithm (GA) and
Hill Climbing algorithm to optimize the clusters formed.
The proposed technique was specifically developed to
generate rule set of Snort NIDS efficiently. To accomplish

the parallel computing task, the authors used Grid. The
obtained results using KDD cup99 dataset showed that
careful selection of fitness function could improve the
efficiency of rule set generation depending on the true
positive and false positive rate.

Fallahi et al. [15] suggested an approach to generate
the rules automatically using the logs of performed
attacks. The suggested approach has been implemented
using two data mining algorithms called Ripper and C5.0.
According to the obtained results using the ISCX 2012
dataset showed that the performance of Snort NIDS
improved using automatic rule generation depending on
four metrics: the false positive rate, recall, precision and
F-Measure.

Guruprasad and D’Souza [16] suggested using the
evolutionary approach to automate the Snort’s rules
generation. DARPA 1999, ISCX 2012 and ICMP network
packets were used to test the efficiency of the generated
rules in detecting attacks. The conducted experimental
results showed that the proposed approach detected
attacks with a high detection rate based on the average
and the best fitness values.

Silalahi et al. [17] presented a signature-generating
technique using the honeypot and signature generator.
They used Polygraph to generate signatures because it can
detect polymorphic worm. The attack data from honeypot
was transformed into a rule that could be used by the
Snort NIDS. The proposed approach could generate Snort
rule for Apache Knacker and similar worms, which were
generated from the worm generator made by the author.

Mahfouz et al. [18] presented a comprehensive
analysis of some existing machine learning classifiers
concerning determination intrusions in network traffic.
They analysed the used classifiers along various
dimensions, such as feature selection, sensitivity to hyper
parameter selection, and class imbalance problems that
are inherent to intrusion detection. The authors conducted
experiments to evaluate the effectiveness of these
classifiers using NSL-KDD dataset. Accuracy, true
positive rate (TPR), true negative rate (TNR), recall,
Precision, F-measure and Receiver Operating
Characteristic (ROC) curves were used to evaluate the
proposed model.

Sengaphay et al. [19] proposed a procedure to
improve the Snort’s rules for behaviour detection in
private cloud using multi-sensors. They showed that each
sensor would be installed in the private cloud and work in
accordance with snort-IDS rules installed in their own
selves. If any sensor detects intrusion behaviour, the alert
data will be sent to the alert event database. The
MIT-DAPRA 1999 and Nmap datasets are used to
evaluate the detection performance of the proposed
procedure. The obtained experimental results based on
the number of detections showed that the proposed
multi-sensors cooperated with the proposed snort-IDS
rules could detect 51 cases of intrusion behaviours.

Hassan et al. [20] used Snort rules to detect
Distributed Denial of Service (DDoS) attacks in cloud
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computing and remote control systems. They tested how
Snort rules can detect DoS attacks and discussed some
other existing techniques used for detecting DoS and
DDoS. The Graphical Network Simulator-3 (GNS3) was
used to develop virtual background for network topology
to simulate a distributed nature of the DDoS attack. The
performance measurements of the proposed work were
accomplished by measuring the system resource
consumption at different time interval.

3 Theoretical Background

3.1 Snort

Snort is the popular open-source signature-based NIDS. It
represents signatures network attacks data as string
patterns. Snort stores these signatures in a database in the
form of rules, one for every known attack. This ruleset is
updated when new attacks are discovered [21]. The
lightweight description language is used to write the
Snort rules. Each rule consists of two sections: a header
section and an options section. The header section
specifies the protocol, the source, and the destination of a
network packet for which the rule is written and the type
of action is to be taken if the rule is matched. Enclosed in
parentheses, the options section of a rule is written in the
next of the header section and consists of one or more
keywords, and some of them may accept a value. The
semicolon is used to separate the rule options, whereas
the colon is used to separate the rule option keywords
from its argument.

The four main categories of rule options are classified,
as follows: General: supply the rule’s information and do

not cause any impact during detection.

Payload: look for data inside the packet’s payload.

Non-payload: look for non-payload data.

Post-detection: specify the rule’s specific triggers that
will be released when the rule match any packet. Figure 1
describes the structure of the Snort’s rules [22, 23].

3.2 Danger Theory

Because of the similarity between the NIDS and the BIS,
the immune theory is a good inspiration of network
intrusion detection system. They seek to identify normal
things and eliminate abnormal things. In the immune
system, the antibodies detect abnormal cells. Hence, the
NSA is the key to build the NIDS based on the AIS [24].
The NSA creates a set of self-strings that define the
normal state of the monitored network. Then, it generates
a set of detectors that only distinguish nonself strings.
This detector set is used to monitor the suspicious
changes of the traffics in the network to classify them as
self or non-self [25].

Fig. 1: Snort rule structure

The Danger Theory (DT) was introduced to overcome
the limitations of the NSA. It is used to improve the
performance of the NSA to achieve better detection rates
by integrating the basic danger concepts. The DT
principle is the immune system response. It proposes the
conditions for triggering the immune response when there
is a danger not a suspicious element. In other words, the
immune system does not react against the self, unless it is
harmful, as it should react against non-self, unless it is
harmless [26]. Neither all self nor all non-self is danger,
as illustrated in Figure 2.

The NIDS which uses the DT technique aims to detect
the signals created in the early stages of an intrusion and
to use them as triggers for the activation of defensive
response and healing algorithms [27].

The danger model is different from the negative
selection model which detects non-self-antigens or
pathogenic molecules. The danger model detects the
existence of danger signals, released as a result of
necrotic cell death within the organism. The DT consists
of active suppression with the natural death of the cells
(apoptosis), combined with rapid activation when the
cells have undergone a pathological death (necrosis) [28].
The Dendritic Cell (DC) is the crime-scene inspector of
the natural immune system, i.e. it walks around the tissue
for evidence of damage (signals), and for probable
suspicious cause of this damage (antigen) [29]. Each DC
is able to collect the relative proportions of input signals
to produce its set of output signals. There are three types
of input signals:

1. Pathogenic Associated Molecular Patterns (PAMP):
The PAMP usually indicates an anomalous situation.

2. Danger signal: corresponding to the necrosis process
when cells undergo a pathological death. The presence of
danger signal indicates that the probability of an anomaly
is higher than that in normal situations.

3. Safe signals: corresponding to the apoptosis process,
when natural death of the cells, that means there is no bad
behaviour. The presence of safe signal indicates that no
anomalies are present [28].

In the context of a NIDS, the DT is used in two
manners: The first is to generate and manage the three
types of signals which define the state of the network, and
the second manner is to improve the detector generation
process using the Dendritic Cell Algorithm (DCA) [30].
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Fig. 2: The relationship between self, non-self and danger

The DCA is a detectors generation process. For each
generation, dendritic cells present a set of fixed size
elements, randomly chosen from the whole antigen with
the corresponding context. According to the context of
the presented element, a number of operations will be
established to allow the memory detectors population to
detect intrusive elements. If the element’s context is
dangerous, the algorithm checks whether this element is
detectable by the memory detectors population. Thus,
only this protein will be deleted from the set of
introduced elements. If dangerous element is not
detectable by the memory detectors population, the
algorithm checks in the population of mature detectors if
there exists a detector that can detect this element. If such
detector exists, it will be added to the memory detectors
population and the corresponding protein will eventually
be removed from all the elements presented. If the
presented element is harmless, the algorithm checks if
this element is detectable by the memory detectors
population to remove the corresponding detector [26].

3.3 Machine Learning (ML)

ML is a form of artificial intelligence (AI) that provides
systems with the ability to automatically improve data
without being explicitly programmed. There are three
different learning techniques of the ML: supervised,
unsupervised and semi-supervised. Picking the
appropriate technique depends on the nature of the
problem being handled, the type and the volume of the
data used for learning [31]. Throughout this paper, the
supervised learning technique will be used in the
proposed NIDS.

Supervised ML assumes a function (F) given input
data (x) to predict an output value (y), y = F(x) by training
on a labeled dataset, which is a set of examples with
paired input records and their desired outputs. The
algorithm continue takes predictions on the training data
and stops only when a reasonable level of performance is
accomplished [32].

ML techniques can automatically build the model for
intrusion detection based on the training data set, which
contains data instances that can be represented using a set
of features and corresponding labels [33].

3.4 Cloud Computing

In the present world of information technology (IT), the
cloud computing is rapidly growing computational model.
It solves various IT industrial problems such as
computing overloads and potentially expensive
investments in hardware for data processing and backups.
It can transform the IT industry, making both software
and infrastructure more effective, by reshaping the
designing and purchasing way of the hardware [34].
Cloud computing introduces a framework that allows end
users to easily get benefits from the powerful services and
applications through Internet. It provides suitable and
available network access to a shared aggregation of
configurable computing resources (e.g. networks, servers,
storage, applications, etc.); as a service on the Internet for
achieving computing requests of the end users [35].
Figure 3 shows three different cloud models depending on
the type of the service [36]:

Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)

Software as a Service (SaaS)

In the IaaS,the service provider provides basic
computing hardware to the consumers. The consumer
gains control of the storage, networks, and other
computing capabilities by renting the services from the
provider [37]. In the PaaS, a development platform is
offered as a service. The platform enables consumers to
build their applications that run on the service provider’s
infrastructure. The developer gets applications and
platforms, which include tools; libraries and
programming languages, and is supported by the service
provider that helps create custom applications. In the

SaaS model, the consumers can access the provider’s
application through a user interface like a Web browser
installed on different consumer devices [38]. In this
model, a single instance on the service provider’s end
supports multiple access instances on the consumer’s
side. The main advantage of this model is that the
licensing costs significantly reduce because only a single
instance of an application is required to support multiple
consumers’ access [37].

Previously, most institutions set their strategy to
deploy their NIDS on dedicated hardware to protect
computing infrastructures, which contain an important
component, from cyber-attacks. However, because of the
high cost of security issue and the financial cost saving of
the cloud computing such strategy is no longer effective
for small and medium institutions that conveniently turn
into cloud computing, which provides them with
infrastructure, platform and software as services on a
pay-per-use basis [39, 40].

The NIDS is introduced as a Service (NIDSaaS)
model. The cost of setting up a server, hiring and training
system administrators, and installing all the needed
applications is mostly eliminated [41]. For NIDS which
used rules set for detecting the attacks e.g. Snort, rule

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 5, 891-900 (2020) / www.naturalspublishing.com/Journals.asp 895

Fig. 3: Cloud computing models

customization is another advantage of NIDSaaS. The
cloud provider customizes the rule set by creating rules
for new attacks and eliminating deserted rules without
adding any additional burden on the consumer. This
approach can decrease the occurrence of false positive
alerts [42].

4 The Proposed Model

The main steps of the proposed model are defined, as
follows:

Step 1: Randomly generate the first generation of
detectors set using the NSA described in [13]. This set is
denoted by NSA detectors set.

Step 2: Use CSA described in [6] to improve the NSA
detectors set obtained in step 1. The obtained improved
detectors set is called the CSA detectors set.

Step 3: Pass the CSA detectors set obtained in step 2 to
the DCA to produce the improved detectors set and denote
it as DCA detectors set.

Step 4: Pass the DCA detectors set to the ML algorithm to
produce the more improved detectors set and denote it as
ML detectors set.

Step 5: Use the final improved detectors set (ML Detectors
Set), generate the new Snort’s rules set.

Step 6: The Snort with the new generated rules is
implemented in cloud as SaaS.

It is noticeable that the detectors set plays a significant
role in defining the self (normal) and non-self (abnormal)
patterns for the proposed automatic Snort’s rules
generation process. In this implementation, the r-chunk
matching scheme is used to match between detectors and
abnormal patterns. The r-chunk matching rule is defined
as follows:

given a string x = x1x2...xn and a detector

d = d1d2...dl with l 6 n and i 6 n− l+ 1

d matches x ≡ x j = d j for j = i, ..., i+ l− 1
Where i represents the position where the r-chunk

starts [13].
The NSL-KDD dataset is used in training and testing

the detectors. Cloning and mutation processes are used in

the CSA (Step 2) to generate CSA detectors set. In the
CSA detectors set generation step, all detectors in NSA
detectors set undergo cloning and mutation. The original
detectors remain unchanged, only the clones of the
detectors are mutated. If the clone detector produces
better affinity than its original detector, the clone replaces
its original detector in the new improved CSA detectors
set. Otherwise, the original detector remains in the CSA
detectors set [6]. The affinity is the matching degree
between detector and intruder.

DCA is normally used to generate the detector set
from the scratch. This implementation suggests using
DCA to select the detectors, which are produced in Step2
and can distinguish between danger and non-danger
patterns (Step 3). The DCA is programmed by the Python
3.7.6 release programming language. Python is an
interpreted, high-level, general-purpose programming
language. The programmed algorithm runs under Kali
Linux 2019.3 release operating system. The Kali Linux is
an open source Debian-derived Linux distribution used
for security and penetration testing designed and funded
by Offensive Security, a developer of global information
security training and penetration testing services. It can be
freely downloaded from its web site [43]. The
experimental results indicate that the DCA increased the
detectors set true positive detection rate and reduced its
false positive detection rate. The machine learning
classifiers (Step 4) is used to build a detector
classification model. Four ML classifiers J48, IBK,
Logistic Regression, and MLP [18] programmed by
Python with their default settings will be trained on the
training dataset provided by NSL-KDD dataset using
10-folds cross-validation without any pre-processing for
the dataset. Performance of the four classifiers will be
tested by NSL-KDD test set. Then, the most relevant
features of the NSL-KDD dataset are selected using the
InfoGainAttributeEval algorithm provided by Weka,
which is an open-source machine learning
workbench [44]. Performance of the four ML classifier
will be compared. The classifier with the best
performance will be applied on the improved DCA
detectors set to produce the final improved ML detectors
set. The automatic Snort’s rules generation system will
use the ML detectors set to produce the new rules set
(Step 5). The automatically generated rules set will be
added to the Snort release 2.9.15.0 with the Talos rules
which can be freely download from its website [45].
Snort’s performance will be compared after applying the
new rules set to its performance before adding it. The
experiment will be executed in computer with processor
Intel Core i5 7200U 2.4 GHZ with 8GB RAM. The
generated rules will be inserted into a local rules file (file
containing user-generated Snort’s rules) as shown in
Figure 4.

A NIDS framework that uses the cloud technology
SaaS was proposed (Step 6). The proposed framework got
benefit from affordable computational cost of the Cloud.
The proposed framework employed the danger theory
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signal mechanism to reduce the false positive rate. The
NIDSaaS consists of three main components: NIDS,
Rule-set Manager, and the Danger Signal Sensors, as
shown in Figure 5. The Snort is the core component of
NIDSaaS. It also analyzes and compares network traffic
to its predefined rule-set. In addition, it is responsible for
collecting the danger signals from its Danger Signal
Sensors. The Rule-set Manger is responsible for the
automatic update of the Snort rules set by applying the
technique proposed in the previous steps. The Danger
Signal Sensor collects danger signals within the network.
The danger signal may be one of the following cases:

- The presence of the indications of a breach, e.g. port
scans and other types of network sniffing.

- A normal user trying to perform administrative tasks.

- A device using multiple accounts and credentials to
access network resources.

- A user trying to find valuable data in file servers.

- The existence of command and control activity or
persistent access mechanisms [46].

The presence of a danger signal concurrent with the
observation of abnormal behaviour increases the
possibility of an intrusion. The Snort as SaaS eliminates
the need for training new technical, setting up new
release, updating new rules or upgrading the hardware of
cloud customer, who can get opportunities and
responsibility to administrate the NIDSaaS which brings
more reliable feeling to them.

Three bare-metal servers, each with two 2.6 GHz Intel
Xeon CPUs (16 cores) and 128 GB RAM, will be used to
implement the proposed NIDSaaS. The proposed
NIDSaaS will implemented on the OpenStack test
environment. OpenStack is a free open source cloud
computing software deployed to manage IaaS in both
public and private clouds. The OpenStack controls
diverse, multi-vendor hardware pools of processing,
storage, and networking resources throughout a data
center where virtual servers and other resources are
accessible to the users, who can manage it either through
a dashboard or the OpenStack API [47].

The OpenStack includes one controller node, one
network node and one compute nodes. Four instances run
Kali Linux and Snort software each of them contains
rules for only one type of the four attack types. Eight
instances running Kali Linux and Snort software running
in packet sniffer mode will play the role of danger signal
sensors. Kali Linux 2019.3 release operating system will
be installed at the top of an instance. The Snort release
2.9.15.0 with the full Talos rules and the new created
rules set will be installed to play the role of the central
NIDS of the proposed NIDSaaS. This central NIDS is
responsible for the coordination between the other NIDS
and the danger sensors , as well as managing and dealing
with danger signals in the system.

Fig. 4: Automatic Snort rule generation process

Fig. 5: The NIDSaaS framework

4.1 NIDS Evaluation

The evaluation of NIDS is important to judge its ability to
carry out an accurate and effective detection. Performance
of NIDS is evaluated by calculating the number of the
expected records correctly classified and the number of
records incorrectly classified.

Four evaluation metrics are used to evaluate NIDS:
Recall (R), Precision (P), False positive rate (FPR) and

F-scores. The specific definitions of the four metrics are
shown in equations (1)-(4). These metrics can be
calculated based on four elements, i.e. true positives
(TP), true negatives (TN), false positives (FP), and

false negatives (FN). TP and TN, respectively, denote the
instances which are correctly classified as attacks and
normal instances. FP and FN, respectively, denote the
instances which are incorrectly classified as attacks and
normal instances. The Recall (R) or (True Positive Rate -
TPR) is the ratio of correctly predicted attacks to the size
of the actual attacks, as shown in equation 1.

R =
T P

(T P+FN)
(1)
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Table 1: Description of five class labels of the NSL-KDD data

set

Label

NO.

Record

Type

Description

1 Probe Probe attack: Scanning and detecting network’s

security breaches

2 Dos Denial of Service attack: Denying the network’s

services

3 U2R User to Root attack: Illegally access to local

root users

4 R2L Remote to Local attack: unauthorised remote

access

5 Normal normal record

The Precision (P) is the ratio of correctly predicted attacks
to the predicted size of the attacks, as shown in equation 2.

P =
T P

(T P+FP)
(2)

The False positive rate (FPR) is the ratio of incorrectly
predicted attacks to the actual size of the normal
instances, as shown in equation 3.

FPR =
FP

(FP+TN)
(3)

The F-Score is the weighted harmonic mean of R and P, as
shown in equation 4.

F − score =
2 ∗P∗R

(P+R)
(4)

The popular dataset NSL-KDD is used to train, test, and
evaluate many NIDSs. It is a data set suggested to solve
some inherent problems of the KDD’99 data set [48]. All
the attributes of NSL-KDD data set are similar to those of
KDD99 data set. The NSL-KDD dataset was used to
evaluate many detection techniques. Each labelled record
in the NSL-KDD dataset consists of 41 attributes and the
class label. There are five class labels, four attack types
(i.e., Probe, DoS, R2L, and U2R) and one normal class,
as shown in Table 1 [30]. The NSL-KDD data set can be
freely downloaded from the Canadian Institute for
Cybersecurity (CIC) website [48].

5 Experimental Results

The Snort’s preprocessor has been used to merge the
abnormal detection algorithm with Snort. The abnormal
detection algorithm used the DCA detectors set, which
contains 49 detectors. Then, the Snort was evaluated by
applying it on the NSL-KDD test data. Its detection
performance, according to evaluation metrics for the
binary classes (normal and attack), was compared with
the results of the other approaches reported in the
previous work [6, 13] after applying them on the

Table 2: Comparisons of detection results obtained by applying

the DCA and previous approaches on the NSL-KDD test data.

Approach R P FPR F-score

Snort 0.242 0.722 0.098 0.358

Snort + NSA [13] 0.596 0.707 0.298 0.642

Snort + CSA [6] 0.762 0.870 0.141 0.808

Snort + DCA 0.766 0.904 0.096 0.825

Table 3: The performance metrics for the trained classifiers on

the train data set.

Classifier R P FPR F-score

J48 0.922 0.904 0.108 0.912

IBK 0.972 0.907 0.109 0.931

Logistic Regression 0.845 0.903 0.102 0.871

MLP 0.868 0.913 0.094 0.889

NSL-KDD test data. The comparison is listed in Table 2.
For best comparison, the best performance is highlighted
in boldface.

The performance of the snort with the DCA detectors
set was better than the previous approaches. It achieved
higher values on Recall, Precision, and F-score than the
others. However, it kept the FPR value lower than the other
approaches.

Performance of the four ML classifiers was tested by
NSL-KDD test set after training them on the training
dataset provided by NSL-KDD dataset using 10-folds
cross-validation without any pre-processing for the
dataset. The results of this phase are summarized in
Tables 3 and 4 where Table 3 summarizes performance
metrics of the trained four classifiers and the same
performance metrics of the trained classifiers on the test
dataset are summarized in Table 4.

The four ML classifiers were trained on the training
dataset provided by NSL-KDD dataset using 10-folds
cross-validation after selecting the most 27 relevant
features of 41 features, which were selected by
InfoGainAttributeEval algorithm. The performance of the
four classifiers was tested by NSL-KDD test set. The
results of this phase are summarized in Tables 5 and 6
where Table 5 summarizes performance metrics for the
trained four classifiers after selecting the most relevant
features and the same performance metrics for the trained
classifiers on the test dataset are summarized in Table 6.
The results indicate that the J48 classifier outperforms
other classifiers with the best performance metrics when
applying the feature selection.

The J48 classifier was applied on the DCA detectors
set. Then, the selected detectors (23 detectors) were
passed to automatic rule generation algorithm to generate
23 new rules. The snort with the new generated rules was
evaluated by applying it on the NSL-KDD test data. Its
detection performance, according to evaluation metrics,
was compared with its detection performance with the
DCA detectors set. This comparison is listed in Table 7.
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Table 4: The performance metrics for the classifiers on the test

dataset.

Classifier R P FPR F-score

J48 0.854 0.898 0.109 0.873

IBK 0.846 0.896 0.109 0.862

Logistic Regression 0.802 0.898 0.102 0.844

MLP 0.830 0.911 0.088 0.867

Table 5: The performance metrics for the trained classifiers on

the train data set after selecting the most 27 relevant features.

Classifier R P FPR F-score

J48 0.916 0.912 0.104 0.908

IBK 0.907 0.899 0.109 0.894

Logistic Regression 0.797 0.887 0.120 0.838

MLP 0.845 0.899 0.113 0.863

Table 6: The performance metrics for the classifiers on the test

dataset after selecting the most 27 relevant features.

Classifier R P FPR F-score

J48 0.847 0.906 0.104 0.877

IBK 0.795 0.889 0.109 0.838

Logistic Regression 0.769 0.877 0.132 0.816

MLP 0.777 0.897 0.106 0.827

Table 7: Comparisons of detection results obtained by the Snort

with the new rules set and the Snort with the DCA detectors set

on the NSL-KDD test data.

Approach R P FPR F-score

Snort + DCA 0.766 0.904 0.096 0.825

Snort with the new rule set 0.937 0.921 0.088 0.928

The performance of the snort with new rule set is
preferred to that with the DCA detectors set. It achieves
higher values on Recall, Precision, and F-score than the
previous steps. However, it kept the lower value of the
FPR.

Implementation of NIDSaaS after adding danger
signals simulator as well as applying the clonal selection
and danger theory principles was evaluated by NSL-KDD
test set. The comparison between evaluation metrics of
the implemented NIDSaaS and the standalone NIDS in
the previous stage is listed in Table 8.

According to Table 8, although an improvement
occurs in Recall, Precision and F-score, the significant
improvement is in FPR. Another improvement of the

Table 8: Comparisons of evaluation metrics of the NIDSaaS and

the standalone NIDS.

Approach R P FPR F-score

Snort NIDS 0.937 0.921 0.088 0.928

Snort as NIDSaaS 0.941 0.951 0.058 0.946

NIDSaaS is the increment of the response time by 43% as
a result of distributing the rules and using clonal selection
and danger theory principles. There exist cost reduction in
implementing NIDSaaS and complexity reducing of the
defensive mechanism. This is useful not only for cost
reduction, but also for open research communities.

6 Conclusion and Future Work

In this paper, the dendritic cell algorithm and machine
learning classifier (J48) were suggested to generate
Snort’s rules automatically. The conducted experimental
results showed that the generated Snort’s rules using
DCA and ML classifier improved the performance of the
Snort NIDS. The suggested Snort framework was
implemented as a software as service (SaaS) in the cloud
computing, whose major advantage is saving cost. The
performance of the suggested Snort framework as
NIDSaaS improved, as well as the false positive rate and
response time reduced. In the future work, the integration
between some deep learning algorithms and the
biological immune system concepts should be addressed
to enhance the performance of the Snort NIDS.
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