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Abstract: In this paper, numerical technique is introduced for solving natural convection of Darcian fluid about a vertical full cone

embedded in porous media with a prescribed wall temperature or surface heat flux boundary conditions. The power function of distance

from the vertex of the inverted cone gives us nonlinear differential equation. Rational Chebyshev collocation method is used to solve

the produced third order nonlinear differential equation with boundary conditions transformed to a system of nonlinear equations.

The proposed base is specified by its ability of deal with boundary conditions with an independent variable that may tend to infinity

with easy manner without divergent. Moreover, we compare the proposed method with other methods to investigate applicability and

accuracy.
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1 Introduction

The spectral methods have an important and significant
role in approximate differential equations, which make it
easy in treating many phenomena and models in physics,
engineering, economic and many other fields. The most
common distinctive feature for spectral methods is using
bases in the form of polynomials or functions which are
biorthogonal with respect to the weight functions, defined
in bounded and unbounded domain. Various spectral
methods can be applicable on finite domain [1–3],
semi-infinite domain [4–6] and unbounded
domain [7–13].

The choice of trial functions provides the spectral method
a great distinguishing feature, where the choice of trial
functions depended on the exact solution f (x) and the
values of x for the proposed equation. This means that if
the solution f (x) is polynomial in finite domain, use
Chebyshev polynomials. However, if f (x) is periodic,
Fourier series is preferred. If f (x) is defined in
unbounded domain, use Hermit functions or exponential
Chebyshev functions. Whereas, if the solution defined in
semi-infinite interval x ∈ [0,∞), use Laguerre functions or
rational Chebyshev functions, especially the solution

f (x)in fraction or exponential form in semi-infinite
domain the RC functions which are the best.

Many researchers have been publishing several papers on
convection of porous media.

A porous medium is a material consisting of a solid matrix
with interconnected pores. The solid matrix is rigid and
undergoes simple deformation.The interconnectedness of
the void allows the flow of one or more fluids through the
material [14].

Prediction of natural convection heat transfer
characteristics from heated bodies embedded in a porous
media has a number of thermal engineering applications,
such as ceramic processing, nuclear reactor cooling
system, crude oil drilling, chemical reactor design,
ground water pollution and filtration processes. Papers
have addressed multiple problems associated with
external natural convection in a porous medium adjacent
to heated bodies in the form of flat plate [14, 15],
cylinder [14, 16, 17], sphere [14, 17, 18][ and
cone [14, 19–24]. In all of these analyses, it is assumed
that Darcy law and boundary layer approximations are
applicable and the coupled set of governing equations was
solved using numerical methods.
Thanks to their orthogonality and minimax properties,
Chebyshev Polynomials have played a significant role in
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all areas of numerical analysis, including polynomial
approximation, numerical integration, integral equations,
and differential equation.

Using a transformation that maps an finite domain into an
infinite domain, it is possible to generate a great variety of
new basis sets for the infinite interval or semi-infinite
interval that are the images under the
change-of-coordinate of Chebyshev polynomials or
Fourier series, where the new basis inherits most of the
good numerical characteristics of the Chebyshev
polynomials. Exploiting the mapping induced connection
between Fourier cosine series and the new basis
functions, defined in [25], is called rational Chebyshev
(RC) functions. This strategy is a generalization of the
particular mapx = cos(θ ), which transforms the cosine
functions into the Chebyshev polynomials. The rational
Chebyshev functions are orthogonal on [0,∞) with the

weight function 1
(1+x)

√
x
.

In recent works, the rational Chebyshev functions was
introduced for solving high-order linear ordinary
differential equations, system of high-order linear
ordinary differential equations, and high-order
integro-differential equations, defined in unbounded
domains by transforming last equations and the given
conditions to a system of nonlinear algebraic
equations [26–34]. The solution is obtained in terms of
RC functions.

The organization of this paper is, as follows. In Section 2,
properties of the rational Chebyshev (RC) functions are
presented. In Section 3, problem formulation is
introduced. In Section 4, description of the solution
method is presented. Section 5 involves numerical
illustrations and the results that are compared with the
exact solution, as well as other existing methods to
demonstrate accuracy of the method.

2 Rational Chebyshev functions

In this section, we use an algebraic mapping from [-1,1]
to [0,∞) with Chebyshev polynomials to provide a new set
of basis functions, called rational Chebyshev functions, for
solving differential equations on an semi-infinite interval.
. We also present some properties of rational Chebyshev
functions.

As a continuation of the papers conducted by John P.
Boyd [35] as well as Grosch and Orszag [36], we show
that these rational functions inherit most of the good
numerical characteristics of the Chebyshev polynomials:
orthogonality, completeness, exponential or ”infinite
order” convergence, matrix sparsity for equations with
polynomial coefficients, and simplicity.

The basis functions, denoted by T Ln(x), are defined by

T Ln(x) = Tn(y) = cos nθ , (1)

where L is a constant map parameter and the three
coordinates are related by

x =
L(1+ y)

1− y
, y =

x−L

x+L
, (2)

x = L cot2(θ
/

2), θ = 2arccot([x/L]1/2). (3)

To avoid confusion as we leap from one coordinate to
another, we shall adopt the convention that x ∈ [0,∞) is
the argument of the TLn(x), y ∈ [−1,1] is the argument of
the ordinary Chebyshev polynomials, and θ ∈ [0,π ] is the
argument of the cosines. We are free to estimate which of
these three coordinates is the most convenient.
From (1) and (2), we get

T Ln(x) = Tn(y) = Tn

(

x−L

x+L

)

. (4)

In this study, we take L=1 and relation (4) is obtained as

T Ln(x) = Tn

(

x− 1

x+ 1

)

= Rn(x)

It symbolizes rational Chebyshev function as Rn(x)
instead of T Ln(x). Consequently, we can define rational
Chebyshev functions, as follows:
Definition 2.1
The rational Chebyshev functions Rn(x) of the first kind
are polynomials in x of degree n, defined by the relation

Rn(x) = Tn

(

x− 1

x+ 1

)

, when x = cot2(θ/2)x ∈ [0,∞)

(5)
If the range of the variable x is the interval [0,∞), the
range of the corresponding variable θ can be taken as
[0,π ]. These ranges are traversed in opposite directions,
since x = 0 corresponds to θ = π and x = ∞ corresponds
to θ = 0.
For more details, (see, for instance, [25–30]).
Form the recurrence relation of the Chebyshev
polynomials, we find that Rn(x) satisfies the following
recurrence formulae

Rn+1(x) = 2

(

x− 1

x+ 1

)

Rn(x)−Rn−1 (x), n ≥ 1, (6)

which together with

R0(x) = 1, R1(x) =
x− 1

x+ 1
. (7)

Rational Chebyshev functions are neither even nor odd for
n ≥ 1, while R0(x) is an even function.
It is useful and convenient in various applications to
express rational Chebyshev functions explicitly in terms
of powers of v(x)= x−1

x+1
, and vice versa. We can state the

following proposition:
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Proposition 2.1 The power vn(x) can be expressed in
terms of rational Chebyshev functions of degrees up to n
as:

vn(x) = 21−n
[n/2]

∑
k=0

(

n

k

)

Rn−2k(x) (8)

Proposition 2.2 A simple formula for Rn(x) in terms of
powers of v(x)is

Rn(x) =
[n/2]

∑
k=0

c
(n)
k vn−2k(x), (9)

where

c
(n)
k = (−1)k2n−2k−1 n

n− k

(

n− k

k

)

, 2k ≤ n, (10)

and

c
(2k)
k = (−1)k, k ≥ 0. (11)

Since the set of RC functions is orthogonal and complete
f (x) defined over the interval [0,∞) can be expanded as:

f (x) =
∞

∑
n=0

anRn(x),

where

an =
2

cnπ

∫ ∞

0
Rn(x) f (x)w(x)dx. (12)

with respect to the weight functionw(x) = 1
/

((x+ 1)
√

x),
and

cn =

{

2, n = 0
1, n ≥ 1

.

If f (x) is truncated to n < ∞ in terms of RC functions take
the form

[ fN(x)] = R(x)A (13)

where R (x) and A are vectors of the form:

R(x) =
[

R0(x) R1(x) ... RN(x)
]

,A =
[

a0 a1 · · · aN

]

T ,

and the derivative of f (x) can be put in the matrix forms

[ f
( j)
N (x)] = R( j)(x)A j = 0,1, . . . ,n ≤ N. (14)

where

R( j)(x) =
[

R
( j)
0 (x) R

( j)
1 (x) ... R

( j)
N (x)

]

3 Problem formulations

Consider an inverted cone with semi-angle γ and take axes
in the manner indicated in Fig. 1(a). The stream function
ψ defined as

u =
1

r

∂ψ

∂y
,υ =−

1

r

∂ψ

∂x
. (15)

In terms of the heated frustum x = x0 is considered [14].

The boundary layer equations are:

1
r

∂ 2ψ
∂y2 = gβ K

v
∂T
∂y
,

1
r
( ∂ψ

∂y
∂T
∂x

− ∂ψ
∂x

∂T
∂y
) = α ∂ 2T

∂y2 .
(16)

We have approximately r = xsin(γ) and suppose the
temperature is power function of distance from the vertex
of the inverted cone. Accordingly, the boundary
conditions are:

u = 0, T = T∞ y → ∞,
u = 0, y = 0, x0 ≤ x ≤ ∞,

T = Tω = T∞ +A(x− x0)
λ y = 0, x0 ≤ x ≤ ∞.

(17)
For the case of a full cone (x0 = 0, Fig.1(b)) a similarity
solution exists.

In the case of prescribed wall temperature, we let:

ψ = αrRa
1/2
x f (η),

T −T∞ = (Tω −T∞)θ (η),

η = y
x
Ra

1/2
x ,

(18)

where the Rayleigh number is

Rax =
gβ K cos(γ)(Tω −T∞)x

vα
. (19)

The governing equations are [14, 19] and [34]

f ′ = θ ,

θ ′′+(λ+3
2

) f θ ′−λ f ′θ = 0
(20)

with boundary conditions,

f (0) = 0, θ (0) = 1, θ (η) = 0, where η → ∞
(21)

Finally, we have:

f ′′′+

(

λ + 3

2

)

f f ′′−λ ( f ′)2 = 0, (22)

with boundry conditions

f (0) = 0, f ′(0)= 1, f ′(η) = 0, where η →∞. (23)

It is of interest to obtain the value of the local Nusselt
number which is defined as:

Nux =
qwx

k(Tw −T∞)
. (24)

Where qwfor the case of prescribed wall temperature can
be computed from:

qw =−k

(

∂T

∂y

)

y=0

. (25)
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Fig. 1: (a) Coordinate system for the boundary layer on a heated

frustum of a cone, (b) full cone, x0 = 0

From Eqs. (18), (19), (24) and (25), it follows that the local
Nusselt number is given by [14,34]:

Nux = Ra
1/2
x [−θ ′(0)].

Nomenclature

Aprescribed constant

f similarity function for stream function

gacceleration due to gravity

K permeability of the fluid-saturated porous medium

Nu local Nusselt number

qwsurface heat flux

r local radius of the cone

Raxlocal Raleigh number

T temperature

T∞ ambient temperature

Twwall temperature

u, υvelocity vector along x, y axis

x, y Cartesian coordinate system

x0distance of start point of cone from the vertex

Greek symbols

θ similarity function for temperature

η independent dimensionless parameter

λ prescribed constants

β expansion coefficient of the fluid

αthermal diffusivity the fluid-saturated porous
medium

ν kinematics viscosity of the fluid

ψ stream function

4 Method description

Consider the following nonlinear boundary value problem
(22):

f ′′′+

(

λ + 3

2

)

f f ′′−λ ( f ′)2 = 0,

governed by the boundary conditions

f (0) = 0, f ′(0) = 1, f ′(η) = 0. where η → ∞

If f is approximated to fN as in (13) and (14), the
above-mentioned nonlinear equation (22) is translated to
the following form in the unknown vector A:

R(3) A+

(

λ + 3

2

)

RA
(

R(2)A
)

−λ
(

R(1) A
)2

= 0, (26)

an approximate solution fN can be obtained by employing
the typical collocation method. For this purpose, equation
(26) is collocated at (N + 1) points. These points may be
taken by

ηk =

(

1+ cos
(

kπ
n

)

1− cos
(

kπ
n

)

)

, (k = 1, ..., n− 1). (27)

The same operation made with the conditions (23)
produces extra equations. Thus, we replace the produced
equations by the last three of the system. Hence, a set of
(N + 1) nonlinear equations are generated in the
expansion coefficients. This nonlinear system can be
solved with the aid of a suitable solver. The well-known
Newton iterative method can be used here with 100
iterations. Therefore, the corresponding approximate
solution fN can be obtained.

5 Numerical results

Consider governing equation of fluid flow and heat transfer
of full cone embedded in porous medium expressed by Eq.

f ′′′+(
λ + 3

2
) f f ′′−λ ( f ′)2 = 0

for wall temperature boundary condition
f (0) = 0, f ′(0) = 1, f ′(η) = 0, where η → ∞.
We apply the present method to find the approximate
solution fN (η) for N = 26 and 30 by the truncated
rational Chebyshev series. Table1 shows the coefficients
ai of the rational Chebyshev series at different λ as
fN(η) = ∑N

i=0 aiRi(η) at N = 26. Table 2 indicates,
comparison of the approximate values for θ ′(0) of the
present method at N= 26 with the previous results
obtained from different methods. Our obtained results are
close to those of Runge-Kutta method, Homotopy
analysis [34] and RCT method [32]. Table 3 involves a
comparison between the residual errors with different
volue for λ at N= 26 using the present method. The
results for θ (0) are shown in Tables 4 and 5 with two
selected λ as 0 and 1/2 and are compared with
Runge-Kutta method, Homotopy analysis [34] and RCT
method [32].

6 Conclusion

In this paper, rational Chebyshev collection method is
applied to solve third order nonlinear differential equation
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Table 1: A comparison between ai the coefficient results for various λ at N = 26

ai λ = 0 λ = 1/4 λ = 1/3 λ = 1/2 λ = 3/4 λ = 1

a0 0.554457225 0.525683296 0.517213395 0.501635582 0.481094861 0.463249716

a1 0.508370705 0.473913467 0.463819425 0.445320709 0.421074189 0.400161055

a2 -0.095862223 -0.096494523 -0.096625062 -0.096788466 -0.096833760 -0.096695227

a3 -0.051888130 -0.045056784 -0.043064859 -0.039424946 -0.034674824 -0.030597502

a4 0.006295945 0.0073669252 0.007653882 0.008143116 0.008703461 0.009102443

a5 0.011799427 0.0104291547 0.010030844 0.009303263 0.008352501 0.007533551

a6 0.002885521 0.0021411443 0.001932283 0.001561365 0.001100324 0.000727911

a7 -0.001585738 -0.001533606 -0.001516993 -0.001483957 -0.001433941 -0.001382921

a8 0.001530059 -0.001301434 -0.001236784 -0.001120733 -0.000972956 -0.000849070

a9 -0.000421389 -0.000312750 -0.000282167 -0.000227773 -0.000160066 -0.000105371

a10 0.000172862 0.000171915 0.000171797 0.000171489 0.000170452 0.000168478

a11 0.000233196 0.000201207 0.000192247 0.000176179 0.000155607 0.000138101

a12 0.000108172 0.0000867505 0.000080613 0.000069545 0.000055428 0.0000436674

a13 5.57454×10−6 -1.34199×10−7 -1.85483×10−6 -4.99523×10−6 -8.96525×10−6 -0.000012116

a14 0.000031532 -0.000029057 -0.000028391 -0.000027186 -0.000025557 -0.000024014

a15 -0.000028142 -0.000024123 -0.000022957 -0.000020819 -0.000017993 -0.000015515

a16 -0.000013447 -0.000010742 -9.93711×10−6 -8.45366×10−6 -6.51028×10−6 -4.85787×10−6

a17 -2.21395×10−6 -1.15957×10−6 -8.40112×10−7 -2.54767×10−7 4.89413×10−7 1.08284×10−6

a18 2.51676×10−6 2.53041×10−6 2.53533×10−6 2.53749×10−6 2.51341×10−6 2.45348×10−6

a19 2.7868×10−6 2.42338×10−6 2.31295×10−6 2.10417×10−6 1.8158×10−6 1.55256×10−6

a20 1.33449×10−6 1.00176×10−6 9.0103×10−7 7.14762×10−7 4.71862×10−7 2.69501×10−7

a21 8.99806×10−8 -2.46998×10−7 -2.93505×10−7 -3.75983×10−7 -4.72658×10−7 -5.38649×10−7

a22 -8.4508×10−7 -8.44258×10−7 -8.42469×10−7 -8.34568×10−7 -8.10511×10−7 -7.72498×10−7

a23 9.67181×10−7 -8.86217×10−7 -8.60356×10−7 -8.08736×10−7 -7.3028×10−7 -6.50626×10−7

a24 -7.29713×10−7 -6.40915×10−7 -6.13196×10−7 -5.59608×10−7 -4.82972×10−7 -4.10586×10−7

a25 -3.68448×10−7 -3.15738×10−7 -2.99426×10−7 -2.68254×10−7 -2.24696×10−7 -1.84772×10−7

a26 -8.92647×10−8 -7.55058×10−8 -7.12647×10−8 -6.32013×10−8 -5.20492×10−8 -4.19664×10−8

Table 2: A comparison between present method and other existing methods with the values for θ ′(0)( f ′′(0))

λ Runge-Kutta [34] HAM [34] RCT [32] Method in [19] Present method

N = 26 N = 30

0 -0.76854 -0.77363 -0.76600 -0.769 -0.768659 -0.76854

1/4 -0.88498 -0.88800 -0.88830 — -0.885073 -0.88497

1/3 -0.92101 -0.92433 -0.92100 -0.921 -0.921085 -0.92099

1/2 -0.98956 -0.99382 -0.98581 -0.992 -0.989664 -0.98957

3/4 -1.08518 -1.08840 -1.08598 — -1.08526 -1.08518

1 -1.17372 -1.17686 -1.17040 — -1.17375 -1.17368

Table 3: A comparison between residual errors of present method at = 26 for different volumes forλ

η λ = 0 λ = 1/4 λ = 1/3 λ = 1/2 λ = 3/4 λ = 1

0 0.0861367 0.0718359 0.0674466 0.0591442 0.0477793 0.0376464

0.5 3.61848×10−4 2.99265×10−4 2.80101×10−4 2.43951×10−4 1.94746×10−4 1.51219×10−4

1 2.77556×10−16 3.33067×10−16 3.88578×10−16 4.44089×10−16 2.22045×10−16 3.33067×10−16

2.4 2.08853×10−5 1.66557×10−5 1.53684×10−5 1.29617×10−5 9.74855×10−6 6.98523×10−6

5 -2.59245×10−7 -1.90629×10−7 -1.70096×10−7 1.32374×10−7 8.37343×10−8 4.39285×10−8

8.8 2.58985×10−7 1.59259×10−7 1.30012×10−7 7.74002×10−8 1.24571×10−8 -3.72492×10−8

10 3.89714×10−8 2.27297×10−8 1.79920×10−8 9.51293×10−9 8.46099×10−10 -8.64873×10−9
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Fig. 2: RC collection approximation of θ (η) with different

volume for λ

Table 4: Comparison between RC collection method and other

existing methods for θ (0)with λ = 0

η Runge-

Kutta

[34]

RCT

[32]

HAM

[34]

RC collection .

N = 26 N = 30

0 1.0000 1.0000 0.9999 1.0000 1.0000

0.2 0.8478 0.8477 0.8474 0.8477 0.8478

0.4 0.7036 0.7036 0.7028 0.7036 0.7036

0.6 0.5733 0.5732 0.5720 0.5732 0.5732

0.8 0.4599 0.4598 0.4583 0.4598 0.4598

1 0.3643 0.3641 0.3623 0.3641 0.3641

1.2 0.2855 0.2853 0.2833 0.2854 0.2854

1.4 0.2218 0.2218 0.2200 0.2218 0.2218

1.6 0.1713 0.1713 0.1698 0.1713 0.1713

1.8 0.1315 0.1316 0.1301 0.1316 0.1316

2 0.1007 0.1007 0.0991 0.1007 0.1007

Table 5: Comparison between RC collection method and other

existing methods for θ (0) with λ = 1/2

η Runge-

Kutta

[34]

RCT

[32]

HAM

[34]

RC collection

N = 26N = 30

0 1.0000 0.9999 1.0004 1.0000 1.0000

0.2 0.8130 0.8130 0.8125 0.8129 0.8129

0.4 0.6500 0.6500 0.6491 0.6499 0.6499

0.6 0.5124 0.5125 0.5111 0.5124 0.5124

0.8 0.3994 0.3994 0.3977 0.3993 0.3993

1 0.3084 0.3084 0.3063 0.3084 0.3084

1.2 0.2364 0.2364 0.2347 0.2364 0.2364

1.4 0.1802 0.1802 0.1785 0.1802 0.1802

1.6 0.1367 0.1367 0.1352 0.1368 0.1367

1.8 0.1034 0.1034 0.1020 0.1034 0.1034

2 0.0780 0.0779 0.0763 0.0780 0.0780

arising from similarity solution of inverted cone
embedded in porous medium. Numerical results of the
introduced technique are compared with rational
Chebyshev tau method, homotopy analysis method,
Runge-Kutta and method in [19]. The obtained solution in
comparison with the numerical ones represents a
remarkable accuracy.
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