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Abstract: In this paper, we consider some new perspectives of log-convex functions. We also investigate several properties of
the log-convex functions and discuss their relations to convex functions. Optimality conditions are characterized by a class of
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1 Introduction and Preliminaries

Convex functions and convex sets have played an
important and fundamental part in the development of
various fields of pure and applied sciences. Convexity
theory describes a broad spectrum of very interesting
developments involving a link among various fields of
mathematics, physics, economics and engineering
sciences. Some of these developments have made
mutually enriching contacts with other fields. Ideas
explaining these concepts led to the developments of new
and powerful techniques to solve a wide class of linear
and nonlinear problems. Recently various extensions and
generalizations of convex functions and convex sets
investigated using innovative ideas and techniques. More
accurate inequalities can be obtained using the log-convex
functions rather than the convex functions. Closely
related to the log-convex functions, we have the concept
of exponentially convex(concave) functions, whose origin
can be traced back to Bernstein [1]. The exponentially
convex functions have important applications in
information theory, big data analysis, machine learning
and statistic. See, for example, [1-15] and the references
therein.

Inspired by the ongoing research in this interesting,
applicable and dynamic field, we again reconsider the
concept of log-convex functions. We discuss the basic
properties of the log-convex functions. It has been shown
that the log-convex(concave) functions have distinctive

properties. Several new concepts of log-convex functions
have been introduced and investigated. We show that the
local minimum of the log-convex functions is the global
minimum. The difference (sum) of the log-convex
function and affine log-convex function is a log-convex
function. The optimal conditions of the differentiable
log-convex functions can be characterized by a class of
variational inequalities, which is an interesting outcome
of our main results. The ideas and techniques of this
paper may be starting point for further relevant research.

2 Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H.
We denote by (-,-) and || - || the inner product and norm,
respectively. Let ' : K — R be a continuous function.

Definition 1. [8, 10].7The set K in H is said to be convex
set, if
u+t(v—u) €Kk, Yu,v e K,t €[0,1].

Definition 2. [8—10] A function F is said to be convex, if
F((1—=tu+1tv) < (1 —1)F(u)+tF(v),Yu,v € K,t € 0,1].

Definition 3. [6, 8] A strictly positive function F is said to
be log-convex, if

F((1=0)u+tv) < (F(u) ™ (F(v)) ™", Yu,v € K1 € [0,1].
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Gamma and Beta functions are log-convex function.
Every log-convex function is a convex function, but the
converse is untrue. See [9—11] and the references therein.

We can rewrite Definition 3 in the following equivalent
form as

Definition 4. [12] A strictly positive function F is said to

be log-convex, if

logF((1—t)u+1v)) < (1—1)logF(u)+tlogF(v),
Vu,ve K, tel0,1].

We use this equivalent concept (Definition 4) to discuss

some new aspects of log-convex functions, which is
objective of this paper.

If logF = ef ) we recover the concepts of the
exponentially convex function, which are mainly due to
Noor and Noor [13-15] as:

Definition 5. /2] A positive function f is said to be
exponentially convex function, if
e ((A-nuttv) < (1 —t)ef(”) +tef(v),
Vu,v € K,t € [0,1].
We remark that Definition 5 can be rewritten in the

following equivalent way, which is due to Antczak [3]
and Avriel [4].

Definition 6.A function f is said to be exponentially
convex function, if

F((1=1)a+1b) <log[(1 —1)e! @ 4 1e/®)], (1)

Ya,b € K,t € [0,1]. 2)
A function is called the exponentially concave function f,
if —f 1is exponentially convex function. For the

applications and properties of exponentially convex
functions, see [1-6].

Definition 7.A strictly positive function F is said to be
affine log-convex function, if

logF((1—t)u+1tv))=(1—1t)logF(u)+tlogF(v),
Yu,v € K,t € [0,1].

Definition 8.A strictly positive function F on the convex
set K is said to be quasi log-convex, if

logF((1—t)u+1v)) < max{logF(u),logF(v)},
Vu,v € K,t €[0,1].

Definition 9.A strictly positive function F on the convex
set K is said to be log-convex, if

logF(u+1(v—u))) < (log(F(u))" ' (log F (v))",
Vu,v € K,t €[0,1],
where F(-) > 0.

From the above-mentioned definitions, we have
log F(u+1(v—u)) < (log(F(u))' ™" (log F (v))'
< (1—1)logF(u)+rtlogF(v)
< max{logF (u),log F(v)}.

This shows that every log-convex function is a quasi
log-convex function. However, the converse is untrue.

Let K = I = [a,b] be the interval. Now, we define the
log-convex functions on 1.

Definition 10.Ler I = [a,b]. Then F is log-convex function,
if and only if,

1 1 1
a X b

logF (a) logF(x) logF(b)

>0; a<x<b.

— Y = =

One can easily show that the following is equivalent:

F is a log-convex function.
logF(x) <logF(a)+ M(xf a).

1

2 b—a
3. logF(x))C:logF(a) < logF(bgflogF(a)
4

(b—x) lf)gF(a) +(a— b;tiogF(;c)
+ (x—a)logF (b)) > 0.

log F(a) log F(x) log F (D)
S0 ey T e T hoa)oh)

where x = (1 —t)a+1tb € [0,1].

§O7

3 Main Results

In this section, we consider some basic properties of log-
convex functions.

Theorem 1.Let F be a strictly log-convex function. Then
any local minimum of F is a global minimum.

Proof.Let the logconvex function F have a local minimum
atu € K. Assume the contrary, i. e. F(v) < F(u) for some
v € K. Since F is a log-convex function,

logF(u+t(v—u))<tlogF(v)+ (1—t)logF (u),
for O0<r<l1.

Thus
logF (u+t(v—u))—logF(u) <t[logF(v)—logF (u)] <0,
from which it follows that
logF(u+t(v—u)) <logF(u),
for arbitrary small r > 0, contradicting the local minimum.

Theorem 2.If the function F on the convex set K is log-

convex, the level set
Lo={ucK:logF(u) <o, o€R}

is a convex set.
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ProofLetu,v € Ly. ThenlogF(u) < a and logF(v) < a.
Now, Vr € (0,1), w=v+4r(u—v) €K, since K is a
convex set. Thus, by the log-convexity of F, we have

logF(v+t(u—v)) < (1—t)logF(v)+rlogF(u)
<(1l-fa+ra=a,

from which it follows that v+7(u —v) € Ly Hence Ly is
convex set.

Theorem 3.A positive function F is a log-convex if and
only if

epi(F)={(u,00) :u € K :logF(u) < ot,00 € R}
is a convex set.

Proof.Assume that F is log-convex function. Let

(u, ), (vPB) € epi(F). Then it follows that
logF(u) < o and logF(v) < fB. Thus,
Vi €1]0,1], u,v €K, we have

logF(u+t(v—u)) < (1 —1)logF (u)+tlogF(v)

< (l-t)a+1B,
which implies that
(w+t(v—u),(1—t)o+1B) € epi(F).

Thus epi(F) is a convex set. Conversely, let epi(F) be a
convex set. Let u,v € K. Then (u,logF(u)) € epi(F) and
(v,logF(v)) € epi(F). Since epi(F) is a convex set, we
must have

(w+t(v—u),(1—1)logF (u)+tlogF(v)) € epi(F),
which implies that
logF(u+t(v—u)) < (1—t)logF(u)+tlogF(u).
This shows that F is a log-convex function.

Theorem 4.A positive function F is quasi log-convex if
and only if the level set

Lo={ucK,0 €R:logF(u) <o}
is a convex set.

Prooflet u,v € Lg. Then
max(log F(u),logF(v)) < a.

Now fors € (0,1),w=u+1t(v—u) € K, we have to prove
that u+7(v — u) € Ly. By the quasi log-convexity of F,

we have

u,v € K and

logF (u+t(v—u)) <max (logF(u),logF(v)) < a,

which implies that u+¢(v — u) € Ly, showing that the
level set L, is indeed a convex set.

Conversely, assume that Ly is a convex set. Then
Vu,v € Lg,t € 0,1}, u+1t(v—u) € Ly. Letu,v € Ly for

o = max(logF(u),logF(v) and logF(v) <logF(u).
From the definition of the level set L, it follows that

logF (u+t (v,u)) < max (logF(u),logF(v)) < a.

Thus F is a quasi log-convex function. This completes the
proof.

Theorem S.Let F be a
u = inf,ex F(u). Then the set
E={ucK:logF(u)=u}is a convex set of K. If F is
strictly log-convex, E is a singleton.

log-convex function. Let

ProofLetu,y € E.ForO0<rt<1,letw=u+1t(v—u).
Since F is a log-convex function, so
F(w)=logF(u+t(v—u)) < (1—1t)logF(u)+tlogF(v)

=th+(1-1)u=u,
which implies that to w € E. and hence E is a convex set.
For the second part, assume that F (1) = F(v) = u. Since
K is a convex set, then for 0 <7 < l,u+1t(v—u) € K.
Furthermore, since F is strictly log-convex,
logF(u+t(v—u)) < (1—1t)logF (u)+tlogF(v)

= -tpu+tp=p.

This contradicts the fact that 4 = inf,ex F (), so the result

follows.

Theorem 6. If F is a log-convex function such that
logF(v) < logF(u),Yu,v € K, F is a strictly quasi
log-convex function.

Proof.By the log-convexity of the function F, Vu,v € K,t €
[0,1], we have

logF (u+t(v—u)) < (1—1t)logF(u)+tlogF(v) <logF(u),

since logF(v) < logF (u), which shows that the function
F is strictly quasi log-convex.

Now, we derive some properties of the differentiable log-
convex functions.

Theorem 7.Let F be a differentiable function on the
convex set K. Then the function F is log-convex function
if and only if

F'(u)
F(u)

logF(v) —logF(u) > { wv—u),YvucK. 3)

Proof.Let F be a log-convex function. Then

logF(u+t(v—u)) < (1—t)logF(u)+tlogF(v),
Yu,v € K,
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which can be written as
logF(u+t(v—u))—logF(u)
t

logF (v) —logF (u) > {

1.

Taking the limit in the above-mentioned inequality as r —

0, we have

F/
W, W),

F(u)

which is (3), the required result.

logF (v) —logF (u) > (

Conversely, let (3) hold. Then Vu,v € K,t € [0,1], v, =
u+1t(v—u) € K, we have

logF (v) —logF(v;) > (F

F(v,
(1t)<F((vvt’)),vu>- )
Similarly, we have
logF (u) —logF (v;) > (f;((‘:[)),u—v,»
_ t(I:((:)),vu}. (5)

Multiplying (4) by ¢ and (5) by (1 —¢) and adding the
resultant, we have
logF(u+t(v—u)) < (1—1t)logF(u)+tlogF(v),

showing that F' is a log-convex function.

Remark.From (3), we have

F/
F(v) > F(u)exp{(%,v— u)},
Changing the role of # and v in the aforementioned
inequality, we also have
F'(v)

F(u) > F(")“Pﬂma”—")},

Thus, we can obtain the following inequality

Flu)+ F() > F(v)exp{<%,u—v>},

+F(u)exp{<I;((Z))

u,vek.

u,vek.

V—u)}

u,ve k.

Theorem 7 enables us to introduce the concept of the
log-monotone operators, which appears to be a new one.

Definition 11.7he differential F'(.) is
log-monotone, if

<F'(u) F'(v)
Flu)  F()

said to be

Ju—v)>0, VuveH.

Definition 12.7he differential F'(.) is said to be
log-pseudo-monotone, if
F' F'
(ﬂ,v—mZO, :(ﬂ,v—wzo, Yu,v € H.
F(u) F(v)

Accordingly, it follows that log-monotonicity implies log-
pseudo-monotonicity, but the converse is untrue.

Theorem 8. Let F be differentiable log-convex function
on the convex set K. Then (3) holds if and only if F'(.)
satisfies

<F "(u) F'(v)
F(u)  F()
Proof.Let F be a log-convex function on the convex set K.
Then, from Theorem 3.1, we have

F'(u)

Ju—v)y>0,Vu,veK. (6)

logF(v)flogF(u)2<m,vfu>, Yu,v € K. (7
Changing the role of # and v in (7), we have

F/
log F (i) — log F (v) > { F((:)) u—v)), Yuyvek. (8

Adding (7) and (8), we have
F'(u) F'(v)
<F(u) ~F(v)

,M-V)ZO,

which shows that F’ is a log-monotone.
Conversely, from (6), we have

F' F'
<F((:)),uv> < <F((:)),uv)>. )
Since K is an convex set, Vu,v € K, t€[0,1] vy =u+
t(v—u)€K.
Taking v = v, in (9), we have
F'(v) F'(u)
Fy = = Gy =
_F(u
- 7t< F(M) ,V*I/l>,
which implies that
F'(n) F'(u)
(F(Vt),v—u)Z(F(u),v—u). (10)

Consider the auxiliary function

E(t) =logF(u+t(v—u)),
from which, we have

&(1) =logF(v), &(0)=IlogF(u).
Then, from (10), we have

F'(v)

€0 = (a0 > (g

F(u)’

v—u). 11
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Integrating (11) between 0 and 1, we have

! F'(u)
1)— O:/ "(t)dt > ,V—U).
E1)=8(0)= [ &' > (g v
Thus it follows that
FI
logF (v) —logF (u) > (%,v—u),
which is the required (3).
Now, we give a necessary condition for

log-pseudoconvex function.

Theorem 9.Let F' be a log-pseudomonotone. Then F is a
log-pseudoconvex function.

Proof.Let F' be a log-pseudomonotone. Then,

F/

(F((:)),v—u) >0,Vu,v €K,
implies that

F'(v)

—u)>0. 12
<F(v)’v u)y>0 (12)
Since K is a convex set, Vu,v € K, € [0,1], v, =u+1(v—
u) €K.

Taking v = v; in (12), we have
(e"F (v,), v —u) > 0. (13)

Consider the auxiliary function
E(t)=logF(u+t(v—u))=1logF(v),
which is differentiable. Then, using (13), we have

F'(v)
i
t) = ,
&0 =505
Integrating the above-mentioned relation between O to 1,
we have

1
E1)-50)= [ &0a=o.
That is,
logF(v) —logF(u) >0,

Vu,v € K,t € [0,1],

v—u))>0.

showing that F' is a log-pseudoconvex function.

Definition 13.7he function F is said to be sharply
log-pseudoconvex, if there exists a constant L > 0 such
that

<F’(M)

wv—u) >0
=

F(v) > logF(v+t(u—v)), Yu,veK,tel0,1].

Theorem 10.Let F  be a sharply log-pseudoconvex

function on K. Then
FI

<ﬂ ,V— Lt> Z 07

K.
F) Yu,v €

Proof.Let F be a sharply log-pseudoconvex function on K.
Then

logF(v) > logF(v+t(u—v)), Yu,veK,tel0,1].
from which we have

logF(v+t(u—v))—logF(v)

0.l : }
!
= (%,v—u),
the required result.
Definition 14. A function F is said to be a

log-pseudoconvex function, if there exists a strictly
positive bifunction B(.,.) such that

logF (v) < logF(u)
=
logF(u+t(v—u)) < logF(u)+1t(t—1)B(v,u),
Vu,v € K,t €0,1].
Theorem 11. If the function F is log-convex function

such that logF(v) < logF(u), the function F s
log-pseudo convex.

Proof.  Since logF(v) < logF(u) and F is log-convex
function, then Vu,v € K, 1 € [0,1], we have

where B(u,v) = logF(u) —logF(v) > 0, the required
result. This shows that the function F is log-convex
function.

Now, we show that the difference of log-convex function
and affine log-convex function is a log-convex function.

Theorem 12. Let f be a affine log-convex function. Then
F is a log-convex function, if and only if, g =F — f is a
log-convex function.

Proof. Let f be an affine log-convex function. Then

log f((1 —=t)u+1tv) = (1—1t)logf(u)+tlogf(v),

Vu,ve K, te€l0,1]. (14)
From the log-convexity of F, we have
logF((1—=t)u+1v) < (1 —1)logF(u)+tlogF(v),
Yu,ve K, t€]0,1]. (15)
From (14) and (15), we have
logF((1—t)u+1tv)—logf((1 —t)u+1tv)
< (1—1)(logF (u) —log f(u))
+1(logF(v) —log f(v)), (16)

© 2020 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

852

M. Aslam Noor et al.: New Perspective of Log-Convex Functions

from which it follows that
logg((1 —t)u+1v)
=logF((1 —t)u+1tv) —logf((1 —t)u+1tv)
< (1 —=1)(logF (u) —log f(u))
+t(logF(v) —log f(v)),
which shows that g = F — f is a log-convex function.

The inverse implication is obvious.

We now discuss the optimality condition for the
differentiable log-convex functions, which is the main
motivation of our next result.

Theorem 13. Let F be a differentiable log-convex
function. Then u € K is a minimum of the function F, if
and only if, u € K satisfies the inequality

F'(u)
F(u)
Proof. Letu € K be a minimum of the function F. Then
Fu) <

From which, we have

(

,wv—uy>0,Vu,veK. 17)

F(v),WveK.

logF (u) <logF(v),Vv € K. (18)
Since K is a convex set, Vu,v € K, t € [0,1],
vi=(l—-tu+tvek.
Taking v = v; in (18), we have
logF —u))—logF
t—0 t
F'(u)
= —u). 1

>~ (19)
Since F is differentiable log-convex function,
logF(u+t(v—u)) <logF(u)+t(logF(v) —logF(u)),

u,v€K,t €10,1].
Using (19), we have

logF (v) —log F (u) > tlgr(l){logF(””(V:“)) —log F(u)

= <I;((u)),v—u> >0.

}

Thus, it follows that
logF (v) —logF(u) >0,
from which , we have

F(u) <F(v), WEeK.

This shows that u € K is the minimum of the differentiable
log-convex function.

Remark.The inequality of the type (17) is called the log-
variational inequality and appears to be a new one. For the
applications, formulations, numerical methods and other
aspects of variational inequalities, see Noor [16, 17].

We remark that if a strictly positive function F' is a log-
convex function, we have

log F((1—t)u+1tv) + logF(tu+ (1—1)v)
< logF(u)+logF(v),

Yu,v € K,t €10,1], (20)

which is called the Wright log-convex function.
From (20), we have

logF((1—t)u+tv)F(ru+ (1—1)v)
=logF((1 —t)u+1tv)+logF(tu+ (1—1)v)
< logF (u)+logF(v)
= logF(u)F(v),

This implies that

Vu,v € K,t € [0,1].

F((1 0t ) F(tut (1 —0)) < F)F (),
Yu,v € Kt €10,1],

which shows that a strictly positive function F is a
multiplicative Wright convex function. It is an interesting
problem to address the properties and applications of the
Wright log-convex functions.

4 Conclusion

In this paper, we have investigated some new aspects of
log-convex function. Several new classes of log-convex
functions have been introduced. We have shown that the
minimum of the differentiable log-convex functions can
be characterized by a new class of variational inequalities,
which is called the log-variational inequality. One can
explore the applications of the log-variational
inequalities. This may stimulate further research.
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