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Abstract: In this paper, we investigate some properties related Caputo-Fabrizio (CF) fractional derivative. We prove some regularity

properties and bounds characterizing the Caputo-Fabrizio derivative operator. Using the method of Laplace transform, we found explicit

solutions of some differential equations containing the Caputo-Fabrizio fractional derivative. Different types of inequalities generated

by using the Caputo-Fabrizio derivative are also presented.
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1 Introduction

A fractional derivative Dα is an operator, which
generalizes the ordinary derivative. The origins of the
fractional derivatives date back to 1695 when L’Hopital
raised, by a letter to Leibniz, the question of how the
expression

Dn f (t) =
dn

dtn
f (t),

should be understood if n was a fraction [1]. This
question is commonly accepted as the first occurrence of
what is currently known as fractional calculus. Since then,
this branch has been addressed by eminent
mathematicians, such as Euler, Laplace, Fourier,
Liouville, Riemann, Laurent, Weyl, and Abel, who first
applied it in physics to solve the integral equation arising
from the tautochrone problem [2]. Fractional derivative
has various definitions, which do not generally coincide.
This is possible since different researchers attempt to
preserve different properties of the classical integer order
derivative. Fractional operators are used in various fields
of science and engineering to describe some natural
phenomena in [3-9], to enhance the contrast in an image
[10-13], as well as to prove the existence and uniqueness
of fractional differential equations in [14-19].

In 2015, Caputo and Fabrizio introduced a new fractional
approach [20]. The interest in this definition existed due
to the necessity to describe a class of non-local systems
which cannot be well described by classical local theories

or by fractional models with singular kernel [20]. In this
paper, we present some interesting properties of
Caputo-Fabrizio derivative, as follows: In Section 2, we
briefly review the basic concepts and definitions. In
Section 3, we obtain some regularity properties. Section 4
presents the solutions of some ordinary fractional
differential equations with the Caputo-Fabrizio derivative.
In Section 5, we deduce new integral inequalities. Section
6 is dedicated to conclusion.

2 Preliminaries

Here, we present basic definitions and theorems, which are
used in our subsequent discussion.

Definition 1.We postulate that two functions f and g have

the same sense of variation (synchronous) on [0,∞) if [21]

( f (τ)− f (ρ))(g(τ)− g(ρ))≥ 0 τ,ρ ∈ (0, t), t > 0.

For example, one can easily see that functions f (t) = t and

g(t) = t2 are synchronous on [0,∞), i. e.

(τ −ρ)(τ2 −ρ2)

= (τ −ρ)(τ −ρ)(τ +ρ) = (τ −ρ)2(τ +ρ)≥ 0.

Definition 2.Let f (t) ∈ L1
loc(R). The Laplace transform of

f (t) is defined by [22]

L{ f (t)}(s) :=

∫ ∞

0
e−st f (t)dt.
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Definition 3.The Sobolev space W 1,p(a,b) is defined by

[23]

W 1,p(a,b) =
{

f ∈ Lp(a,b) ; ∃g ∈ Lp(a,b) such that

∫ b
a f ϕ ′ =−∫ b

a gϕ , ∀ϕ ∈C∞
0 (a,b)

}

.

We set

H1(a,b) =W 1,2(a,b).

Note 1.Let I = [a,b], then C1(I)⊂W 1,p(I) for all 1 ≤ p ≤
∞.

Definition 4.Let a,b,α ∈ R(a < b), α ∈ (0,1),
f ∈ H1(a,b). The Caputo-Fabrizio fractional integral of

order α is defined by [24]

Iα
at f (t) = (1−α) f (t)+α

∫ t

a
f (τ)dτ.

Definition 5.Let a,b,α ∈ R(a < b), α ∈ (0,1),
f ∈ H1(a,b). The Caputo-Fabrizio fractional derivative

of order α respect to time variable is defined by [25]

Dα
at f (t) =

1

1−α

∫ t

a
e−

α
1−α (t−τ) f ′(τ)dτ

=
1

1−α

(

f (t)− e−
α

1−α t f (a)
)

− α

(1−α)2

∫ t

a
e−

α
1−α (t−τ) f (τ)dτ. (1)

Definition 6.Let [a,b] ⊂ R. The space of continuous

functions from the subset [a,b] to R is defined by

C([a,b],R) = { f : [a,b]→ R| f is continuous},

with the norm

‖ f (x)‖C([a,b]) = max
x∈[a,b]

| f (x)|. (2)

Definition 7.Let a,b ∈ R(a < b). We denote by C1([a,b])
the space of real-valued functions f (x) whose derivative

f ′ is continuous, with the norm

‖ f (x)‖C1([a,b]) = max
x∈[a,b]

| f (x)|+ max
x∈[a,b]

| f ′(x)|. (3)

Theorem 1.[26] Let n ∈N−{0}, a,b ∈R(a < b) and f ∈
Cn([a,b]). Then, the equality

dn

dtn
(Dα

at f (t)) =
n

∑
i=1

(−1)n−i αn−i

(1−α)n+1−i
f (i)(t)

+ (−1)n
( α

1−α

)n

Dα
at f (t),

holds true.

3 Some regularity properties of the

Caputo-Fabrizio derivative operator

In this section, we introduce some theorems that
characterize the Caputo-Fabrizio fractional derivative in
certain spaces, such as C (space of all continuous
functions) or C1 (space of functions which first derivative
is continuous),... Although this class of spaces are
considered very restricted, their importance for practical
applications is great because the character of the majority
of dynamic processes is smooth and has no
discontinuities.

Theorem 2.Let f ∈C1[a,b]. Then Dα
at f (t) ∈C1[a,b].

Proof.As the function

yτ (t) =
1

1−α
· e− α

1−α (t−τ) · f ′(τ),

is continuous and integrable for all t,τ ∈ [a,b], we
conclude that the function

F(t) =
1

1−α

∫ t

a
e−

α
1−α (t−τ) · f ′(τ)dτ,

is differentiable in [a,b]. This means that
Dα

at f (t) ∈C1[a,b].

Theorem 3.The operator Dα
at : C1[a,b] → C1[a,b] is

bounded and

‖Dα
at f‖C1[a,b] ≤

1

α

(

1− e−
α

1−α (b−a)
)

‖ f‖C1[a,b]. (4)

Proof.Considering the norm defined in (3), we obtain

‖Dα
at f (t)‖C1[a,b]

=
∥

∥

∥

1

1−α

∫ t

a
e−

α
1−α (t−ξ ) f ′(ξ )dξ

∥

∥

∥

C1[a,b]

≤
∥

∥

∥

1

1−α

∫ t

a
e−

α
1−α (t−ξ )| f ′(ξ )|dξ

∥

∥

∥

C1[a,b]

≤
∥

∥

∥

1

1−α

∫ t

a
e−

α
1−α (t−ξ )

(

| f (ξ )|+ | f ′(ξ )|
)

dξ
∥

∥

∥

C1[a,b]

≤ 1

1−α
‖ f‖C1[a,b]

∫ t

a
e−

α
1−α (t−ξ )dξ

≤ 1

α
‖ f‖C1[a,b]

(

1− e−
α

1−α (t−a)
)

≤ 1

α
‖ f‖C1[a,b]

(

1− e−
α

1−α (b−a)
)

. (5)

The inequality (4) follows from (5).

Lemma 1.Let f (t) ∈ H1(a,b). Then Dα
at f (t) ∈ L2(a,b).
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Proof.One can easily see that

‖Dα
at f (t)‖2

L2(a,b) =
1

1−α

b
∫

a

∣

∣

∣

∫ t

a
e−

α
1−α (t−τ) f ′(τ)dτ

∣

∣

∣

2

dt

≤ 1

1−α

b
∫

a

(

∫ t

a
| f ′(τ)|2dτ

)

dt

≤ 1

1−α

b
∫

a

(

∫ b

a
| f ′(τ)|2dτ

)

dt

=
b− a

1−α
· ‖ f ′‖2

L2(a,b) < ∞,

as required.

Theorem 4.Let f ∈ C1[a,b]. Then Dα
at f ∈ W 1,p[a,b],1 ≤

p ≤ ∞.

Proof.As f ∈ C1[a,b], we obtain from Theorem 2 that
Dα

at f ∈ C1[a,b]. Considering the Note 1, we know that
C1[a,b] ⊂ W 1,p[a,b],∀p ≥ 1. Therefore,
Dα

at f ∈W 1,p[a,b].

Theorem 5.The Caputo-Fabrizio operator

Dα
at : C1[a,b]→W 1,1[a,b] satisfies

‖Dα
at f‖W1,1[a,b] ≤

1+(b− a)[1+α(b−a)]

(1−α)2
‖ f‖C1[a,b].

Proof.Using the Theorem 1 and (1), we obtain

‖Dα
at f‖W 1,1[a,b]

= ‖Dα
at f‖L1[a,b]+ ‖ d

dt
(Dα

at f )‖L1[a,b]

= ‖Dα
at f‖L1[a,b]+

∥

∥

∥

1

1−α
f ′(t)− α

1−α
Dα

at f

∥

∥

∥

L1[a,b]

≤ 1

1−α
‖ f ′(t)‖L1[a,b]+

1

1−α
‖Dα

at f‖L1[a,b]

=
1

1−α
‖ f ′(t)‖L1[a,b]+

1

(1−α)2

∥

∥

∥
f (t)

− e−
α

1−α (t−a) f (a)− α

1−α

∫ t

a
e−

α
1−α (t−τ) f (τ)dτ

∥

∥

∥

L1[a,b]

≤ 1

1−α
‖ f ′(t)‖L1[a,b]+

1

(1−α)2
‖ f (t)‖L1[a,b]

+
1

(1−α)2
‖e−

α
1−α (t−a) f (a)‖L1[a,b]

+
α

(1−α)3

∫ b

a

∣

∣

∣

∫ t

a
e−

α
1−α (t−τ) f (τ)dτ

∣

∣

∣
dt. (6)

Considering the fact that

‖e−
α

1−α (t−a) f (a)‖L1 [a,b]

=

b
∫

a

|e− α
1−α (t−a) f (a)|dt

≤
b

∫

a

| f (a)|dt ≤
b

∫

a

max
t∈[a,b]

| f (t)|dt = (b−a) max
t∈[a,b]

| f (t)|,

b
∫

a

∣

∣

∣

∫ t

a
e−

α
1−α (t−τ) f (τ)dτ

∣

∣

∣
dt

≤
b

∫

a

(

∫ t

a
| f (τ)|dτ

)

dt

≤
b

∫

a

(

∫ b

a
max

τ∈[a,b]
| f (τ)|dτ

)

dt = (b−a)2 max
t∈[a,b]

| f (t)|,

‖ f ′(t)‖L1[a,b]

=

b
∫

a

| f ′(t)|dt ≤
b

∫

a

max
t∈[a,b]

| f ′(t)|dt = (b−a) max
t∈[a,b]

| f ′(t)|,

and

‖ f (t)‖L1[a,b]

=

b
∫

a

| f (t)|dt ≤
b

∫

a

max
t∈[a,b]

| f (t)|dt = (b− a) max
t∈[a,b]

| f (t)|,

we obtain from (6) the following

‖Dα
at f‖W 1,1[a,b]

≤ b− a

1−α
max

t∈[a,b]
| f ′(t)|+ b− a

(1−α)2
max

t∈[a,b]
| f (t)|

+
b− a

(1−α)2
max

t∈[a,b]
| f (t)|+ α

(1−α)3
(b− a)2 max

t∈[a,b]
| f (t)|

=
1

1−α
(b− a) max

t∈[a,b]
| f ′(t)|

+
{ (b− a)

(1−α)2
+

1

(1−α)2
+

α(b− a)2

(1−α)3

}

max
t∈[a,b]

| f (t)|

≤
{ (b− a)

(1−α)2
+

1

(1−α)2
+

α(b− a)2

(1−α)3

}

max
t∈[a,b]

| f ′(t)|

+
{ (b− a)

(1−α)2
+

1

(1−α)2
+

α(b− a)2

(1−α)3

}

max
t∈[a,b]

| f (t)|

=
{ (b− a)

(1−α)2
+

1

(1−α)2
+

α(b− a)2

(1−α)3

}

·

·
[

max
t∈[a,b]

| f ′(t)|+ max
t∈[a,b]

| f (t)|
]

=
(b− a+ 1)(1−α)+α(b−a)2

(1−α)3
‖ f (t)‖C1[a,b],
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as required.

Theorem 6.The subspace C1[a,b] ⊂ H1 is invariant with

respect to the Caputo-Fabrizio operator Dα
at .

Proof.We want to show that for all f ∈ C1[a,b], then
Dα

at f ∈ C1[a,b]. From the Note 1, we know that
C1[a,b]⊂ H1. Let f ∈C1[a,b]. Then using Theorem 2 we
conclude that Dα

at f ∈C1[a,b].

Theorem 7.Let α ∈ (0,1), a,b ∈ R(a < b), Ω = [a,b]
and D(Ω) the space of test functions. The operator

T α : D(Ω)→R given by

T α(u) =
1

1−α

∫ b

a
e−

α
1−α (b−τ)u′(τ)dτ,

is a distribution.

Proof.We have to prove that operator T α is linear and
continuous. For any u,v ∈ D(Ω), we obtain the linearity,
as follows:

T α(β u+ γv)

=
1

1−α

∫ b

a
e−

α
1−α (b−τ)(β u+ γv)′(τ)dτ

=
β

1−α

∫ b

a
e−

α
1−α (b−τ)u′(τ)dτ

+
γ

1−α

∫ b

a
e−

α
1−α (b−τ)v′(τ)dτ

= β T α(u)+ γT α(v).

Suppose that u is any element of the space of test functions

D(Ω). Then we know that u∈W
1,p
0 (Ω)(1≤ p<∞). Thus,

u(a) = u(b) = 0 and

T α(u)

=
1

1−α

∫ b

a
e−

α
1−α (b−τ)u′(τ)dτ

=
1

1−α

[

u(b)− e−
α

1−α (b−a)u(a)

− α

1−α

∫ b

a
e−

α
1−α (b−τ)u(τ)dτ

]

=− α

(1−α)2

∫ b

a
e−

α
1−α (b−τ)u(τ)dτ. (7)

Now, to show the continuity of T α , let take u,un ∈ D(Ω)
such that un → u. Using (7), we obtain

|T α(u)−Tα(un)|

=
α

(1−α)2

∣

∣

∣

∫ b

a
e−

α
1−α (b−τ)[u(τ)− un(τ)]dτ

∣

∣

∣

≤ α

(1−α)2
sup

τ∈[a,b]
|u(τ)− un(τ)|

∫ b

a
e−

α
1−α (b−τ)dτ,

which tends to zero by the uniform convergence of the un

and grace to that e−
α

1−α (b−τ) ∈ L1(Ω). Thus, the opertor
T α is a distribution.

4 Ordinary fractional differential equations

Fractional differential equations frequently appear in
various areas of engineering applications. Some examples
of differential equations containing fractional derivative
have been explored [27]. In [28], authors considered the
following linear fractional differential equation

D
β
atx(t)−λ · x(t) = f (t),

where β = α + 1 such that 0 < α ≤ 1, a ∈ (−∞, t). In this
section, we present some examples of the solution of
differential equations containing the Caputo-Fabrizio
fractional derivative.

Example 1. Let us consider the equation

Dα
0tx(t)+ c2 ·Dβ

0tx(t)− c3 · x(t) = 0, (8)

x(0) = x0, (9)

where c2,c3,α,β ,x0 ∈ R with 0 < α,β < 1.

Applying the definicion of fractional Caputo-Fabrizio
derivative, we rewrite equation (8) as

1

1−α

∫ t

0
e−

α
1−α (t−τ)x′(τ)dτ

+
c2

1−β

∫ t

0
e
− β

1−β
(t−τ)

x′(τ)dτ = c3x(t). (10)

Applying the Laplace transform to (10) and taking into
account the condition (9), we get

L{x(t)}= p(s)

q(s)
, (11)

where

p(s) = [x0(1−β )+ c2x0(1−α)]s+ x0β + c2x0α,

q(s) = [(1−β )+ c2(1−α)− c3(1−α)(1−β )]s2

+[β + c2α − c3(1−α)β − c3α(1−β )]s− c3αβ .

The function q(s) has two roots

γ1 =
−∆0 +

√
∆

2∆1

, γ2 =
−∆0 −

√
∆

2∆1

,

with

∆0 = β + c2α − c3(1−α)β − c3α(1−β ),

∆1 = (1−β )+ c2(1−α)− c3(1−α)(1−β ),

∆ = ∆ 2
0 + 4c3 ·α ·β ∆1.

Case 1. When ∆ > 0: we have from (11) that

L{x(t)}= [x0(1−β )+ c2x0(1−α)]s+ x0β + c2x0α

(s− γ1)(s− γ2)

=
A

s− γ1

+
B

s− γ2

=
A(s− γ2)+B(s− γ1)

(s− γ1)(s− γ2)
.

(12)
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Using elementary calculations, we obtain

B =
[c1x0(1−β )+ c2x0(1−α)]γ2 + c1x0β + c2x0α

γ2 − γ1

,

A =
[c1x0(1−β )+ c2x0(1−α)]γ1 + c1x0β + c2x0α

γ1 − γ2
.

Applying inverse Laplace transform to (12), one easily
obtain

x(t) = A · eγ1t +B · eγ2t
. (13)

Caso 2. ∆ < 0: we obtain from (11) that

L{x(t)}

=
p(s)

q(s)

=
1

∆1
· [x0(1−β )+ c2x0(1−α)]s− [−x0β − c2x0α]

(

s+ ∆0
2∆1

)2

+
[

√

1
∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)]2

=
x0(1−β )+ c2x0(1−α)

∆1

·

·
s+ ∆0

2∆1

(

s+ ∆0
2∆1

)2

+
[

√

1
∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)]2

− x0(1−β )+ c2x0(1−α)

∆1

·

·
−x0β−c2x0α

x0(1−β )+c2x0(1−α)
+ ∆0

2∆1

(

s+ ∆0
2∆1

)2

+
[

√

1
∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)]2
. (14)

Using inverse Laplace transform, we obtain

x(t)

=
c1x0(1−β )+ c2x0(1−α)

∆1

· e−
∆0

2∆1
t ·

· cos

√

1

∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)

· t−

− c1x0(1−β )+ c2x0(1−α)

∆1

·

·
−c1x0β−c2x0α

c1x0(1−β )+c2x0(1−α) +
∆0
2∆1

√

1
∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)

· e−
∆0

2∆1
t ·

· sin

√

1

∆1

·
(

− c3αβ − ∆ 2
0

4∆1

)

· t (15)

Case 3. ∆ = 0: we obtain from (11), the following

L{x(t)}= [c1x0(1−β )+ c2x0(1−α)]s+ c1x0β + c2x0α
(

s+ ∆0
2∆1

)2

=
A2

s+ ∆0
2∆1

+
B2

(

s+ ∆0
2∆1

)2
.

where A and B are constants given by

B2 =−[c1x0(1−β )+c2x0(1−α)] · ∆0

2∆1

+c1x0β +c2x0α,

and

A2 =
c1x0β + c2x0α −B2

∆0

·2 ·∆1,

respectively. Applying the inverse Laplace transform, we
obtain

x(t) = A2 · e
∆0

2∆1
t
+B2 · t · e

∆0
2∆1

t
. (16)

This result can be formulated in the following Theorem.

Theorem 8.Let 0 < α,β < 1;c2,c3,x0 ∈ R.

1)If ∆ > 0, then problem (8)-(9) has a unique solution,

which is given by (13).

2)If ∆ < 0, then a unique solution to problem (8)-(9)

exists and is given by (15).

3)If ∆ = 0, then problem (8)-(9) has a unique solution,

which is given by (16).

Exemple 2. Consider the equation of linear vibrations with
the fractional dissipation term of order α ∈ (0,1).

f ′′(t)+ c1 ·Dα
0t f (t)+ c2 · f (t) = 0 t > 0, (17)

f ′(0) = f1; f (0) = f0, (18)

where c1,c2,α, f1, f0 ∈ R. Inserting the definition of
Caputo-Fabrizio derivative into (17), we obtain the
equation

f ′′′(t)+
α

1−α
f ′′(t)

+
(1−α)c2 + c1

1−α
f ′(t)+

α · c2

1−α
f (t) = 0. (19)

The corresponding characteristic equation of (19) is

r3 +
α

1−α
r2 +

(1−α)c2 + c1

1−α
r+

α · c2

1−α
= 0,

which, by using the Cardano method, roots are



































r1 = S1 + S2 − a1
3

r2 =−S1 + S2

2
− a1

3
+ i

√
3

2
(S1 − S2)

r3 =−S1 + S2

2
− a1

3
− i

√
3

2
(S1 − S2),
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where

a1 =
α

1−α
, a2 =

(1−α)c2 + c1

1−α
, a3 =

α · c2

1−α
.

Q =
3a2 − a2

1

9
, S1 =

3

√

R+
√

Q3 +R2.

R =
9a1a2 − 27a3− 2a3

1

54
, S2 =

3

√

R−
√

Q3 +R2.

Taking into account the conditions (18), we finally obtain

f (t) =
r2(1− f0)− f1 + r3

r1 − r2

er1t

+
r1( f0 − 1)− ( f1− r3)

r1 − r2

er2t + er3t
.

5 Fractional integral inequalities involving

the Caputo-Fabrizio fractional derivative

In literature few results have been obtained on fractional
integral inequalities using Caputo-Fabrizio fractional
operators [29]. Motivated by [30], we propose using this
operator to establish some new integral inequalities. We
write

Dα
0t f (t) =

1

1−α

∫ t

0
e−

α
1−α (t−s) f ′(s)ds,

=
1

1−α

(

f (t)− e−
α

1−α t f (0)
)

− α

(1−α)2

∫ t

0
e−

α
1−α (t−s) f (s)ds. (20)

Let

G( f )(t) =
α

(1−α)2

∫ t

0
e−

α
1−α (t−s) f (s)ds. (21)

Theorem 9.Let α ∈ (0,1), f and g are two functions that

have the same sense of variation on [0,∞). Then

G( f ) ·G(g)≤ 1

1−α
·
(

1− e−
α

1−α t
)

·G( f g), (22)

where G is given by (21).

Proof.Suppose that f and g are functions having the same
sense of variation on [0,∞). Then, for all τ ≥ 0,ρ ≥ 0, we
have

(

f (τ)− f (ρ)
)(

g(τ)− g(ρ)
)

≥ 0.

Hence,

f (τ)g(τ)+ f (ρ)g(ρ)≥ f (τ)g(ρ)+ f (ρ)g(τ). (23)

Multiplying both sides of (23) by

α2

(1−α)4
e−

α
1−α (t−τ)e−

α
1−α (t−ρ) and integrating with

respect to τ and ρ over (0, t) × (0, t), we obtain the
inequality

α

(1−α)2

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−τ)·

· f (τ)g(τ)dτ

}

e−
α

1−α (t−ρ)dρ

+
α

(1−α)2

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−ρ)·

· f (ρ)g(ρ)dρ

}

e−
α

1−α (t−τ)dτ

≥ α

(1−α)2

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−τ)·

· f (τ)dτ

}

e−
α

1−α (t−ρ)g(ρ)dρ

+
α

(1−α)2

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−ρ)·

· f (ρ)

}

e−
α

1−α (t−τ)g(τ)dτ,

which is equivalent to

G( f g) · α

(1−α)2

∫ t

0
e−

α
1−α (t−ρ)dρ

+G( f g) · α

(1−α)2

∫ t

0
e−

α
1−α (t−τ)dτ

≥ G( f ) ·G(g)+G(g) ·G( f ). (24)

Inequality (22) follows from (24).

Theorem 10.Let α ∈ R with 0 < α < 1 and f , g two non

negative functions having the same sense of variation on

[0,∞) such that

1) f (0) = g(0) = 0,

2) f g ≥ Dα
0t( f g).

Then

Dα
0t( f g)

≤ f (t) ·Dα
0t(g)+ g(t) ·Dα

0t( f )− (1−α)Dα
0t( f ) ·Dα

0t(g).
(25)
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Proof.From Theorem 9, we get
{

α

(1−α)2

∫ t

0
e−

α
1−α (t−s)( f )(s)ds

}

·

·
{

α

(1−α)2

∫ t

0
e−

α
1−α (t−s)(g)(s)ds

}

≤
{

α

(1−α)2

∫ t

0
e−

α
1−α (t−s)( f g)(s)ds

}

·

· 1

1−α
·
(

1− e−
α

1−α t
)

. (26)

Combining the expression (20) with the conditions f (0) =
g(0) = 0, we obtain from (26) that
{

1

1−α
f (t)−Dα

0t( f )(t)

}{

1

1−α
g(t)−Dα

0t(g)(t)

}

≤
{

1

1−α
f g(t)−Dα

0t( f g)(t)

}

1

1−α
·
(

1− e−
α

1−α t
)

.

(27)

Using the condition 2), one easily obtain

0 ≤ ( f g)−Dα
0t( f g)≤ 1

1−α
( f g)−Dα

0t( f g). (28)

Combining (28) with (27), we achieve
{

1

1−α
f (t)−Dα

0t( f )(t)

}{

1

1−α
g(t)−Dα

0t(g)(t)

}

≤ 1

1−α

{

1

1−α
( f g)(t)−Dα

0t( f g)(t)

}

. (29)

Inequality (25) follows from (29).

Theorem 11.Let α ∈ (0,1), and f , g, f ′, g′ ( f ′ and g′ are

derivatives of functions f and g, respectively)

non-negative functions on [0,∞). Moreover, let f and g

have the same sense of variation on [0,∞) such that

1) f (0) = g(0) = 0,

2) f g ≥ Dα
0t( f g),

then

Dα
0t( f g)≤ f (t) ·Dα

0t(g)+ g(t) ·Dα
0t( f ). (30)

Proof.Combining the fact that functions f and g have the
same sense of variation with the conditions 1) and 2), we
obtain from theorem 10 the inequality

Dα
0t( f g)+ (1−α)Dα

0t( f ) ·Dα
0t(g)

≤ f (t) ·Dα
0t(g)+ g(t) ·Dα

0t( f ). (31)

On the other hand, considering that functions f , g, f ′, g′

are non-negatives, we conclude that Dα
0t f ≥ 0, Dα

0tg ≥ 0,
Dα

0t f g ≥ 0. Therefore all terms of inequality (31) are non-
negatives. Then, deleting the second term of the left hand
side of (31), we obtain (30).

Theorem 12.Let 0 < α < 1, f ′ and g′ are two functions

that have the same sense of variation on [0,∞). Then,

Dα
0t f (t) ·Dα

0tg(t)≤
1−α

α2
·
(

1− e−
α

1−α t
)

·G( f ′g′). (32)

Proof.As f ′,g′ are two functions that have the same sense
of variation on [0,∞), then for all τ ≥ 0,ρ ≥ 0 we have

f ′(τ)g′(τ)+ f ′(ρ)g′(ρ)≥ f ′(τ)g′(ρ)+ f ′(ρ)g′(τ). (33)

Multiplying (33) by α
(1−α)3 e−

α
1−α (t−τ)e−

α
1−α (t−ρ) and

integrating with respect to τ and ρ over (0, t)× (0, t), we
obtain the inequality

1

1−α

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−τ)·

· f ′(τ)g′(τ)dτ

}

e−
α

1−α (t−ρ)dρ

+
1

1−α

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−ρ)·

· f ′(ρ)g′(ρ)dρ

}

e−
α

1−α (t−τ)dτ

≥ α

1−α

1

1−α

∫ t

0

{

1

1−α

∫ t

0
e−

α
1−α (t−τ)·

· f ′(τ)dτ

}

e−
α

1−α (t−ρ)g′(ρ)dρ

+
α

1−α

1

1−α

∫ t

0

{

1

1−α

∫ t

0
e−

α
1−α (t−ρ)·

· f ′(ρ)dρ

}

e−
α

1−α (t−τ)g′(τ)dτ,

which is equivalent to

1

1−α
G( f ′g′)

∫ t

0
e−

α
1−α (t−ρ)dρ ≥ α

1−α
Dα

at f (t)Dα
atg(t).

(34)
Inequality (32) follows from (34).

Theorem 13.Let 0 < α < 1, f ′ and g are two functions

that have the same sense of variation on [0,∞). Then,

Dα
at f (t)G(g) ≤ 1

α
·
(

1− e−
α

1−α (t−a)
)

G( f ′g). (35)

Proof.Suppose that f ′ and g are functions that have the
same sense of variation on [0,∞). Then, for all τ ≥ 0,ρ ≥
0, we have

f ′(τ)g(τ)+ f ′(ρ)g(ρ)≥ f ′(τ)g(ρ)+ f ′(ρ)g(τ). (36)
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Multiplying both sides of (36) by
α

(1−α)3 e−
α

1−α (t−τ)e−
α

1−α (t−ρ) and integrating with respect

to τ and ρ over (0, t)× (0, t), we obtain the inequality

1

1−α

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−τ)·

· f ′(τ)g(τ)dτ

}

e−
α

1−α (t−ρ)dρ

+
1

1−α

∫ t

0

{

α

(1−α)2

∫ t

0
e−

α
1−α (t−ρ)·

· f ′(ρ)g(ρ)dρ

}

e−
α

1−α (t−τ)dτ

≥ α

(1−α)2

∫ t

0

{

1

1−α

∫ t

0
e−

α
1−α (t−τ)·

· f ′(τ)dτ

}

e−
α

1−α (t−ρ)g(ρ)dρ

+
α

(1−α)2

∫ t

0

{

1

1−α

∫ t

0
e−

α
1−α (t−ρ)·

· f ′(ρ)dρ

}

e−
α

1−α (t−τ)g(τ)dτ,

which is equivalent to

1

1−α
G( f ′g)

∫ t

0
e−

α
1−α (t−ρ)dρ ≥ Dα

at f (t) ·G(g). (37)

The inequality (35) follows from (37).

6 Conclusion

In this paper, we have investigated some linear
differential equations involving Caputo-Fabrizio
fractional derivative. Also, some theorems to characterize
the Caputo-Fabrizio derivative in certain spaces have been
proven. Statements on fractional inequalities containing
the Caputo-Fabrizio derivative were also presented.
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