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Abstract: The present paper addresses uniqueness of the nonequilibrium stationary state of a continuous-activity thermostatted kinetic

theory framework. Specifically, a sufficient condition for the existence and uniqueness of the nonequilibrium stationary state is

established. The sufficient condition defines a relation between the interaction rate and the magnitude of the external force. The proof

of the main result is obtained by employing fixed-point arguments.
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1 Introduction

Mathematical structures [1–5], computational
tools [6–10] and simulators [11, 12] have been the main
interest of the scholars in the last and the present century.
The main aim is the possibility to understand and predict
the evolution of a phenomenon related to a complex
system [13]. In particular, a mathematical structure, based
on differential and/or algebraic equations, has been of
great interest for the researchers due to the possibility to
make efficient probabilistic forecasts towards a complex
phenomenon. However, also the mathematical structures
can show limitations related to the difficulty to gain the
mathematical proof of the results, especially the
comparison between the real data. The latter subject has
been the target of the development of computational
methods, which show how the interplay between different
scholars is at the base of achievement.

Recently, the thermostatted kinetic theory has been
proposed and employed for modeling large particle
systems characterized by particles which can perform
inner and outer interactions according to an internal and
external strategy (active particles), see [14]. The systems
under consideration, which usually share the same
characteristics of a complex system, are divided into

different subsystems composed of particles which
manifest the same strategy (functional subsystems). The
function expressed by an active particle is modeled by
introducing a scalar variable (called activity) which has a
discrete or a continuous structure. Accordingly, a
continous [15] or a discrete [16] thermostatted kinetic
theory structure, which is based on the defintion of
interaction rates and transition probability functions, is
derived.
The system is also assumed to be subject to an external
force at the macroscopic scale which moves the system
out-of-equilibrium and a mathematical thermostat (a
dissipative term) [17–19] is coupled to the framework to
ensure reaching a nonequilibrium stationary state.

This paper addresses the continuous-activity
thermostatted kinetic theory framework under the
assumption of constant interaction rates and a constant
magnitude external force. The mathematical analysis has
already addressed the well-posedness of the related initial
boundary value problem, the existence of the
nonequilbrium stationary state and the convergence of the
transient state to the nonequilibrium stationary state (the
interested reader is referred to the recent papers [20, 21].
Uniqueness of the nonequilibrium stationary state is the
main interest of the present paper. Specifically, a
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sufficient condition for the uniqueness of the
nonequilibrium stationary state is proposed. The sufficient
condition is based on the relation between the interaction
rate and the magnitude of the external force. The proof of
the main result is obtained by employing fixed-point
arguments.

The present paper is organized, as follows: Section 2
handles the presentation of the stationary thermostatted
framework and the statement of the main theorem.
Section 3 is devoted to the mathematical proof of the
main result. Conclusion is presented in Section 4.

2 The stationary thermostatted framework

A function f : Du → R
+, where Du ⊆ R, is a

nonequilibrium stationary state of the continuous-activity

thermostatted kinetic theory framework if it is solution of
the following nonlinear integro-differential equation with
quadratic nonlinearity:

∂u

((

1− u

∫

Du

f (u)du

)

f (u)

)

=

=
η

F

(

∫

Du×Du

A (u∗,u
∗
,u) f (u∗) f (u∗)du∗ du∗

− f (u)

∫

Du

f (u∗)du∗
)

,

(1)

where η , F > 0 and A : Du ×Du ×Du →R
+.

The existence of a nonequilibrium stationary state

f ∈ C

(

R\
{

1

E
+
1

})

), where E
+
1 :=

−η+
√

η2+4F2

2F
, has

been proved in [20] under the following assumptions:

A1 Du = R;
A2 ‖A (· , · ,u)‖L1(Du)

= 1;

A3

∫

Du

u2
A (u∗,u∗,u)du = u2

∗, for all u∗,u∗ ∈ Du;

A4

∫

Du

uA (u∗,u
∗
,u)du = 0, for all u∗,u∗ ∈ Du;

A5 ‖ f (u)‖L1(Du)
= 1;

A6 ‖u2 f (u)‖L1(Du)
du = 1.

Remark.The integro-differential equation (1) is the
nonequilibrium stationary problem of the following
continuous-activity thermostatted kinetic theory

framework:

∂t f (t,u)+F ∂u

((

1− u

∫

Du

u f (t,u)du

)

f (t,u)

)

= J[ f , f ](t,u),

(2)

where

J[ f , f ] :=

∫

Du×Du

η A (u∗,u∗,u) f (t,u∗) f (t,u∗)du∗ du∗

− f (t,u)

∫

Du

η f (t,u∗)du∗

denotes the operator which models the net-flux of active
particles with state u, η is the interaction rate, F the
external force field and A the transition probability

function.

A sufficient condition for the uniqueness of the
nonequilibrium stationary state of the integro-differential
equation (1) is established in the next theorem.

Theorem 1.Assume that A1-A6 hold true. If

η

F
<

1√
12

(3)

then there exists, for almost every u ∈ R, a unique

nonequilibrium stationary state f of the

integro-differential equation (1).

3 Proof of Theorem 1

The equation (1) can be rewritten, as follows:

η

∫

Du×Du

A (u∗,u
∗
,u) f (u∗) f (u∗)du∗ du∗−η f (u) =

= F∂u

((

1− uE+
1

)

f (u)
)

= F∂u f (u)−FE
+
1 f (u)−F uE+

1 ∂u f (u).
(4)

Let Du be a compact subset of R. Without loss of
generality, we can assume that f (u) = 0 for u ∈ ∂Du. If
D̄u is a compact subset which contains Du, we can
consider the function f̄ : D̄u → R

+ defined, as follows:

f̄ (u) =











f u ∈ Du

0 u ∈ D̄u \Du.

Let f1, f2 ∈ C
(

R\
{

1

E
+
1

})

) be two nonequilibrium

stationary states of the equation (1). Rewriting the
equation (4) for f1 and f2, one has:

(

F E
+
1 −η

)

f1(u) =
(

1− uE+
1

)

F ∂u f1(u)

−η

∫

Du×Du

A (u∗,u
∗
,u) f1(u∗) f1(u

∗)du∗ du∗,

(5)
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and

(

F E
+
1 −η

)

f2(u) =
(

1− uE+
1

)

F ∂u f2(u)

−η

∫

Du×Du

A (u∗,u∗,u) f2(u∗) f2(u
∗)du∗ du∗.

(6)

Subtracting equations (5) and (6), one has:

(

F E
+
1 −η

)

( f1(u)− f2(u)) =

= F
(

1− uE+
1

)

∂u ( f1(u)− f2(u))

−η

∫

Du×Du

A (u∗,u
∗
,u) f1(u∗) f1(u

∗)du∗ du∗

+η

∫

Du×Du

A (u∗,u∗,u) f2(u∗) f2(u
∗)du∗ du∗.

(7)

From equation (7), it follows:

∣

∣F E
+
1 −η

∣

∣ | f1(u)− f2(u)| ≤
≤ F

∣

∣(1− uE+
1 )∂u ( f1(u)− f2(u))

∣

∣

+η

∫

Du×Du

| f1(u∗) f1(u
∗)− f2(u∗) f2(u

∗)| du∗du∗.

(8)

Integrating inequality (8) with respect to u ∈ Du, one has:

∣

∣F E
+
1 −η

∣

∣‖ f1(u)− f2(u)‖L1(Du)
≤

≤ F

∫

Du

∣

∣(1− uE+
1 )∂u ( f1(u)− f2(u))

∣

∣ du

+η

∫

D3
u

| f1(u∗) f1(u
∗)− f2(u∗) f2(u

∗)| dudu∗du∗.

(9)

For the first term of the right hand side of the inequality
(9), one has:

∫

Du

∣

∣(1− uE+
1 )∂u ( f1(u)− f2(u))

∣

∣ du

≤
∫

Du

|∂u ( f1(u)− f2(u))| du

+E
+
1

∫

Du

|u∂u ( f1(u)− f2(u))| du.

(10)

The first term of the right hand side of inequality (10)
equals to 0 because f = 0 on the boundary ∂Du and the
assumption A5. Moreover, the second term of the right
hand side of inequality (10) equals zero because:

∫

Du

|u∂u ( f1(u)− f2(u))| du ≤

≤ c

∫

Du

|∂u ( f1(u)− f2(u))| du = 0,

(11)

where c is the diameter of the compact subset Du.

By using the equation (11), the first term of the right hand
side of the inequality (9) rewrites:

∫

Du

∣

∣(1−E
+
1 u)∂u ( f1(u)− f2(u))

∣

∣ du = 0. (12)

Observe that:

| f1(u∗) f1(u
∗)− f2(u∗) f2(u

∗)|=
= | f1(u∗) f1(u

∗)− f1(u∗) f2(u
∗)

+ f1(u∗) f2(u
∗)− f2(u∗) f2(u

∗)| (13)

≤ | f1(u∗)| | f1(u
∗)− f2(u

∗)|+ | f2(u
∗)| | f1(u∗)− f2(u∗)| .

By (13), the second term of the right hand side of
inequality (9) rewrites:

∫

Du

∫

Du×Du

| f1(u∗) f1(u
∗)− f2(u∗) f2(u

∗)| du

≤
∫

Du

(u∗,u∗,u)
∫

Du×Du

| f1(u∗)| | f1(u
∗)− f2(u

∗)| du

+

∫

Du

(u∗,u∗,u)
∫

Du×Du

| f2(u
∗)| | f1(u∗)− f2(u∗)| du

≤ 2‖ f1(u)− f2(u)‖L1(Du)
.

(14)

Using equation (12) and inequality (14), inequality (9)
writes:

∣

∣F E
+
1 −η

∣

∣‖ f1(u)− f2(u)‖L1(Du)
≤

≤ 2η‖ f1(u)− f2(u)‖L1(Du)
.

(15)

By straightforward calculations inequality (15) rewrites:

(∣

∣F E
+
1 −η

∣

∣− 2η
)

‖ f1(u)− f2(u)‖L1(Du)
≤ 0. (16)

Since E+
1 =

−η+
√

η2+4F2

2F
, one has:

F E
+
1 =

−η +
√

η2 + 4F2

2
(17)

F E
+
1 −η =

−3η +
√

η2 + 4F2

2
. (18)

By equations (17) and (18), the first factor of the left hand
side of inequality (16) rewrites:

(∣

∣F E
+
1 −η

∣

∣− 2η
)

=




∣

∣

∣−3η +
√

η2 + 4F2

∣

∣

∣− 4η

2



 ,
(19)
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which is a positive constant because of inequality (3). The
right hand side of equation (19) rewrites, as follows:

(∣

∣F E
+
1 −η

∣

∣− 2η
)

=
η

2





∣

∣

∣

∣

∣

∣

−3+

√

1+ 4
F2

η2

∣

∣

∣

∣

∣

∣

− 4



 ,

and:

(∣

∣F E
+
1 −η

∣

∣− 2η
)

> 0 ⇔ (20)

⇔































−3+

√

1+ 4
F2

η2
> 0

−3+

√

1+ 4
F2

η2
− 4 > 0

(21)

⋃































−3+

√

1+ 4
F2

η2
< 0

3−
√

1+ 4
F2

η2
− 4 > 0

⇔



























η

F
<

1√
2

√

1+ 4
F2

η2
> 7

⋃



























η

F
>

1√
2

−
√

1+ 4
F2

η2
− 1 > 0

⇔



















η

F
<

1√
2

η2

F2
<

1

12

⇔ η

F
<

1√
12

.

Accordingly,

‖ f1(u)− f2(u)‖L1(Du)
= 0,

which means f1(u) = f2(u) for a.e. u ∈ Du. Thus,
uniqueness of the nonequilibrium stationary state is
proved for a compact domain Du.

Let Du = R and k ∈ N. Using the first step of the proof,
there exists a unique nonequilibrium stationary state
f (u) ∈ L1([−k,k]) of the problem (1), i.e. if
f1(u), f2(u) ∈ L1([−k,k]) are two nonequilibrium
stationary states, then

‖ f1(u)− f2(u)‖L1([−k,k]) = 0. (22)

Then, by using the continuity of the norm:

‖ f1(u)− f2(u)‖L1([−k,k])
k→∞−−−→ 0.

Thus, the proof is gained.

Remark.As shown in the proof of Theorem 1, uniqueness
of the nonequilibrium stationary state f is also ensured if
Du is a compact subset of R.

4 Conclusion

The objective of the present paper has been another
important step in the formal validation of the
thermostatted kinetic theory proposed in [14]. Existence
and uniqueness of the solution have been already proved
in [14] and the dependence on the initial data has been
proved in [22]. However, the important step obtained in
this paper has been the possibility to ensure the existence
and uniqueness of the nonequilibrium stationary state.
The main result has been obtained by assuming that the
interaction rate and the magnitude of the external force
are constants. This assumption can be relaxed and it
appears possible to ensure the uniqueness of the
nonequilibrium stationary state by constructing a suitable
upper bound for the interaction rate function and the
external force field.

To the authors’ knowledge, this is the first paper that
investigates the conditions of uniqueness for the
nonequilibrium stationary state within the thermostatted
kinetic theory framework.
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