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Abstract: In this study, we establish some new n-th order integral inequalities of Opial type for differentiable functions. Furthermore,
we extend our study by examining more general type of differentiable functions. Finally, we see that our results can cover the previous

published studies.
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1 Introduction

The differential equations with impulse perturbations lie
in a special important position in the theory of differential
equations. For example, integral inequalities are one of
the important tools that investigate the qualitative
characteristics of solutions of different kinds of equations
such as difference equations, differential equations,
partial differential equations, and impulsive differential
equations; for example see [1-9].

Opial [10] established the following well-known
integral inequality:

Theorem 1.Suppose f e C'o,A] satisfies
f(0)=f(A) =0and f(x) >0 forall x € (0,A). Then the
integral inequality holds

[rwrwar<® [frera

where this constant % is best possible.

Recently, Opial’s inequality (1) and its generalizations
extensions and discretizations, have become an important
tool in establishing the existence and uniqueness of initial
and boundary value problems for ordinary, partial
differential equations and difference equations. Moreover,
there are many papers in the literature which deals with
the simple proofs, various generalizations and discrete
analogues of Opial inequality and its generalizations for
one and two independent variables functions [11, 12]. Let
us recall the following interesting Opial type
inequalities [13]:

Theorem 2.Let x : [a,b] C R — R be an absolutely
continuous function such that x' € Ly [a,b].

i) If x(a) = x(b) = 0, then

b
b—a

/hmﬂﬂmg -

a

b
/ (¥ (1)) dr. )
ii) If x(a) = 0 (or x(b) = 0) , then

b—a

/(x'(t))zdt. 3)

b
[ 0)] e <
a a

Among the generaliztions of Opial’s inequality (2)
there exists a class of inequalities which instead of the
first derivative involves the n-th derivative of the given
function x(¢). The first result is due to Willett’s paper
published in 1968 [14]. In [15], Das improvements and
further extensions which appeared one year later paved
the way for many subsequent results of this type. For
more details and applications, see [10-34].

The present paper aims to establish some new n-th
order Opial type integral inequalities for differentiable
functions by an extension of (2)—(3). Moreover, by taking
some special cases, we obtain some results on Opial type
inequalities which were obtained before in the literature.
They provide some new estimates on such types of
inequalities.

* Corresponding author e-mail: sarikayamz @gmail.com

© 2020 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/140508

810 = 0)

M. Z. Sarikaya et a.: Some generalizations of opial type inequalities
2 The Main Results where

First, we begin with the following main theorem:

Theorem 3.Let f,g € C"[a,b] such that f", g™ be
absolutely continuous and "), g") € Ly [a,b]. Then
i 1fg®(a)=0,i=0,1,2,..n—1,n> 1, then

RIGHOIE @

b ) 2
<
<300 (/a (¢ (t)‘ dt
b 2
+/ (b— (t)‘ dt).
i. If gV (b) =0,i=0,1,2,....n—1,n> 1, then

(6 (0)|di )

D=

1 b 2
_ ]
< 5o ([ @[] a
b 2
+ [ (t—a) g(")(t)‘ dt
ii.  If ¢g¥(a) = g (b) =0, i =0,1,2,....n — 1,
n>1.Then
b
JRTRIGHOIT ©

a<t<a42»b
)
n atb
’ 2
,a

<t<b
+
<1<

t
_i
2
a+b na_+b<t<b

Proofz Since g*) (a) = 0, we consider g(r) T ,f (r—
5)"~'g(" (s)ds for t € [a,b]. Thus, we can write
b
) ( ‘dt
7/ (-} 0)] 1 —a)?

dt.

! ] /I(t—s)"flg(")(s)ds

X —_—
(n—=1)!Jq
Using Cauchy-Schwarz inequality, we have

b
x (/(bt)”

The last parts are followed by the elementary inequality

Ms%

we obtain that

grep ‘dt
gﬁ(/f(ta)”

+/b(b—t

which proves 1nequa11ty (4
O

(a+p), o, >0

)-
ii. Since b) = 0, we  consider
8(t) = —5 1,ft( )" ¢ (s)ds for t € [a,b]. Then,

it follows that

b
[l
=/ (b—1)2

a
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Using Cauchy-Schwarz inequality, to the right side again,

we obtain
[
b

g% [y

a

x (/b(ta)" <">(t)]2dt)

Using arithmetic-geometric mean inequality, we have

b
[ 17 @ g0)]ar
Ja
<! /b(bft)" f‘”’(t)’zdt
— 2(n!) \Ja

b 2
+/ (t—a)" g(”)(t)‘ dt)
Ja

which proves inequality (5).
iii. If we write the inequality (4) on the interval

7o } ) ar

00 ar

1
2

U (6) g 0)]d ™

S

g
>
D=

D=

have

o |1 080 ar ®)

Bl

If we add inequalities (7) and (8), and using

1

af + 75 < (o2 + 7)1 (B2+6%)3, o.B.7,8>0
as well as the elementary inequality
1
\% aﬁ < E(a+ﬁ)a avﬁ >0

we get

o=

< 2(2!) (/abp(t) f(n) t)lzdt—l-/abQ(t)‘g(”)(t)lzdt).

which completes the proof of the inequality (6).

Remark.For n =1, Theorem 3 reduces to Theorem 2 which
is proved by Dragomir in [16].

Corollary 1.Let f € C™ [a,b] such that ) be absolutely
continuous and f") € L, [a,b]. Then

i If f9(a) = 0(or fO(b) =0),i=0,1,2,...n— 1,
n>1, then

/ab £ (t)f(t)‘dtg (b—a)" /ab ;

27 (n!)
ii. If f9 (a) = 1 (b)

£0) )| ar < 2’;”(2,))" / "Iy

Proof.i. If we take g = f in Theorem3, we have

e
< 2(2!) </ab[(ta)n+ (b—1)] f(”>(t)’2dt) .

Thus, taking r(t) = (t —a)" + (b —1t)" for t € [a,b], it
follows that r/(r) = 0, then maxr(t) = (bzf,) which
completes the proof.

ii. The statement (ii) is followed by (iii) of Theorem3
for g = f and it is noticeable that

[

(n) (t)

2
’ di. (9

=0,i=0,1,2,...n—1,n>1, then

() (t)’zdt. (10)

n 1 b n 2
1@ o)< 5o [P0+ o] o) a
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where that g (¢) = h(r), it follows that
P(t) == (t—a)a<t <P b t o ft
(b—t)y", b <t<b [’ / ") (t)/ / / h(s)dsdt, ...dt;|dt
a a a a
a+b n a+b 1 1
F—t) ast< S b
Q(t) = { ( 2 a+b)" ath 2 } 1 2 b , 2
(r—2) 5P <e<b <D /P(t)’f(")(t)‘ dt /Q(t)|h(t)| dt
n!
Then, it follows that a a
1 b 2 b
b \'_ (b—a) b < /Pt’(")t‘dt/ £) |h(e)Pde ) (12
e (22 < G e [o 2] < 5o ([P0l 0f @+ [ owmopar) a2
N b n b Furthermore, by the modulus properties and using change
(b—1)"+ (; at ) < ( z_al) fort € [ + 71,} order of the integration, and then using n times integrating
2 2o 2 by parts, we have
Th h b rorn i
en, we have / )t)// / h(s)dsdtn_y..dn |di  (13)
b
/ f(n) t)’dt 1 "ty |
a > / / / (t)h(s)dsdt,_;...dtdt
1 5 2
<5 [T L o[ a
20 S 2 - / / / " 40 (1) dedy...dty 1 ds
1 b (b—a) 2 In—1 |
+5— / ( anll) (”)(t)} dt
2(n1) Jes 2 _ / F(s)h(s)ds
a

which completes the proof.

Remark.i) If we take n = 1 in Corollary 1, the inequality
(9) reduces to the inequality (3).

i) If we take n = 1 in Corollary 1, the inequality (10)
reduces to the inequality (2).

Remark.In [15], Das proved the following Opial type

inequality:
(b—a) [ n )% b
/

/ 2(n!) (2n1

In Corollary 1, the constant of inequality (10) is better than
that of the above-mentioned inequality, i.e

’dt

£ 0)

1
2

1 1 2
" ) forn>1.

2 () = 2 () (an

Corollary 2.Let f € C™ [a,b] such that ) is absolutely
continuous and f\") € Ly [a,b] and h € L, [a,b]. Then

[
, Ly !

an | frolrowfa) ( [owmora

a

(t)|dr

IN

1 b 2 b
(n) 2
< 3 (/ P @[ ar+ [ o lhte) dt>(11)
Proof.In (6), if we take
g(t) == [T [0 [V h(s)dsdt,—...dt, t € [a,b], such

Employing (12) and (13), we obtain the desired result (11).

Corollary 3.Let ¢ € C"[a,b] such that g™ h are
absolutely ~ continuous. If g% (a) = g\ (b) 0,
i=0,1,2,..n—1,n>1,and h,g" € L, [a,b]. Then

[we
| b 3 b 2
o / Pl Par | [ / (1) }gw o ar

o )(/ 0 b |dt—|—/ )(14)

Proof.If we select f as below in (6),

't "In—1
)= / / / h(s)dsdt,_...d
Ja Ja Ja

£ (6) = (o).

Thus, the proof is clear.

(¢)|dt

1

IN

Proposition 1.Assume that h € C") [a,b] such that h™) is
absolutely continuous with h"~)(a) = k"= (b) = 0 for
n>2, and h") € Ly [a,b]. Let w : [a,b] — C such that
w € Ly [a,b], then

by w(a+b— a b
/u—(t)Jr (2+b t)h(t)dt—ih( )erh(b)/a w(t)dt

s ([ 70 w<r>|2dr)£

IN

(15)
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Moreover, if w is symetrical namely w(a+b—1) = w(t) Since w is symmetrical, we get
forallt € [a,b], then

» ha) L h(b) b /.bw(t)h(aerft)dt: / (@b )h(t)de = /.bw(t)h(t)dt.
/ w(t)h(t)dt—f/ w(t)dt a a a

(16)

Then by the modulus property, we have

1
1 b 2 ,\? P([h(e)+h(a+b—1)  h(a)+h(b
< 30D (/ P(t) [w(t)| dt) ][ <2* L as)
a b
b " o N ’ / (w(t)h(e) + w(t)h(a+b—1)]di — M/ w(t)dt
(/a Q(f)’h )+ (=1)"h (a—i—b—t)’ dt) h(a)+h(b) >
/ (o) h(e) +w(n)ha+b—1))dr - =2 / w(t)dt
Proof-Define the function g : [a,b] — C as: _ /bw(t)h(t)dF h(a) +h(b) /hw<t)dt A
a 2 a
g(t)= hiz) +h(§+b7t) — h(a);h(b), t € la,b] Using the inequalities (17) and (18), we get the desired
result (15).
so that . . .. .
Corollary 4.With the assumptions of Proposition I and if
g(n) (1) = R () + (=1)"h" (a+b—1) R+ s Lipschitzian with constant L > 0 , namely
2 ' }h(zk“)(t)—h@k“)(s) < L|t—s| for any t,s € |a,b],

Thus, we have g0 (a) = g@ (b)) =0,i=0,1,2,...n—1, *k=0,1,.,n, then

n > 1.If we select f as: byt b—t h hb) b
/ wt) +wia+ )h(t)dt—i(a); ( )/ w(t)dt
a

1] th—1 2 a
/ / / dsdln 1...dty, \/_ , 1
2(b—a)" 2
SL(i'a) </ P(t)|w(t)|2dt> . (19)
FD () =w(r). 8(n!) a
Substituting this into (6), we get Proof.Consider the function g : [a,b] — C defined by
b h(t)+hla+b—1t) h(a)+h(b) h(t)+h(a+b—1)  h(a)+h(b
/a W(t)[ 2 B } di g(t) = Uks (§+ 0_ (a); (),te[a,b],
N : () = MO+ ) W @b 1)
< —) / | dt 2
Thus, we have g®) (a) = g (b) =0, i=0,1,2,....n— 1,
b 2 3 n > 1. If we select f as below in (6),
/ h(" +(=1)"n" (a+b—1) U
t T
2 //] / (s)dsdtn_y...dn,
1
| b . 2 f(n) (t) =
< / P(t) |w(r)[2dr
1 J Then, we get
1 b —
b . ! / w(t) [h(t)—l—h(a—i—b t)_h(a)—i—h(b)]dt (20)
x /Q(t) 106+ (1) h O @+ b —1)| ar | 2 ] 2
“ < L ( | dl)
Change the variable u = a+b —t,t € [a,b], then (n!)
1
b _ b 2 2
/ w(t)+w(a+b t)h(t)dt_h(a)+h(b)/ w(t)de|(17) AR () — h(2k+1)(a+b7t)’ 2
Ja 2 2 a / dt
2

/a LRVt — M / (o)t |

ﬁ (/abP(t)w(t)zdt); = 200 (/abl"(t)IW(t)lzdt)2
x (/b (1)

—

[\

1

; : 2
h(n)(t)+(_l)nh(n)(a+b_t)’2dt) . x (/ Q(t)‘h(zk“)(t)—h(2k+‘)(a+b—t)’2dt)
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Calculating the last integral of the inequality, we have

1

1
b )
(/ o(r) ‘h(z"“) (1) = HOH) (a4 b — t)‘zdt> T e
atb

b
(/a 2
9 la+b
_ </ ( t)Lz(Ztab)zdt
a 2
b +b %
a 2 2
+/# (t—T)L (2t —a—b) dt) .

Change the variable u = “—erb —t, we obtain

—1

2 2 2
L t—a—b+1)] dt)

1

b 1
(/ Q(t)’h(2k+l)(t)_h(2k+l)(a+b_t)‘2dt)2 (22)
V2

S T (b — Q)ZL.

It follows that

/abw(f) [h(t)+h(za+bt) B h(a);h(b)} g (23
< Sﬁ) (b—a)’L ( / p(1) |w<r>|2dz) §

which completes the proof.

Theorem 4(Fejer Inequality). Consider the integral

fabh(x)w(x)dx, where h is a convex function in the
interval (a,b) and w is a positive function in the same
interval such that

w(x) =w(a+b —x), for any x € |a,b]

i.e., y=w(x) is a symmetric curve with respect to the
straight line which contains the point (% (a+b),0) and is
normal to the x-axis. Under those conditions the
following inequalities are valid:

a+b 1 b h(a)+h(b)
h( 5 ) < fbw(x)dt/a h(x)w(x)dx < —

a

(24)
If h is concave on (a,b), then the inequalities reverse in
(24).
If w=1, (24) becomes the well known Hermit
Hadamard inequality

a b a
h(%b) < ﬁ/a h(x)dx < M (25)

We have the following reverse of Fejer inequality:

Corollary 5.Let h : [a,b] — R be a convex function and
w: [a,b] — (0,0) be continuous, symetrical on [a,b] and

such that K"~V (a) = k=Y (b) = 0 for n > 2, and h'") €
Ly [a,b]. Then

ha)+h(p) 1 b
0 T e / h(t)w(t)dr
< ([ Pobwrar) 26

1

x (/abQ(t)‘h(”)(t)+(—1)"h(”)(a+b—t)‘2dt>2

Furthermore, if h®+*V) s L-Lipschitzian k = 0,1,..,n,
then

h(a)+ h(b) 1 b
08 S / h(r)w(t)di
V2(b—aP [ b :
< WL( / P(t)|w(t)|2dt) . @7

Proof.Let us take the following two functions in (6),

£t) :/at /atl .../at’Hw(s)dsdt,,,l...dt],

7 (1) = wie),

o) = MO+ h(za +b-1) h(a) erh(b)

, 1 €la,b]

K@)+ (=1)"h" (a+b—1)

) (1) =

Since w is symetrical and R is L-Lipschitzian, we have

/abw(t) [h(t) +h(§+b ~1) h(a) ;—h(b)} y

/a " w(Oh(e)d — w / w0\t

<0 ( / bP<r>|w<r>|2dt>é

X (/abQ(t) ’h(”)(t) F(=1)" ™ (a+bt)’2dt) : .

(28)

Using the L-Lipschitzian of h(2kH1D) ,k=0,1,..,n as well as
the Fejer inequality in (28), we get the desired results (26)
and (27).

3 Conclusion

In this paper, we established some new n-th order Opial
type integral inequalities for differentiable functions by an
extension of (2)—(3). Moreover, taking some special cases,
we obtained some results on Opial type inequalities which
were obtained before in the literature. They provide some
new estimates on such types of inequalities.
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