
Appl. Math. Inf. Sci.7, No. 2, 529-532 (2013) 529

Applied Mathematics & Information Sciences
An International Journal

c© 2013 NSP
Natural Sciences Publishing Cor.

New Bucket Managements in Iterative Improvement
Partitioning Algorithms

Yourim Yoon1 and Yong-Hyuk Kim2,∗

1Context Awareness Team, Future IT R&D Lab., LG Electronics, Seoul137-130, Republic of Korea
2Department of Computer Science and Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea

Received: Aug. 9, 2012; Revised Nov. 5, 2012; Accepted Dec. 1, 2012
Published online: 1 Mar. 2013

Abstract: In iterative improvement partitioning algorithms, tie-breaking in the choice of maximum-gain vertices has a great impact on
the performance. We propose a new tie-breaking strategy in an iterativeimprovement algorithm for graph partitioning. The proposed
method is simple but nevertheless performed better than other traditional techniques.

Keywords: graph partitioning, iterative improvement partitioning algorithm, bucket management, tie-breaking.

1. Introduction

Let G = (V,E) be an unweighted undirected graph, where
V is the set ofn vertices andE is the set ofe edges. A bi-
section{C1,C2} of the graphG satisfiesC1,C2 ⊂ V , C1∪
C2 =V , C1∩C2 = φ , and||C1|− |C2|| ≤ 1. The cut size of
{C1,C2} is |{(v,w) ∈ E : v ∈C1,w ∈C2}|. The graph bi-
section problem is the problem of finding a bisection with
minimum cut size.

A number of heuristics for graph bisection have been
proposed. The iterative improvement algorithms are per-
haps the most basic among these heuristics. An iterative
improvement algorithm is used as a heuristic in itself, as a
framework for further refinement, or as a local optimiza-
tion engine in hybridization with metaheuristic methods.
Thus, having a good, basic iterative improvement algo-
rithm is crucial. An iterative improvement algorithm starts
with an initial bisection and iteratively moves the vertices
to the other side based on greedy decisions. The Kernighan-
Lin algorithm (KL) [5] is a representative iterative im-
provement heuristic using pair swaps and the Fiduccia-
Mattheyses algorithm (FM) [2] is its algorithmic speedup
using single vertex moves. Their variants are discussed in
[1], [7], [8], [9], and so on.

Recently, Hagenet al. [3] reported notable results con-
cerning implementation choices for tie-breaking in an it-
erative improvement algorithm for hypergraph partition-

ing. They confirmed by experiment the effectiveness of
stack-based management (LIFO strategy) of vertices to ob-
tain the biggest gain for movement. In this paper, we go
further than their study and introduce a new tie-breaking
method in the KL algorithm for graph partitioning. We
show that our tie-breaking strategy is superior to tradi-
tional tie-breaking strategies.

2. Importance of Tie-Breaking

In a traditional iterative improvement heuristic like KL or
FM, a chain of moves are performed; for each move, a
vertex with the highest gain is selected. When choosing a
vertex, if more than one vertex has the same highest gain,
a tie occurs. Hagenet al. [3] observed that many ties occur
during a run of FM in hypergraph partitioning. We also ob-
served a consistent phenomenon during runs of KL in the
graph bisection problem. Figure 1 shows the average num-
ber of ties (from 1,000 runs) over the iterations in the first
pass of KL with a graph of 1,000 vertices (G1000.2.5).
The second column of Table 1 shows the overall aver-
age number of ties for each graph. This shows that quite a
large number of ties occur in vertex selection, revealing the
importance of tie-breaking since two different tie-breaking
strategies can drive the search along totally different paths.

There have been a number of studies on tie-breaking
mechanisms in the hypergraph partitioning problem. Kr-

∗ Corresponding author: e-mail: yhdfly@kw.ac.kr

c© 2013 NSP
Natural Sciences Publishing Cor.

530 Y. Yoon, Y.-H. Kim: New Bucket Managements in Iterative Improvement...

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

Iteration

Average number of ties during the first pass

Figure 1 Average number of ties during the first pass of KL for
the graph G1000.2.5

ishnamurthy [9] pointed out that the lack of a good tie-
breaking rule in the highest gain bucket causes the FM
[2] algorithm to make bad choices. For tie-breaking, he
introduced again vector with look-ahead and observed a
performance improvement. However, hislook-ahead algo-
rithm requires large amounts of memory [1] and cannot be
applied to the general graph partitioning problem since the
gain vector is only for hypergraphs. Even with his gain
vector, ties may still occur. Hagenet al. [3] observed that
the LIFO management of gain buckets yields considerably
better solutions than FIFO and Random bucket manage-
ments, for both the FM and Krishnamurthy algorithms.
According to them, a possible explanation for the supe-
riority of LIFO is that, in LIFO management, clustered
vertices will tend to move sequentially. Based on this hy-
pothesis, they proposed an alternative gain vector which
includes locality information, and their variants of Krish-
namurthy improved the performance.

3. A New Tie-Breaking Method

A typical iterative improvement algorithm uses the gain
bucket structure as given in Figure 2 [6]. The vertices with
the same gain are managed in the same bucket. Since each
bucket is implemented by a linked list, we use the terms
bucket andbucket list interchangeably. In this data struc-
ture, if more than one vertex is in the max-gain bucket, a
tie occurs.

In an iterative improvement algorithm, after each ver-
tex is moved, the gains of its adjacent vertices are updated.
There are three types of gain updates in the KL algorithm:
gain increases (type A), no change (type B), and gain de-
creases (type C). Previous tie-breaking methods do not
consider this classification. So, the LIFO strategy, the tra-
ditional champion, inserts every updated node at the head
of the corresponding bucket list and selects the node at the
head of the bucket list. We change this according to our
classification. We denote our variants of LIFO and FIFO
by LIFO* and FIFO*, respectively. In LIFO*, the means

3

2

1

0

−1

−2

Max−gain

Gain bucket

Module Module Module Module

Select

Insert

FIFO management

LIFO management

Insert Select

Figure 2 Illustration of the gain bucket data structure [6]

Type DECType INC

Gain bucket

Insert

Insert

Type NOC

Delete Insert

Delete

Delete

SELECT

Figure 3 LIFO* bucket management in gain updates

by which the algorithm selects the vertices is the same as
in LIFO. The difference between LIFO and LIFO* lies in
the vertex insertion. Each vertex of type A is inserted at
the head of the bucket. Each vertex of type C is inserted
at the tail of the bucket. There is no change for the ver-
tices of type B. In FIFO*, the selection is the same as that
of FIFO and the insertion is the same as that of LIFO*.
Figure 3 and Figure 4 show the proposed bucket manage-
ment in gain updates. Our idea reflects the conjecture that
it might be advantageous to move vertices having a close
relationship with recently moved vertices.

4. Comparison of Tie-Breaking Strategies

We conducted tests on the eight graphs that were used in
[4], [7], [8], [10]. The different classes of graphs are briefly
described below.

– Gn.d: A random graph onn vertices, where an edge is
placed between any two vertices with probabilityp in-
dependent of all other edges. The probabilityp is cho-
sen so that the expected vertex degree,p(n−1), is d.

– Un.d: A random geometric graph onn vertices that
lie in the unit square and whose coordinates are cho-
sen uniformly from the unit interval. There is an edge

c© 2013 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.7, No. 2, 529-532 (2013) / www.naturalspublishing.com/Journals.asp 531

Gain bucket

Type DECType INC
Insert

Insert

Type NOC

Delete Insert

Delete

Delete

SELECT

Figure 4 FIFO* bucket management in gain updates

between two vertices if their Euclidean distance ist or
less, whered = nπt2 is the expected vertex degree.

– cat.n: A caterpillar graph onn vertices, with each ver-
tex having six legs. It is constructed by starting with a
straight line (called the spine), where each vertex has
degree two except the outermost vertices. Each vertex
on the spine is then connected to six new vertices, the
legs of the caterpillar. rcat.n is a caterpillar graph with
n vertices, where each vertex on the spine has

√
n legs.

All caterpillar graphs have an optimal cut size of 1.
– gridn.b: A grid graph onn vertices and whose optimal
cut size is known to beb. w-gridn.b denotes the same
grid but the boundaries are wrapped around.

Table 1 shows the performance of the five tie-breaking
rules: FIFO*, FIFO, Random, LIFO, and LIFO*. The names
reflect the ways they manage the highest-gain bucket list.
Four of the methods with the exception of Random took a
comparable amount of time; Random was slower than the
others. Similarly to hypergraph partitioning [3], LIFO sig-
nificantly outperformed FIFO and Random for most graphs
except for the caterpillar graphs. For the caterpillar graphs,
FIFO led LIFO. Overall, Random was dominated by LIFO
but performed better than FIFO.

LIFO* was the clear winner among all the rules. By
contrast, FIFO* was overall dominated by the others. This
result implies that the locality of vertices plays an impor-
tant role in the performance. To confirm this, for the five
rules, we measured the rate of selected vertices in the max-
gain buckets according to their latest updated status (Ta-
ble 2). Obviously by definition, the sum of three rates is
always 1. We performed 3,000 runs for each result of Ta-
ble 2. One can observe that the performance is strongly
dependent on the rate of type A. The larger the rate of type
A, the better the performance. We saw the opposite phe-
nomenononly in a caterpillar graph (rcat.5114). Interest-
ingly enough, only the graph rcat.5114 showed differing
performance trends related to tie-breaking rules. Overall,
one can see that the performance of the five tie-breaking
strategies correlates with their corresponding rate values.

This is a possible explanation for the performance differ-
ence among the different tie-breaking rules.

5. Summary

In this paper, we described an improved tie-breaking strat-
egy for an iterative improvement partitioning algorithm.
We improved the traditional champion, namely the LIFO
strategy, by considering the types of gain updates. Appli-
cation to the VLSI circuit partitioning problem remains as
a promising avenue for future study.

Acknowledgement

The present Research has been conducted by the Research
Grant of Kwangwoon University in 2013. This research
was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded
by the Ministry of Education, Science and Technology(2012-
0001855).

References

[1] S. Dutt and W. Deng. A probability-based approach to VLSI
circuit partitioning. InProceedings of the Design Automa-
tion Conference, pages 100–105, June (1996).

[2] C. Fiduccia and R. Mattheyses. A linear time heuristics for
improving network partitions. InProceedings of the 19th
ACM/IEEE Design Automation Conference, pages 175–181,
(1982).

[3] L. Hagen, J. H. Huang, and A. B. Kahng. On implemen-
tation choices for iterative improvement partitioning algo-
rithms. IEEE Transactions on Computer-Aided Design,
16(10):1199–1205, (1997).

[4] I. Hwang, Y.-H. Kim, and B.-R. Moon. Multi-attractor
gene reordering for graph bisection. InProceedings of the
Genetic and Evolutionary Computation Conference, pages
1209–1215, (2006).

[5] B. Kernighan and S. Lin. An efficient heuristic procedure
for partitioning graphs. Bell Systems Technical Journal,
49:291–307, Feb. (1970).

[6] Y.-H. Kim. Improved implementation choices for iterative
improvement partitioning algorithms on circuits. InPro-
ceedings of the International Conference on Computer De-
sign, pages 30–34, (2008).

[7] Y.-H. Kim and B.-R. Moon. A hybrid genetic search for
graph partitioning based on lock gain. InProceedings of the
Genetic and Evolutionary Computation Conference, pages
167–174, (2000).

[8] Y.-H. Kim and B.-R. Moon. Lock-gain based graph parti-
tioning. Journal of Heuristics, 10(1):37–57, (2004).

[9] B. Krishnamurthy. An improved min-cut algorithm for par-
titioning VLSI networks.IEEE Transactions on Computers,
C-33:438–446, (1984).

c© 2013 NSP
Natural Sciences Publishing Cor.

532 Y. Yoon, Y.-H. Kim: New Bucket Managements in Iterative Improvement...

Table 1 Comparison of Bisection Cut Sizes

Graph Ties† FIFO*‡ FIFO‡ Random‡ LIFO‡ LIFO*‡

G1000.05 13.25 516.82 516.77 508.86 501.24 500.64
G1000.20 3.88 3495.41 3495.30 3489.39 3482.95 3482.55
U2000.05 10.93 221.94 221.13 191.07 161.44 160.25
U5000.10 6.24 1178.72 1173.66 1072.81 959.89 951.78
cat.5252 552.73 256.26 250.85 247.46 254.15 245.78
rcat.5114 747.82 166.49 167.74 177.99 183.46 183.73

grid5000.50 16.66 88.23 88.10 74.30 56.18 56.75
w-grid5000.100 25.58 176.04 164.91 132.59 123.37 123.33

† Average over 500 runs.
‡ Average over 3,000 runs.

Table 2 Selection Rate

Graph Type FIFO* FIFO Random LIFO LIFO*
A 0.363 0.362 0.355 0.354 0.354

rcat.5114 B 0.523 0.524 0.523 0.523 0.523
C 0.114 0.114 0.122 0.123 0.123

Average of A 0.840 0.841 0.855 0.867 0.868
the other B 0.136 0.137 0.127 0.113 0.114
graphs C 0.023 0.022 0.018 0.019 0.018

Average over 3,000 runs.

[10] K. Seo, S. Hyun, and Y.-H. Kim. A spanning tree-based en-
coding of the MAX CUT problem for evolutionary search.
In Proceedings of the 12th International Conference on Par-
allel Problem Solving From Nature - Lecture Notes in Com-
puter Science, volume7491, pages 510–518, (2012).

Yourim Yoon received the B.E.
degree in computer engineer-
ing and the Ph.D. degree in com-
puter science and engineering
from Seoul National University,
Seoul, Korea, in 2003 and 2012,
respectively. Since March 2012,
she has been a senior research
engineer at Future IT R&D Lab.
in LG Electronics, Seoul, Ko-
rea. Her research interests in-

clude optimization theory, machine learning, combinato-
rial optimization, evolutionary computation, discrete math-
ematics, operations research, smart grid, and sensor net-
works. She served as a reviewer for BIC-TA 2007, BMIC
2011, IEEE TEC, and TIIS.

Yong-Hyuk Kim received the
B.S. degree in computer sci-
ence and the M.S. and Ph.D.
degrees in computer science and
engineering from Seoul National
University (SNU), Seoul, Ko-
rea, in 1999, 2001, and 2005,
respectively. From March 2005
to February 2007, he was a Post-
doctoral Scholar in SNU and

also a research staff member at the Inter-University Semi-
conductor Research Center in SNU. Since March 2007, he
has been a professor at Department of Computer Science
and Engineering in Kwangwoon University, Seoul, Korea.
His research interests include algorithm design/analysis,
discrete mathematics, optimization theory, combinatorial
optimization, evolutionary computation, operations research,
data/web mining, and sensor networks. Dr. Kim has served
as an Editor of TIIS journal in 2010-2013, a Committee
Member of GECCO 2005-2006 & IEEE CEC 2009-2012,
and a reviewer for journals (IS, TKDE, TPDS, TC, TSE,
TEC) of IEEE since 2003.

c© 2013 NSP
Natural Sciences Publishing Cor.

