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Abstract: In this paper, we model average monthly rainfall for South Africa using the parent distribution and extreme value theory

(EVT). The 100-year return level plays an important role to hydrologists, meteorologists and civil engineers. Hence, the paper focuses

on modelling the 100-year return level of average monthly rainfall for South Africa using the parent distribution and EVT. The present

paper aims to compare the extreme quantile estimates of the EVT and parent distributions as well as to reveal the risk brought by heavy

rainfall in South Africa. The method of maximum likelihood was used to estimate unknown parameters. We first investigate the parent

distribution of the average monthly rainfall for South Africa. The results showed that the two-parameter Weibull distribution, which is

in the domain of attraction of the Weibull family, is the appropriate parent distribution to model the data. We then perform a comparative

analysis of the 100-year return level using the two-parameter Weibull distribution, the generalised extreme value distribution (GEVD),

and the Poisson point process. The findings revealed that the 100-year return level of the two-parameter Weibull distribution was lower

compared to that of the GEVD and Poisson point process model. The 100-year return level of the GEVD was equal to that of the

observed maximum for the series, whereas that of the Poisson point process was slightly higher than the observed maximum average

monthly rainfall for South Africa. Moreover, EVT models gave higher quantile estimation of the 100-year average monthly rainfall for

South Africa compared to the parent distribution. Furthermore, EVT based estimation gave narrower confidence intervals as compared

to the wider confidence interval of the parent distribution. Therefore, EVT models can play an important role in disaster risk reduction

and civil engineering constructions, such as bridges and dams.

Keywords: 100-year return level, Extreme value theory, Generalised extreme value, Poisson point process, Two-parameter Weibull

distribution.

1 Introduction

Extreme value theory (EVT) is a statistical discipline that
develops techniques and models to make inferences about
rare events [1]. It can also be used for risk assessment on
financial markets, telecommunications for traffic
prediction, portfolio adjustment in insurance companies
and prediction of the occurrence of environmental
phenomena, such as rainfall and storms.

Several studies on the applications of EVT in various
disciplines have been conducted. Bali [2] applied
generalised extreme value approach to model financial
risk measurement. The results revealed that the loss of
financial institutions can be accurately estimated using
EVT. In a separate study on patients in intensive care unit

(ICU) in the United Kingdom, [3] adopted EVT to build a
probabilistic detector that identifies patients who are in a
deterioration state. The study indicated that about 20,000
unforeseen patients admitted to ICU could be avoided if
they had this detector. Diriba et al. [4] used the
generalised extreme value distribution (GEVD) and
Gumbel distribution to model rainfall data in East
London, South Africa. Their findings showed a
decreasing trend of extreme rainfall events throughout the
past six decades.

Jaruskova and Hanek [5] compared the peaks-over
threshold and block maxima approaches in extreme value
theory. Their findings revealed that if a series is very long,
the shape parameter of the GEVD and generalised Pareto
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distribution (GPD) are likely to be very close to each
other. It was revealed that GEVD is sensitive to outliers
and it often produces high quantile estimates. A separate
study by [6] presented an evidence on how heavy rainfall
can flash away the seeds during the early stages of
ploughing. Dyson and Van Heerden [7] presented an
evidence on how heavy rainfall affected the people of
Zimbabwe, Mozambique, and South Africa. The report
showed that Limpopo province in South Africa suffered a
severe loss of R1.3 billion in infrastructure and roads and
roughly 200 bridges were also destroyed. In Zimbabwe
and Mozambique, approximately 600 people lost their
lives and others were forced to leave their own homes.
The previous pieces of literature demonstrates that the
extreme events are still happening and it is important to
model these rare events.

The paper aims to model the average monthly
maximum rainfall of South Africa using a parent
distribution and EVT with a particular interest in the
comparative analysis of the 100-year return level of the
parent and EVT distributions. To the best of our
knowledge, this type of work has not been done in South
Africa and literature is scarce in the other parts of the
world. This paper benefits the government officials who
undertake the responsibility of disaster management, risk
management, food security, and private sectors. The
findings also help climatologists, hydrologists,
meteorologists, and decision makers manage floods in
South Africa. Knowledge of the quantile estimates of the
extreme rainfall events will reduce the amount of money
spent by the government and insurance companies on
disaster relief operations, property recovery and loss of
lives since the government will be well prepared for these
natural disasters.

The rest of the paper is organised as follows: Section
2 presents the research methodology which comprises,
the data source, study area, the family of distributions and
extreme value techniques applied in the analysis of the
data. Section 3 presents the results of the study in the
form of tables and figures, as well as a detailed discussion
of the results. Section 4 is devoted to conclusion and
recommendations. While acknowledgements and
references are presented at the end of the paper.

2 Research Methodology

This paper focuses on modelling average monthly rainfall
for South Africa using three approaches: The parent
distributions, GEVD and Poisson point process
distribution. Four candidate parent distributions are
investigated to identify a suitable parent distribution for
average monthly rainfall in South Africa. The selected
parent distribution is then used to estimate the 100-year
return level and compared to the 100-year return level
quantile estimates of the EVT models.

2.1 Data source and study area

The data used in this study is secondary data and is
average monthly rainfall for South Africa, measured in
millimeters (mm), obtained from South African Weather
Service (SAWS) for the period 1940 - 2017. The time
series data covers the whole of South Africa.

2.2 Augmented Dickey-Fuller Test

The augmented Dickey-Fuller (ADF) test is widely used
to test whether a certain data set is stationary or not.
According to [8], the ADF test is derived from the
expression below:

yt = dt +β1yt−1 +
ρ−1

∑
i−1

γi∆yt−1 + εt ,

where dt = ∑
ρ
i=1 φit

i, for ρ = 0,1. The null hypothesis
to be tested is given by H0 : β1 = 1 (The data is not
stationary) and the alternative hypothesis is: H1 :| β1 |< 1
(The data is stationary).

2.3 Candidate distributions

The framework of the cumulative distribution functions
(CDFs) for the candidate distributions is presented in this
subsection. The candidate distributions consist of four
parent distributions, presented as follows:

Weibull distribution

We have two types of Weibull distributions: The
two-parameter and the three-parameter. The cumulative
distribution function (CDF) of the two-parameter Weibull
distribution is given by:

F(x) = 1− exp

(

−

(

x

β

)α)

,

while the CDF of the three-parameter Weibull distribution
is given by:

F(x) = 1− exp

(

−

(

x− γ

β

)α)

,

where γ is a location parameter, β is the scale parameter
and α is a shape parameter. This distribution is commonly
used in hydrology and reliability studies [9], [10], [11].
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Gamma distribution

The CDF of the gamma distribution is defined as:

F(x) =
Γ(x−γ)/β (α)

Γ (α)
,

where γ,β > 0 and α are the location, scale and shape
parameters, respectively. Γ is called the gamma function
[9], [10], [11],.

Pareto distribution

There are two types of Pareto distributions: The
two-parameter and three-parameter distribution [12].
Suppose X is a random variable that follows a
two-parameter Pareto distribution, then the CDF of X is:

F(x) =
( x

σ

)−ξ
, x > σ ,

where σ and ξ are the scale and shape parameters,
respectively. The CDF of the three-parameter Pareto
distribution is given by:

F(x) =

[

1+

(

x− µ

σ

)]−ξ

, x > µ ,

where σ , µ and ξ are the scale, location and shape
parameters, respectively.

Log-normal distribution

There are two log-normal distributions, the two-parameter,
whose CDF is given by:

F(x) = Φ

(

lnx− µ

µ

)

,

and the three-parameter log-normal given by:

F(x) = Φ

(

ln(x− γ)− µ

σ

)

,

where γ,σ > 0 and µ are the continuous location, scale
and shape parameters, respectively. Φ is called the
Laplace integral [9] [10], [11].

2.4 Extreme value models

This subsection presents two approaches of EVT: The
block maxima and peaks-over-threshold (POT). We start
by presenting the framework of the GEVD, which
represents the block maxima, followed by the model
development of Poisson point process for extremes,
which represents the POT realisation.

Generalised extreme value distribution (GEVD)

According to [1], the model development of GEVD is
based on the statistical behaviour of
Mn = max(X1, · · · ,Xn), where Xi for i = 1, · · · ,n
represents the sequence of independent and identically
distributed (iid) random variables that have the same
underlying distribution function F . In EVT, the GEVD is
said to be the limiting distribution of the normalised
maxima of Xi, for i = 1, · · · ,n. The unified GEVD for
modelling maxima is given by:

G(z) = exp

(

−

[

1+ ξ

(

z− µ

σ

)]− 1
ξ
)

, (1)

which is defined on {z : 1+ ξ

(

z−µ
σ

)

> 0}. Equation

1 has three parameters: The location (µ) defined on
−∞ < µ < ∞, scale (σ > 0) and shape (ξ ) defined on
−∞ < ξ < ∞.

The GEVD unites three families of distributions
depending on the value of the shape parameter: Frechet
type when ξ > 0, Weibull when ξ < 0 and Gumbel type
when ξ = 0. In order to estimate the return levels and
their corresponding return periods, we first obtain the
quantile function using the results in (1). Now, let
G(zp) = 1− p, then (1) becomes:

zp = µ −
σ

ξ

[

1−

(

− log(1− p)

)−ξ]

, ξ 6= 0. (2)

Note that for very small values of p and also for ξ < 0,
(2) becomes:

zp = µ −
σ

ξ
. (3)

The formula in (2) is used to estimate the return levels
of historical data.

The Poisson point process for extremes

In EVT, the Poisson point process framework is said to be
similar to that of POT approach [1].

Suppose that X1,X2, · · · are independent and
identically distributed (iid) random variables with the
same distribution function F . Again, suppose that the Xi’s
are observed values within the data set such that
Mn = max{X1, · · · ,Xn}.

Now, if there exist sequences of constants {an > 0}
and {bn} such that

Pr{(Mn − bn)/an ≤ z}→ G(z),
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where

G(z) = exp











−

[

1+ ξ

(

z− µ

σ

)]−
1

ξ











,

with z− and z+ being the lower and upper endpoints
of G, respectively. Then, we have the sequence of point
processes

Nn = ((i/(n+ 1)),(Xi− bn)/an : i = 1, · · · ,n)

that will converge on this region (0,1)× [u,∞), for any
u > z−, to a Poisson process with intensity measure on
A = [t1, t2]× [z,z+] which is given according to [1] by:

Λ(A) = (t2 − t1)

[

1+ ξ

(

z− µ

σ

)]−
1

ξ . (4)

3 Results and Discussion

This section presents the results based on the three
quantile estimation approaches of the average monthly
rainfall for South Africa. The descriptive statistics of the
data are presented, followed by an investigation of the
goodness-of-fit of four candidate distributions to select
the suitable parent distribution and then estimate the
return levels of GEVD, Poisson point process and
selected parent distribution.

3.1 Descriptive statistics

Table 1 presents the summary statisitcs of average
monthly rainfall for South Africa and stationarity test.

The results in Table 1 reveal that the average monthly
rainfall readings for South Africa range from 3.20 mm to
175.00 mm, with a median of 44.80 mm. The data is
positively skewed (mean > median) and the kurtosis
value which is greater than 3 suggests that the data may
follow a heavy-tailed distribution. The level of
significance used in this study is 5%. Since p-value is
0.01 in Table 1, the null hypothesis stating that the time
series data is not stationary was rejected. According to the
ADF test in Table 1, the time series data is stationary.

3.2 Investigating goodness-of-fit of parent

distributions

In this subsection, we investigate the goodness-of-fit of
four candidate parent distributions: The Weibull, gamma,

lognormal and Pareto distributions. Table 2 presents
results for the goodness-of-fit based on AIC and BIC.

The results in Table 2, based on the smallest values of
both the AIC and BIC, suggest that Weibull distribution
provides the best fit to the data and this distribution is the
Weibull domain of attraction in the EVT context. We
proceed to perform a visual comparison of the Weibull
and gamma distributions diagnostic plots since their
corresponding AIC and BIC values in Table 2 are very
close.

Figure 1 presents the diagnostic plots for the
two-parameter Weibull and gamma family of
distributions. The diagnostic plots for the Q-Q plot, in
Figure 1, reveal that there exists lack of fit at the tails of
both the two-parameter Weibull and gamma distributions.
However, the P-P plot suggests a reasonably good fit for
both the two-parameter Weibull and gamma distributions.
Based on the diagnostic plots and the findings in Table 2,
the Weibull domain of attraction which includes the
two-parameter Weibull distribution is the best parent
distribution to model the data.

3.3 Quantile estimation for Weibull, GEVD and

Poisson point process models

Table 3 presents the parameter estimates and their
corresponding 95% confidence intervals for the
two-parameter Weibull, GEVD and Poisson point process
models. The shape of the GEVD is negative according to
Table 3, which suggests that the underlying distribution of
the data belongs to the Weibull domain of attraction. In
addition, the non-inclusion of zero in the confidence
interval implies that the underlying distribution is strictly
in the Weibull domain of attraction. These results are
supported by the findings in the previous subsection
which indicated that the distribution of the average
monthly rainfall for South Africa can be modelled by the
Weibull distribution.

According to the findings from Table 2 and Figure 1,
the selected parent distribution was Weibull. We therefore
proceed to compute the 100-year return level of the
Weibull and the two EVT distributions. According to
[13], the quantile function of the Weibull distribution is
given by:

Xp =
[

β ln

(

1

1− p

)

]
1
α
.

Table 4 presents the results of the 100-year return
levels and their corresponding confidence intervals for the
two-parameter Weibull, GEVD and Poisson point process
models. Thus, the average monthly rainfall estimates that
are expected to be exceeded, at least once every 100 years
(99th percentile) are 161.13 mm (two-parameter Weibull),
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Table 1: Summary statistics of the rainfall data.

min mean median Q1 Q3 max kurtosis skewness ADF Test

3.20 51.15 44.80 19.57 75.03 175.00 3.05 0.80 -9.41 (p = 0.01)

Table 2: Selection of the most appropriate parent distribution.

Name Pareto Weibull gamma lognormal

Akaike’s Information Criterion (AIC) 9241.879 9059.184 9061.132 9122.403

Bayesian Information Criterion (BIC) 9251.563 9068.867 9070.815 9132.086
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Fig. 1: Diagnostic plots for two-parameter Weibull and gamma distributions (Key: The red line represents the gamma distribution and

the green line represents the Weibull distribution).
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Table 3: Parameter estimates and the 95% confidence intervals based on the Weibull, GEVD and Poisson point process.

Model µ 95% CI of µ σ 95% CI of σ ξ 95% CI of ξ

Weibull 1.46 (0.04) (1.38, 1.54) 56.61 (1.33) (54.00, 59.22) - -

GEVD 107 (3.15) (101.24, 113.58) 24.53 (2.30) (20.02, 29.04) -0.25 (0.09) (-0.43, -0.07)

Poisson 62.48 (3.10) (56.40, 68.56) 7.68 (0.08) (6.11, 9.25) -0.37 (0.03) (-0.43, -0.31)

Table 4: Quantile estimates and their corrresponding confidence intervals based on the two-parameter Weibull, GEVD and Poisson

point process.

Model 100-year return level 95% CI

Weibull 161.13 (133.56, 188.44)

GEVD 174.99 (158.47, 191.32)

Poisson point process 178.44 (170.06, 189.09)

174.99 mm (GEVD) and 178.44 mm (Poisson point
process). This implies that the 100-year return level of the
point process model is greater than the maximum
observed average monthly rainfall of 175 mm, which in
turn is equal to the 100-year return level of the GEVD.
However the 100-year return level of the two-parameter
Weibull distribution is the lowest. The results in Table 4
also reveal that the 95% confidence interval for the
two-parameter Weibull is wider than that of the GEVD
which in turn is wider than that of the Poisson point
process. In other words, the Poisson point process has the
narrowest confidence interval.

4 Conclusion and Recommendations

This paper revealed that the average monthly rainfall data
for South Africa can be well modelled by a distribution in
the Weibull domain of attraction based on the
investigation of the candidate distributions and the
GEVD. The Poisson point process model also revealed
how long South Africans must wait to receive rainfall of
greater magnitute than that of February 2000. Moreover,
the 100-year return level of the two-parameter Weibull
distribution was lower compared to that of the GEVD and
Poisson point process models.

The study suggests some future research directions
that may help improve the accuracy and reliability of the
findings. Since the study revealed some evidences that
South Africa might experience higher than expected
rainfall in the coming years based on 100-year quantile
estimates of the GEVD and Poisson point process, it is
recommended that the meteorologists, hydrologists, and
geoscientists identify the locations of the likely impact or
vulnerable areas. Moreover, the findings might be
improved in the future if we utilise multivariate
spatio-temporal extreme value modelling and Bayesian
approach in extreme value parameter and quantile
estimation.
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