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Abstract: Formally exact time-convolutionless master equation was derived by means of the projection operator method for the

reduced statistical operator of a multi-level quantum system interacting with arbitrary external deterministic fields and dissipative

environment simultaneously. While being closed and homogeneous in the reduced statistical operator, this equation accounts for

thermodynamically equilibrium correlations between the multi-level system and the environment at the initial moment of time. On

the basis of the exact master equation, an approximate time-convolutionless master equation for the reduced statistical operator was

derived in the second order of the system-environment interaction strength. It was shown that the analysis of this equation can be

simplified if the free Hamiltonian dynamics of an arbitrary quantum multi-level system driven by the external fields is described in

terms of the SU(N) algebra representation, so the master equation in question can be reduced to a set of ordinary differential equations

for a finite number of time-dependent coefficients. As a consequence, efficient numerical methods can be employed to solve this master

equation for various physically realistic quantum models of theoretical and practical importance.
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1 Introduction

Nowadays, theoretical research activities in every domain
of applied physics imply, in effect, studies of various
models of open quantum systems interacting with their
respective environments and driven by external fields
simultaneously. Under general circumstances, quantum
objects can be rarely considered as closed systems
isolated from their environment. As a rule, the
environment affects the dynamics of a quantum system
significantly by leaking the energy from the system by
means of irreversible dissipative processes and by
inducing decoherence processes within it. As a
conventional starting point in most studies of open
quantum systems, the quantum system of interest and its
environment are considered a closed system. This
compound system is described by some model
Hamiltonian, which governs its combined unitary and
reversible dynamics. In most instances of practical
importance, such a total system possesses an enormous

and infinite number of degrees of freedom. Most of these
degrees, which belong to the environment, cannot be
observed or controlled individually by any available
experimental technique. Hence, the detailed knowledge
about their behavior is of little interest for any practical
purpose. Equally, from the purely theoretical point of
view, there is no way to explicitly deduce from the
original model Hamiltonian a total statistical operator
describing the evolving non-equilibrium entangled state
of the system and the environment altogether for the
majority of the physically relevant realistic models.
However, it is possible, at least formally, to “trace out”
the environmental degrees of freedom from the total
statistical operator. The ensuing reduced statistical
operator describes the dynamics of the quantum system of
interest only. Hence, the first step in any theoretical study
in the field of open quantum systems is to derive the
so-called master equation, i.e. the equation of motion for
the reduced statistical operator. This equation provides
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one with complete knowledge about the evolution of the
quantum state of the system itself and allows to study the
processes of energy dissipation and decoherence. In fact,
any master equation describes a complicated process of
the system self-interaction. First, the system of interest
interacts with the environment while changing its own
state and the state of the environment in the process.
Thereafter, the changed state of the environment affects
the state of the system and changes its state. Thus, it
seems that the system interacts with itself, then the state
of the system at any given time is influenced by its states
at all previous moments of time, i.e. the dynamics of the
system is stipulated by its history. An essential and very
important feature of master equations is that they are
formally exact equations, which are closed in their
respective reduced statistical operators. In most cases,
these master equations are not tractable in their original
form. Nevertheless, they are invaluable for the subsequent
derivation of various approximate master equations
which, in their turn, can be treated analytically and/or
numerically. Numerous approaches to derivation of
master equations have been proposed so far and are
prevalently used at the present. The most rigorous are the
microscopic ones, which start with explicitly formulated
model Hamiltonian representing the generator of unitary
and reversible dynamics of the total system. This
dynamics is defined by the Liouville-von Neumann
equation for the total statistical operator describing the
entangled state of the quantum system and its
environment. Among microscopic approaches, broadly
applicable projection operator formalism, proposed in [1],
proved that it is a flexible and universal mathematical
tool. This approach allows to derive formally exact closed
equation in the reduced statistical operator
integra-differential time-local (time-convolution) or
purely differential time-nonlocal (time-convolutionless)
equations [2,3,4,5], albeit with one essential caveat: in
general case, these equations contain non-homogeneous
in the reduced statistical operator additive terms for
arbitrary initial conditions. These terms represent
formidable obstacles for subsequent attempts at numerical
or analytical solution of exact and approximate master
equations by conventional methods. The
non-homogeneous terms disappear if the total statistical
operator can be factorized at the initial moment of time,
e.g. if the system and its environment are initially
independent and uncorrelated. This assumption seems
plausible for a great number of realistic experimental
setups, but it is unjustified in general unless the initial
uncorrelated state can be prepared artificially. In this
study, we are preoccupied with a broad class of open
quantum systems of practical importance in various fields
of physics. All of them allow description by essentially
one and the same model of an open quantum system
possessing finite number of energy eigenstates and driven
by multiple external deterministic fields of various nature,
while interacting simultaneously with its environment.
The said environment comprises of a multitude of heat

bathes of various nature and structure represented by their
own respective, either quantum or stochastic classical
models. For example, in the domain of quantum optics,
this model may represent an N-level one-electron “atom”
excited by external electromagnetic semiclassical (laser)
fields and interacting with an environment made of
plurality of electromagnetic modes in free space or a
cavity. Alternatively, the same model may describe an
open quantum system of reduced dimensionality, like a
quantum dot, interacting with external fields and its
environment is made of not only electromagnetic modes
but also quantized collective solid state quasi-particle
excitations, like phonons. Generally, in either of these
occurrences, the external fields are applied to a quantum
system that is already correlated with its environment to
some degree by the initial moment of time. Typically, the
system and its environment are in the state of thermal
equilibrium initially and their correlations can not be
always neglected. Therefore, conventional homogeneous
master equations are not useful anymore in this case. At
the same time, it is highly desirable to derive master
equations, which account for initial correlations while
preserving homogeneity in reduced statistical operator. In
this work, we employ well-established projection operator
techniques supplemented with representation of an
N-level open quantum system in terms of the SU(N)
operator algebra formalism to derive exact and
approximate time-convolutionless homogeneous master
equations for the reduced statistical operator of the
N-level quantum system while taking into account, along
with the approach recently outlined in [6], the correlations
between the system and its environment, which are
initially in the state of thermal equilibrium.

The paper is organized, as follows: In Section 2,
general features pertinent to the driven dynamics of a
multi-level quantum system interacting with arbitrary
external deterministic fields are discussed. In Section 3,
we derive formally exact, as well as approximate,
time-convolutionless, or time-local, differential equations
for the reduced statistical operator of the quantum system
in question under the assumption that the system and its
environment are uncorrelated at the initial moment of
time. In Section 4, this assumption is avoided in favor of
much more general and plausible assumption that the
system and the environment are in the state of thermal
equilibrium initially. Under this assumption, formally
exact time-convolutionless differential equation for the
reduced statistical operator of the quantum system is
derived. This equation is closed and homogeneous in the
reduced statistical operator. An approximate
time-convolutionless differential equation for the reduced
statistical operator is derived in the second order of the
system-environment interaction strength, as well. This
approximate equation is thoroughly analyzed in Section 5
by means of its proper reformulation in terms of the
SU(N) algebra representation of the quantum system
dynamics previously outlined in Section 2. Section 6
involves the results.
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2 Dynamics of a multi-level quantum system

driven by deterministic external fields

Typical Hamiltonian of an open multi-level quantum
system driven by deterministic external fields can be
written as

Ĥ(t) = ĤS(t)+ ĤB + ĤSB, (1)

where ĤB stands for the Hamiltonian of the environment
B and ĤSB describes the interaction between the system S

and the environment. The driven dynamics of the system
S, induced solely by external fields of arbitrary nature and
time dependence, is governed by the following
Hamiltonian

ĤS(t) =
N

∑
m

Emσ̂mm +
N

∑
m,n

Vmn(t)σ̂mn, (2)

where N is the number of the system energy eigenstates
with their corresponding eigenvalues Em, and the
projection and transition operators σ̂mn = |m〉〈n| are given
in the standard bra- and ket- notation, so conventional
commutation relations hold

[σ̂i j, σ̂kl ] = σ̂ilδ jk− σ̂k jδil . (3)

The factors Vmn(t) account for the intensity and time
dependence of the external fields. It is assumed that these
fields are switched on at the time moment t0, so

Vmn(t) = 0 for t ≤ t0 ∀m,n. (4)

The driven dynamics of the system S is governed by the
Liouville-von Neumann equation for its statistical operator

∂

∂ t
ρ̂S(t) =−

i

h̄
[ĤS(t), ρ̂S(t)]. (5)

Three groups of Hermitian operators u, v and w were
introduced in[6]:

û jk = σ̂ jk + σ̂k j, v̂ jk =−i(σ̂ jk− σ̂k j), 1≤ j < k ≤ N, (6)

ŵl =−

(

2

l(l + 1)

)1/2

(σ̂11 + ...+ σ̂ll− lσ̂l+1,l+1),

1≤ l ≤ N− 1, (7)

so there exist N2 − 1 operator variables totally. These
operators are the generators of the SU(N) algebra, and if a
vector ŝ is defined as an ordered sequence of these
operators as

ŝ = (û12, ..., ûN−1,N , v̂12, ..., v̂N−1,N , ŵ1, ..., ŵN−1), (8)

then its components ŝi satisfy commutation relations

[ŝ j, ŝk] = 2i
N2−1

∑
l=1

f jkl ŝl , (9)

where f jkl is a completely antisymmetric structure tensor
of the SU(N) algebra. In terms of the vector ŝ
components, the statistical operator and Hamiltonian (2)
take their respective forms

ρ̂S(t) = N−1 Î +
1

2

N2−1

∑
j=1

S j(t)ŝ j , (10)

ĤS(t) =
h̄

2

N2−1

∑
j−1

Γj(t)ŝ j +C(t)Î, (11)

where the coefficients S j(t) and Γj(t) are defined as

S j(t) = SpS{ρ̂S(t)ŝ j}, (12)

Γj(t) = h̄−1SpS{ĤS(t)ŝ j}, C(t) = N−1SpS{ĤS(t)}. (13)

Expressions (10-13) were derived by means of the identity

SpS{ŝ j ŝk}= 2δ jk, (14)

which can also be employed for the calculation of the
structure tensor f jkl by multiplying relation (9) with
arbitrary vector component ŝp and tracing its both sides as

SpS{ŝ j ŝk ŝp}− SpS{ŝkŝ j ŝp}= 4i f jkp, (15)

wherefrom

f jkp =
i

4
(SpS{ŝk ŝ j ŝp}− SpS{ŝ j ŝk ŝp}). (16)

The last term in Eq.(11) is proportional to the identity
operator Î, it does not affect the system dynamics and will
be omitted in what follows. Then, a system of ordinary
differential equations for the vector made of coefficients S

d

dt
Si(t) =

N2−1

∑
j,k=1

fi jkΓj(t)Sk(t) (17)

follows from Eqs.(5), (10) and (14). All components of
the vector S are real numbers and, due to complete
antisymmetry of the tensor fi jk, the length of the vector S
is conserved. Thus, Eqs.(17) describe the rotation of this
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vector in the space of N2 − 1 dimensions. Let us notice
that all the operators ŝ j are traceless, i.e. Sp{ŝ j} = 0, so
the probability conservation condition for the statistical
operator ρ̂S(t) presented in the form (10) is satisfied
automatically for arbitrary values of the coefficients S j(t),
whose feature may be of convenience upon usage of
approximative numerical methods to calculate them. Let
us consider a system of the Heizenberg equations

∂

∂ t
ŝl(t) =

i

h̄
[ĤS(t), ŝl(t)], l = 1, ...,N2− 1 (18)

for the operator components ŝl(t). Its solutions can be
always written as

ŝl(t, t0) =
N2−1

∑
p=1

Cl p(t, t0)ŝp,

Cl p(t0, t0) = δl p, l = 1, ...,N2− 1. (19)

From this ansatz as well as relations (9) and (11), a system
of equations

d

dt
Cl p(t, t0) =−

N2−1

∑
j,k=1

fp jkΓj(t)Clk(t, t0),

Cl p(t0, t0) = δl p, l, p = 1, ...,N2− 1 (20)

for the coefficients Cl p(t, t0) follows. For any fixed index l,
this system is similar to that of Eqs.(17) for the statistical
operator coefficients Si(t) and describes the rotation of the
vector with components Cl p(t, t0) in the space of N2− 1
dimensions, too.

3 Time-convolutionless master equation

without initial system-environment

correlations

In the interaction picture

˜̂ρ(t) =U+
0 (t, t0)ρ̂(t)U0(t, t0), (21)

˜̂HSB(t) =U+
0 (t, t0)ĤSB(t)U0(t, t0), (22)

we find, as usual, the Liouville-von Neumann equation for
the total statistical operator of the system (1)

∂

∂ t
˜̂ρ(t) =−

i

h̄
[ ˜̂HSB(t), ˜̂ρ(t)] = L̃(t) ˜̂ρ(t), (23)

where the superoperator L̃(t) is given by

L̃(t)...=−
i

h̄
[ ˜̂HSB(t), ...]. (24)

Here the evolution operator U0(t, t0) is defined as

U0(t2, t1) =U0B(t2, t1)U0S(t2, t1), (25)

where U0B(t2, t1) and U0S(t2, t1) are a time-ordered
exponential operator function

U0S(t2, t1) =
←−
T exp{−

i

h̄

∫ t2

t1

dt ′ĤS(t
′)}, (26)

U+
0S(t2, t1) =

−→
T exp{

i

h̄

∫ t2

t1

dt ′ĤS(t
′)}, (27)

with
←−
T and

−→
T that represents the chronological and anti-

chronological time ordering operator, respectively, and

U0B(t2, t1) = exp{−
i

h̄
Ĥ0(t2− t1)}, (28)

U+
0B(t2, t1) = exp{

i

h̄
ĤB(t2− t1)}. (29)

This evolution operator possesses the conventional
properties

U0(t2, t1)U
+
0 (t2, t1) = 1, (30)

U0(t3, t2)U0(t2, t1) =U0(t3, t1), (31)

U0(t2, t1)U0(t1, t2) = 1, U0(t1, t2) =U+
0 (t2, t1). (32)

Employing the projection operator formalism introduced
originally in[1], Eq.(23) can be transformed into a couple
of equations for the relevant ˜̂ρ1(t) and irrelevant ˜̂ρ2(t)
parts of the total statistical operator as

∂

∂ t
P ˜̂ρ(t) =

∂

∂ t
˜̂ρ1(t) = PL̃(t)( ˜̂ρ1(t)+ ˜̂ρ2(t)), (33)

∂

∂ t
Q ˜̂ρ(t) =

∂

∂ t
˜̂ρ2(t) = QL̃(t)( ˜̂ρ1(t)+ ˜̂ρ2(t)), (34)

where the operators P and Q are some projection
operators such that

P
2 = P, Q = 1−P, PQ = 0, (35)

and
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˜̂ρ(t) = P ˜̂ρ(t)+ (1−P) ˜̂ρ(t)= ˜̂ρ1(t)+ ˜̂ρ2(t). (36)

The second of these equations for the irrelevant part can
be formally integrated to give

˜̂ρ2(t) =
←−
G (t, t0)Qρ̂(t0)

+

∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P( ˜̂ρ1(τ)+ ˜̂ρ2(τ)), (37)

where the propagator

←−
G (t,τ) =

←−
T exp

[

∫ t

τ
dt ′QL̃(t ′)

]

(38)

is a solution to the equation

∂
←−
G (t,τ)

∂ t
= QL̃(t)

←−
G (t,τ),

←−
G (τ,τ) = 1. (39)

Let us notice that Eq.(37) can be also presented in the form

˜̂ρ2(t) =
←−
G (t, t0)Qρ̂(t0)

+

∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P

−→
G (t,τ)( ˜̂ρ1(t)+ ˜̂ρ2(t)), (40)

where the propagator

−→
G (t,τ) =

−→
T exp

[

−

∫ t

τ
dt ′QL̃(t ′)

]

(41)

allows to express complete statistical operator ˜̂ρ(τ)
through ˜̂ρ(t) as

˜̂ρ(τ) =
−→
G (t,τ) ˜̂ρ(t) (42)

to get rid of the temporal non-locality in its integrand. Let
us introduce an operator

Σ(t) =

∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P

−→
G (t,τ), (43)

which helps transform Eq.(40) into

[1−Σ(t)] ˜̂ρ2(t) =
←−
G (t, t0)Qρ̂(t0)+Σ(t) ˜̂ρ1(t). (44)

Assuming the existence of the inverse operator
[1−Σ(t)]−1, the irrelevant part of the statistical operator
can be written as

˜̂ρ2(t) = [1−Σ(t)]−1←−
G (t, t0)Qρ̂(t0)+

+[1−Σ(t)]−1Σ(t) ˜̂ρ1(t). (45)

Inserting this formal solution (37) into Eq.(33), we obtain
an exact closed equation of motion for the relevant part of
the statistical operator

∂

∂ t
˜̂ρ1(t) = PL̃(t)P ˜̂ρ1(t)

+K (t) ˜̂ρ1(t)+I (t)Qρ̂(t0), (46)

where

K (t) = PL̃(t)[1−Σ(t)]−1
P, (47)

I (t) = PL̃(t)[1−Σ(t)]−1←−
G (t0, t)Q. (48)

with initial condition

˜̂ρ(t0) = ρ̂(t0). (49)

An assumption about the existence of the inverse operator
[1−Σ(t)]−1 constitutes major problem in justification of
the applicability of the time-convolutionless master
equation. Nevertheless, for some models systems, it can
be rigorously proved[4] in the case of weak enough
interaction ĤSB and/or short enough time interval t− t0.

In numerous practical cases, it is possible to ensure that

PL̃(t)P = 0, (50)

Qρ̂(t0) = 0, (51)

so, Eq.(46) becomes more simple:

∂

∂ t
˜̂ρ1(t) = K (t) ˜̂ρ1(t), (52)

Since one is interested, as a rule, in the weak-coupling
limit of the system-environment interaction, one can find

by assuming
←−
G (t,τ)≈ 1,

−→
G (t,τ)≈ 1, that

∂

∂ t
˜̂ρ1(t) =

∫ t

t0

dτPL̃(t)L̃(τ)P ˜̂ρ1(t) (53)

in the second order in the interaction Hamiltonian ĤSB.
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4 Accounting for initial system-environment

correlations

Now, let us account for the initial correlations in the same
way as it was proposed in [7], assuming that the system S

and the environment B were in thermal equilibrium at the
initial moment of time t0. Thus,

ρ̂(t0) = e−(ĤS(t0)+ĤB+ĤSB)/Sp{e−(ĤS(t0)+ĤB+ĤSB)}. (54)

Then, by means of the identity

e−β Ĥ = e−β Ĥ0−

−
∫ β

0
dλ e−λ Ĥ0Ĥ1eλ Ĥe−β Ĥ , Ĥ = Ĥ0 + Ĥ1, (55)

and noting that for the choice of the projection operator P

in the form (72)

(1−P)e−β (ĤS(t0)+ĤB) = Qe−β (ĤS(t0)+ĤB) = 0, (56)

the irrelevant part of the total statistical operator at the
initial moment of time ˜̂ρ2(t0) = Qρ̂(t0), which is
responsible for the initial correlations, can be written as

˜̂ρ2(t0) =−
Q

∫ β

0
dλ e−λ (ĤS(t0)+ĤB)ĤSBeλ (ĤS(t0)+ĤB+ĤSB)

Sp{e−(ĤS(t0)+ĤB+ĤSB)}

×e−β (ĤS(t0)+ĤB+ĤSB)

=−Q

∫ β

0
dλ e−λ (ĤS(t0)+ĤB)ĤSBeλ (ĤS(t0)+ĤB+ĤSB)

×[
←−
G (t, t0)]

−1( ˜̂ρ1(t)+ ˜̂ρ2(t))

=−IQ(t, t0,β )( ˜̂ρ1(t)+ ˜̂ρ2(t)), (57)

where

IQ(t, t0,β ) = Q

∫ β

0
dλ e−λ (ĤS(t0)+ĤB)ĤSBeλ (ĤS(t0)+ĤB+ĤSB)

×[
←−
G (t, t0)]

−1. (58)

As follows from Eq.(37),

˜̂ρ2(t) =−
←−
G (t, t0)IQ(t, t0,β )( ˜̂ρ1(t)+ ˜̂ρ2(t))

+

∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P ˜̂ρ1(τ). (59)

However, by definition,

˜̂ρ(τ) = [
←−
G (t,τ)]−1 ˜̂ρ(t), (60)

so

˜̂ρ1(τ) = P[
←−
G (t,τ)]−1( ˜̂ρ1(t)+ ˜̂ρ2(t)). (61)

As a result, Eq.(37) can be transformed into

˜̂ρ2(t) =
←−
G (t, t0)Qρ̂(t0)

+
∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P[

←−
G (t,τ)]−1( ˜̂ρ1(t)+ ˜̂ρ2(t)), (62)

wherefrom

˜̂ρ2(t) =[1−α(t, t0)]
−1[α(t, t0) ˜̂ρ1(t)+

←−
G (t, t0) ˜̂ρ2(t0)], (63)

where

α(t, t0) =

∫ t

t0

dτ
←−
G (t,τ)QL̃(τ)P[

←−
G (t,τ)]−1. (64)

Inserting this expression for ˜̂ρ2(t) into Eq.(33), we obtain

the inhomogeneous equation for the relevant part ˜̂ρ1(t)

∂

∂ t
˜̂ρ1(t) = PL̃(t)[1−α(t, t0)]

−1×

×[ ˜̂ρ1(t)+
←−
G (t, t0) ˜̂ρ2(t0)]. (65)

By means of Eqs.(57,63), it is now possible to express the
initial irrelevant part ˜̂ρ2(t0) via the relevant part ˜̂ρ1(t), and
inserting this formal expression for the initial irrelevant
part into Eq.(65), we obtain the closed homogeneous
equation for the relevant part of the statistical operator

∂

∂ t
˜̂ρ1(t) = PL̃(t)[1−α(t, t0)]

−1 (66)

×{1−
←−
G (t, t0)[1+ γ(t, t0,β )

←−
G (t, t0)]

−1γ(t, t0,β )} ˜̂ρ1(t),

where

γ(t, t0,β ) = IQ(t, t0,β )[1−α(t, t0)]
−1. (67)

Being restricted to the second order in the
system-environment interaction strength approximation,
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this equation can be transformed into the following
time-local equation

∂

∂ t
˜̂ρ1(t)=PL̃(t)P ˜̂ρ1(t)

−PL̃(t)

∫ t

t0

dτQL̃(τ)P ˜̂ρ1(t)

−
1

2
PL̃(t)Q

[

I(2)(t, t0,β ) ˜̂ρ1(t)+ ˜̂ρ1(t)I
+
(2)(t, t0,β )

]

, (68)

or, taking into account technical assumption (50),

∂

∂ t
˜̂ρ1(t)=−PL̃(t)

∫ t

t0

dτQL̃(τ)P ˜̂ρ1(t)

−
1

2
PL̃(t)Q

[

I(2)(t, t0,β ) ˜̂ρ1(t)+ ˜̂ρ1(t)I
+
(2)(t, t0,β )

]

, (69)

where

I(2)(t, t0,β ) =

∫ β

0
dλ e−λ (ĤS(t0)+ĤB)ĤSBeλ (ĤS(t0)+ĤB), (70)

I+(2)(t, t0,β ) =

∫ β

0
dλ eλ (ĤS(t0)+ĤB)ĤSBe−λ (ĤS(t0)+ĤB). (71)

5 Approximate time-convolutionless master

equation in terms of the SU(N) algebra

representation

Let us choose the projection operator P as

P...= ρ̂BSpB{...}, ρ̂B = e−β ĤB/SpB{e
−β ĤB}, (72)

where the reference state of the environment ρ̂B is a
thermal equilibrium state of the environment, so the
reduced statistical operator of the system S is given by

ρ̂S(t) = SpB{ρ̂1(t)}. (73)

In what follows, we also assume

SpB{ĤSBρ̂B}= 0, (74)

without loss of generality, because we can always redefine
the Hamiltonians HS(t) and HSB as

ĤS(t)→ ĤS(t)+ SpB{ĤSBρ̂B}, (75)

ĤSB→ ĤSB− SpB{ĤSBρ̂B}, (76)

without making any alteration to the original Hamiltonian
(1). The system-environment interaction Hamiltonian HSB

can be always written in the form

ĤSB =
N2−1

∑
k=1

Êk ŝk + Ê0Î, (77)

where the environment related operators Êk are defined as

Êk =
1

2
SpS{ĤSBŝk}, Ê0 = N−1SpS{ĤSB} (78)

in full analogy with expressions (13). The second term
does not contain any of the operators ŝk and is often equal
to zero for practically useful models. Otherwise, it can be
included into the Hamiltonian HB. Summing up all these
assumptions, we derive from Eq.(53) an approximate
equation for the reduced statistical operator ρ̂S(t) in the
interaction picture

∂

∂ t
˜̂ρS(t) =−

i

2h̄

∫ β

0
dλ

N2−1

∑
n,m

{

[

˜̂sn(t, t0), ŝm(λ ) ˜̂ρS(t)
]

×SpB

{

˜̂En(t, t0)Êm(λ )ρ̂B

}

− h.c.

}

−
1

h̄2

N2−1

∑
n,m=1

∫ t

t0

dt ′
[

˜̂sn(t, t0), ˜̂sm(t
′, t0) ˜̂ρS(t)

]

×SpB{
˜̂En(t, t0)

˜̂Em(t
′, t0)ρ̂B}

−
1

h̄2

N2−1

∑
n,m=1

∫ t

t0

dt ′
[

˜̂sn(t, t0), ˜̂ρS(t) ˜̂sm(t
′, t0)

]

×SpB{
˜̂Em(t

′, t0)
˜̂En(t, t0)ρ̂B}, (79)

where

˜̂sn(t, t0) =U
†
0S(t, t0)ŝnU0S(t, t0) =

N2−1

∑
l=1

C̃nl(t, t0)ŝl , (80)

ŝn(λ ) = e−λ ĤS(t0)ŝneλ ĤS(t0) =
N2−1

∑
l=1

Cnl(λ )ŝl , (81)

˜̂En(t, t0) =U
†
0B(t, t0)ÊnU0B(t, t0), (82)

Ên(λ ) = e−λ ĤBÊneλ ĤB , (83)
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and the coefficients C̃nk(t) are calculated by integrating
Eqs.(20). In accordance with expansion (10) for the
statistical operator ˜̂ρS(t), we will search for a solution to
Eq.(79) in the form

˜̂ρS(t) = N−1 Î +
1

2

N2−1

∑
j=1

S̃i(t)ŝi. (84)

Inserting expansions (80) and (84) into Eq.(79) and
collecting coefficients at the operators ŝk, we obtain, after
some lengthy algebra, a system of differential equations
for the coefficients S̃k(t):

∂

∂ t
S̃i(t) =

N2−1

∑
k=1

[

Ãik(t, t0)+ Ã′ik(t, t0)
]

S̃k(t)

+Ĩi(t, t0)+ Ĩ
′

i (t, t0), (85)

where

Ãik(t, t0) =

=−
1

4h̄2

N2−1

∑
n,m

∫ t

t0

dt ′C̃
(1)i
nmk(t, t

′, t0)SpB{
˜̂En(t, t0)

˜̂Em(t
′, t0)ρ̂B}

−
1

4h̄2

N2−1

∑
n,m

∫ t

t0

dt ′C̃
(2)i
nmk(t, t

′, t0)SpB{
˜̂Em(t

′, t0)
˜̂En(t, t0)ρ̂B}, (86)

Ĩi(t, t0) =
∫ t

t0

dt ′Ĩi(t, t
′, t0), (87)

C̃
(1)i
nmk(t, t

′, t0) =

=
N2−1

∑
l,p=1

C̃nl(t, t0)C̃mp(t
′, t0)SpS{[ŝl , ŝpŝk]ŝi}, (88)

C̃
(2)i
nmk(t, t

′, t0) =

=
N2−1

∑
l,p=1

C̃nl(t, t0)C̃mp(t
′, t0)SpS{[ŝl , ŝk ŝp]ŝi}, (89)

Ĩi(t, t
′, t0) =

=−
1

2Nh̄2

N2−1

∑
n,m

C̃ i
nm(t, t

′, t0)SpB{
˜̂En(t, t0)

˜̂Em(t
′, t0)ρ̂B}

−
1

2Nh̄2

N2−1

∑
n,m

C̃ i
nm(t, t

′, t0)SpB{
˜̂Em(t

′, t0)
˜̂En(t, t0)ρ̂B}, (90)

C̃ i
nm(t, t

′, t0) = 4i
N2−1

∑
l,p=1

C̃nl(t, t0)C̃mp(t, t
′, t0) fil p. (91)

Ã′ik(t, t0) =

=−
i

4h̄

∫ β

0
dλ

N2−1

∑
n,m

B̃i
nmk(λ , t, t0)

×SpB

{

˜̂En(t, t0)Êm(λ )ρ̂B

}

, (92)

Ĩ
′

i (t, t0) =

=−
i

2Nh̄

∫ β

0
dλ

N2−1

∑
n,m

B̃i
nm(λ , t, t0)

×SpB

{

˜̂En(t, t0)Êm(λ )ρ̂B

}

, (93)

B̃i
nmk(λ , t, t0) =

N2−1

∑
l,p

C̃nl(t, t0)Cmp(λ )SpS

{

[ŝl , ŝpŝk]ŝi

}

,(94)

B̃i
nm(λ , t, t0) = 4i

N2−1

∑
l,p

C̃nl(t, t0)Cmp(λ ) fil p. (95)

6 Conclusion

We derived formally exact time-convolutionless master
equation for the reduced statistical operator of an open
quantum N-level system driven by external deterministic
fields and interacting with its environment. This equation
is homogeneous and closed in the reduced statistical
operator, though it is assumed that the system and its
environment are in the state of thermal equilibrium at the
initial moment of time. It was also shown that the
formally exact master equation may serve as a source for
derivation of approximate master equations. One
exemplary approximate master equation was obtained
under the assumption of weak system-environment
interaction strength. No assumptions were made
regarding the system-field interaction strength.
Approximate master equations can be derived in a regular
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way within the frame of a perturbative scheme whose
essence is an expansion of all super-operators in exact
Eq.(66) in powers of the system-environment interaction
strength assumed to be weak. It is important to notice that
the terms, taking into account initial correlations in the
approximate Eq.(69), are formally exact in the second
order in the system-environment interaction strength, so
they match the other terms in this equation.
Representation of the driven dynamics of the system,
resulting from its interaction with external fields, in terms
of the SU(N) algebra formalism is deemed to be
instrumental in facilitating numerical solution of the
approximate equation, which is applied to realistic
physical models of open multi-level quantum systems.
The main difference between the conventional
Nakajima-Zwanzig time-convolution, or time-nonlocal,
master equation and the time-convolutionless equation of
the type (66) is in the time-local form of the latter,
resulting in formally exact and approximate differential
equations. However, the Nakajima-Zwanzig equation
requires an integration over the history of the quantum
system, leading to correspondent integra-differential
equations. Nevertheless, the procedure of derivation for
both types of equations, whether exact or approximate,
relies on the same set of assumptions and approximations.
The absence of time-convolution in Eqs.(66,69,79,85)
does not mean at all that the history of the system is
totally neglected. It is retained, either in full through the
time dependence of super-operators acting on the
statistical operator ˜̂ρ1(t) in the formally exact Eq.(66), or
partially through the time-dependent super-operators or
C-number coefficients of the approximate differential
equations (69,79,85). Therefore, it is generally assumed
that both types of master equations - time-convolution
and time-convolutionless - are able to describe the
approximate non-Markovian dynamics of open quantum
systems with the same accuracy at least in the case of
weak system-environment interaction strength. At the
same time, some arguments in [8] stated that in the limit
of weak system-environment interaction, a
time-convolutionless approximate equations may provide
more precise description of the system evolution than the
time-convolution ones. As a rule, it is easier to solve
purely differential equations than the integra-differential
ones. Another attractive advantage of dealing with purely
differential approximate equations is that in some cases
they may be analyzed, interpreted and solved by methods
of an unraveling for non-Markovian time evolution by
means of a stochastic process in the extended state space
[9].
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