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Abstract: A non-integer order model stemmed from an evolutionary game theory is presented in this work to study the impact of

changes in human behavior during an emerging epidemic. Introducing fractional order derivatives in Caputo sense to the integer order

model may give a better understanding of the numerous effects of memory and learning process of individuals on the prevalence of the

infectious diseases when epidemics occur. Numerical simulations are presented to figure out the features of using the non-integer order

(fractional order) models in epidemiology.
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1 Introduction

Human behavior plays an essential role in the prevalence of infectious diseases and epidemics [1]. Human behavioral
changes during epidemics shape the disease spreading and figure out the features of the successful strategies used to
control and eradicate epidemic outbreaks [1, 2]. People change their behaviors during an epidemic outbreak in order to
prevent infection. On the other hand, human behavioral responses to emerging epidemic outbreak including taking
antiviral drugs, vaccination, avoiding crowded environments, limiting travels, wearing face masks, washing hands
regularly with antiseptics and respecting cough and sneezes etiquettes influence the dynamic of the epidemic outbreak.
Historically, changes in human behavior during emerging epidemics have been linked with the prevalence of infectious
diseases in human societies [3, 2]. In the middle ages, the Black Death plague killed about one-third of the total
population in Europe. In 1665, the plague was spreading rapidly in Europe and the streets were empty in big cities even
in London as people fled the big cities and traveled to the countryside [2, 4]. During the 1918 influenza epidemic waves
which had struck the world and caused more than 50 million deaths worldwide, individuals were shunning infected
people [5]. More recently, in 2014, Ebola epidemic that caused in more than 11000 deaths in six countries is considered
as a behavioral disease as the transmission is affected by human behaviors [6, 7, 8]. Ebola outbreak reduced travelling to
West Africa and resulted in applying trade restrictions to control the spread of Ebola virus [5, 7, 8]. People avoid
touching wild animals and shun eating bat soup in the infected areas [7]. In 2016, Zika virus has struck about 61
countries and territories [9]. Zika is a vector borne disease that can be transmitted sexually or by Aedes mosquitoes. Also
Zika can be transmitted from infected pregnant woman to her unborn baby [10]. In the infected areas, human behaviors
have been changed as people have taken some relativity new actions during Zika outbreak to prevent Zika infection (e.g.,
mosquito insect repellent spry, removing long grass in the house garden, sleeping under bed nets, using magnetic
window screen, wearing clothing that covers arms and legs, and removing standing water from their property and using
condoms during sex) [10]. Various mathematical models have been investigated to study the influence of uncoordinated
human behavioral changes on the spread of epidemics [1, 2, 11]. Nevertheless, most of such models are integer order
models. Fractional order models of infectious diseases are considered as models with memory effect while the integer
order models cannot display the memory effect in the transmission process [12, 13, 14, 15, 16, 17, 18]. The fractional
order derivative ”α” is the memory index and its related learning process [19, 20, 21]. We believe that, introducing the
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fractional order α to the integer order model will improve the system performance through adding a new degree of
freedom to study the effect of memory and its associate learning process on the numerical results [2, 22, 23]. The future
states of the outbreak will be affected dramatically by the previous responses. If α → 0, then the model has a perfect
memory and depends strongly on the history of the transmission process and conversely if α → 1 the system has a short
memory [20]. Hence, any decrease in human memory and learning process will increase the epidemic spread and vice
versa. For instant, during Zika epidemic, increasing human awareness through media in order to help individuals
learning how to use mosquito nets and mosquito repeller, reduced mosquito biting rate and helped to control the disease
as people used their previous experience and the stored information about the disease in their memory to reduce the risk
of infection [21]. Consequently, we present here a fractional order model based on evolutionary game theory to predict
human behavior during epidemic outbreaks. During an emerging epidemic, memory and learning process play a
significant role in disease transmutation as they affect directly in human behaviors.
The rest of the paper is arranged as follows. In Section 2, basic definitions and model derivation are presented while in
Section 3 we show that the proposed model has non- negative solutions. The existence of the uniformly stable solutions of
the presented model is discussed in Section 4. The numerical solutions of the proposed fractional order system is presented
in Section 5.

2 Model derivation

First of all, we introduce some of the basic definitions of the fractional calculus which has become the focus of several
scientific fields [12, 13, 14, 15, 16, 17, 18].
Definition 1. The fractional integral of order α > 0 of a function f : R+ → R is given as follows:

Jα f (x) =
1

Γ(α)

∫ x

0
(x− t)α−1

f (t)dt, 0 < α ≤ 1, 0 < x ≤ T,

J0 f (x) = f (x) .

Definition 2. Riemann–Liouville and Caputo fractional derivatives of order α where α ∈ (m− 1,m) of a continuous
function f : R+ → R is given respectively by

Dα
∗ f (x) = Dm

(
Jm−α f (x)

)
,

Dα f (x) = Jm−α (Dm f (x)) ,

Where
m− 1 < α ≤ m, m ∈ N.

Now, the fractional-order derivative in Caputo sense is introduced into the SIR epidemic model proposed in [11] to be as
follows:

Dα S
tr
n (t) =−λ Sn,

Dα S
tr
a (t) =−qλ Sa,

Dα I
tr
s (t) = p [λ Sn + qλ Sa]− γIs,

Dα I
tr
An
(t) = (1− p)λ Sn − γIAn,

Dα I
tr
Aa
(t) = (1− p)qλ Sa − γIAa,

Dα R
tr
s (t) = γIs,

Dα R
tr
An
(t) = γIAn ,

Dα R
tr
Aa
(t) = γIAa ,

(1)

Where λ = βsIs +βAIA + qβAIAa is the infection force and α ∈ (0,1] is the fractional order. For α ∈ (0,0.5], we believe
that the rate of change cannot be approximately described by the fractional derivatives [24].
S represents susceptible people, IS represents the infective symptomatic people, IA represents the asymptomatic people,
RS represents people who were recovered from symptomatic infections, and RA represents people who were recovered
from asymptomatic infections. The population fractions Sn, IAn , RAn represent individuals with normal behavior while Sa,
IAa , RAa represent individuals with alerted behavior. βs and βA are the rate of transmission for symptomatic people and
asymptomatic people respectively. The potentially infectious contacts is decreased by q. The mean length of the infection
period is presented by 1/γ while p represents the probability of developing symptoms of the disease.
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The information about the spread and transmission of the infectious diseases is a crucial aspect as it presents the number of
infected symptomatic people over time. Based on [11, 25], the information variable M(t) which introduces the information
about the current/past states of the disease can be presented as:

Dα M (t) = p [λ (t)Sn(t)+ qλ (t)Sa(t)]−νI(t)

Where 1/ν is the average time of the symptomatic cases memory and 0 < α ≤ 1 is the fractional order.

The outlines of imitation dynamics for two fractions x and (1− x) of population performing two different strategies have
been presented in [11] as an integer order ordinary differential equation. Here, the imitation dynamics can be illustrated
as a fractional order differential equation as follows:

Dα (x) = ω̃x(1− x)ϕ∆P (2)

where 0 < α ≤ 1, ω̃ is the rate of face to face communication between individuals, ∆P is the difference between the
payoffs (∆P = Pn −Pa) of the two different strategies and ϕ is a proportionality constant as Dα (x) ∝ ∆P. From (2), it is
clear that the equilibrium points of (2) are x= 0, x= 1. In other words, if some individuals play the same strategy then
such strategy can spread through the population. The authors in [11], considered that individuals rarely change strategy to
avoid the effect of the equilibria. So, equation (2) becomes:

Dα (x) = ωx(1− x)∆P+ µ̃ (1− x)− µ̃x,

where ω := ω̃ϕ and µ̃ ≪ 1 is the rate at which people change their strategies.

The imitation dynamics presents changes of individuals’ strategy but it does not assume any movement between the
population classes(S− I−R).
So, for susceptible people, the imitation model as follows

Dα Sim
n (τ) = ω [SnSa + Sa (IAn +RAn)]∆P+ µ̃Sa − µ̃Sn if ∆P > 0

Dα Sim
n (τ) = ω [SnSa + Sn (IAa +RAa)]∆P+ µ̃Sa − µ̃Sn if ∆P < 0

Dα Sim
a (τ) =−ω [SnSa + Sa (IAn +RAn)]∆P− µ̃Sa + µ̃Sn if ∆P > 0

Dα Sim
a (τ) =−ω [SnSa + Sn (IAa +RAa)]∆P− µ̃Sa + µ̃Sn if ∆P < 0

The other equations of the infected and removed classes can be defined for all other classes. In [11], τ is introduced to
present the of the uncoordinated behavioral changes such that t=ξ τ is considered as the transmission dynamic time unit
where ξ ∈ R. The imitation dynamics of susceptible class can be presented as follows:

Dα Sn (t) = Dα Str
n +

1

ξ
Dα Sim

n ,

Dα Sa (t) = Dα Str
a +

1

ξ
Dα Sim

a ,

Similarly, we can model the other population classes. Iim
s (τ) and Rim

s (τ) are assumed to be zero [11] and the full model
after can be presented as follows:

Dα Sn (t) =−λ Sn +
1

ξ
[ωSnSa∆P+ωSa (IAn +RAn)∆PH (∆P)

−ωSn (IAa +RAa)∆PH (−∆P)+ µ̃Sa − µ̃Sn],

Dα Sa (t) =−qλ Sa+
1

ξ
[ωSnSa∆P−ωSa (IAn +RAn)∆PH (∆P)

+ωSn (IAa +RAa)∆PH (−∆P)− µ̃Sa + µ̃Sn],

Dα IS (t) = p [λ Sn + qλ Sa]− γIs

Dα IAn (t) =(1− p)λ Sn − γIAn +
1

ξ
[ωIAnIAa∆P+ωIAa (Sn +RAn)∆PH (∆P)

−ωIAn (Sa +RAa)∆PH (−∆P)+ µ̃IAa − µ̃IAn ],

(3)
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Dα IAa (t) = (1− p)λ Sa − γIAa +
1

ξ
[ωIAnIAa∆P−ωIAa (Sn +RAn)∆PH (∆P)

+ωIAn (Sa +RAa)∆PH (−∆P)− µ̃IAa + µ̃IAn ],

Dα RS (t) = γIs

Dα RAn (t) = γIAn +
1

ξ
[ωRAnRAa∆P+ωRAa (Sn + IAn)∆PH (∆P)

−ωRAn (Sa + IAa)∆PH (−∆P)+ µ̃RAa − µ̃RAn ],

Dα RAa (t) = γIAa +
1

ξ
[ωRAnRAa∆P−ωRAa (Sn + IAn)∆PH (∆P)

+ωRAn (Sa + IAa)∆PH (−∆P)− µ̃RAa + µ̃RAn ],

where

H (∆P) =

{
1 if ∆P ≥ 0
0 if ∆P < 0

Suppose that, S = Sa +Sn, IA = IAa
+ IAn , RA = RAa

+RAnand define the variable x =
Sn+IAn+RAn

S+IA+RA
. As in [24], if we a follow

the assumption: Sn
Sn+Sa

=
IAn

IAn+IAa
=

RAn

RAn+RAa

then Sx = Sn , IAx = IAn , RAx = RAn and the previous model (3) can be written as follows:

Dα S (t) =−λ [x+ q(1− x)]S,

Dα IA (t) = (1− p)λ [x+ q(1− x)]S− γIA,

Dα Is (t) = pλ [x+ q(1− x)]S− γIs ,

Dα RA (t) = γIA,

Dα Rs (t) = γIs,

Dα M (t) = pλ [x+ q(1− x)]S−νM

Dα x(t) = x(1− x)

[
pS

1−Rs− Is

]
[λ (q− 1)]+

ρ [x(1− x)(1− Is−Rs) (1−mM (t))+ µ(1− 2x)].

(4)

Where m = mn−ma
k

, ρ = kω
ξ

, µ = µ̃
kω and λ = βsIs + βAIAx + qβAIA (1− x) . The initial conditions are

S (0) = 1− 10−3, Is (0) = 10−3, x(0) = 1− 10−6, IA (0) = RA (0) = RS (0) = M (0) = 0 [24].
The above model can be modified in order to make the dimensions match [21, 24]. The new modified model can be written
as follows:

Dα S (t) =−(β α
s Is +β α

A IAx+ qβ α
A IA (1− x)) [x+ q(1− x)]S,

Dα IA (t) = (1− p)(β α
s Is +β α

A IAx+ qβ α
A IA (1− x)) [x+ q(1− x)]S− γIA,

Dα Is (t) = p(β α
s Is +β α

A IAx+ qβ α
A IA (1− x)) [x+ q(1− x)]S− γIs

Dα RA (t) = γIA,

Dα Rs (t) = γIs,

Dα M (t) = p(β α
s Is +β α

A IAx+ qβ α
A IA (1− x)) [x+ q(1− x)]S−νM

Dα x(t) = x(1− x)

[
pS

1−Rs− Is

]
[(β α

s Is +β α
A IAx+ qβ α

A IA (1− x))(q− 1)]+

ρα [x(1− x)(1− Is−Rs)(1−mM (t))+ µα(1− 2x)]

(5)

3 Non-negative solutions

Denote R7
+ =

{
χ ∈ R7

∣∣ χ ≥ 0
}

and let

χ (t) = (S (t) , IA (t) , Is (t) ,RA (t) ,Rs (t) ,M (t) ,x(t))T .
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Lemma1. Consider that f (χ) ∈C[a,b] and Dα
a f (χ) ∈C [a,b] , f or 0 < α ≤ 1 ,,, then we have [18]:

f (x) = f (a)+
1

Γ (α)
(Dα

a f )(ξ )(χ − a)α

With a ≤ ξ ≤ χ , ∀ x ∈ (a,b] .
Corollary1. Consider that f (χ) ∈C[a,b] and Dα

a f (χ) ∈ ∁(a,b], f or 0 < α ≤ 1 ...
If Dα

a f (χ)≥ 0, ∀χ ∈ (a,b), then f (χ) is non-decreasing for each x ∈ [a,b] .
If Dα

a f (χ)≤ 0, ∀χ ∈ (a,b), then f (χ) is non-increasing for each x ∈ [a,b].
Proof. This is comprehensible from Lemma 1.

Theorem1. There exists a unique solution

χ (t) = (S (t) , IA (t) , Is (t) ,RA (t) ,Rs (t) ,M (t) ,x(t))T

For the system (5) over t ≥ 0 which remains in R7
+ .

Proof. It is understandable that the solution of system (5) on (0,+∞) is unique [27]. From (5), we have

Dα S|s=0 ≥ 0,

Dα IA|IA=0 ≥ 0,

Dα Is|Is=0 ≥ 0,

Dα RA|RA=0 ≥ 0,

Dα Rs|Rs=0 ≥ 0,

Dα M|M=0 ≥ 0,

Dα x|x=0 ≥ 0.

So, the solution of (5) remains in R7
+

4 Existence of uniformly stable solution

In order to figure out the outlines of the existence and uniqueness of the solutions of the model (5), the following lemma
have to be discussed:
Lemma 2 (Theorem 8.11 [25]) Let α j ∈ [0,1] for j = 1,2, . . . ,k and consider the fractional order system:

D
α j
∗ y j = f j(x,y1 (x) , . . . ,yk (x))), j = 1,2, . . . ,k (6)

where y j (0) = c j, j = 1,2, . . . ,k.

Suppose that, the continuous functions f j = [0,x]×Rk → R, j = 1,2, . . . ,k satisfy Lipschitz conditions corresponding to
their arguments except for the first argument. So, the above system (6) has a unique continuous solution.
For system (5), each fi = [0,T1]×R7

+ → R+ ; i = 1,2, . . .7 is continuous. Now we will prove that systems (5) have a unique
continuous solution as follows.
Let

x1 (t) = S (t) ,x2 (t) = IA (t) ,x3 (t) = Is (t) , x4 (t) = RA,x5 (t) = Rs (t) , x6 (t) = M

x7 (t) = x

Dα x1 (t) = f1 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x1 (0) = x01,

Dα x2 (t) = f2 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x2 (0) = x02,

Dα x3 (t) = f3 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x3 (0) = x03,

Dα x4 (t) = f4 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x4 (0) = x04,

Dα x5 (t) = f5 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x5 (0) = x05,

Dα x6 (t) = f6 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x6 (0) = x06,

Dα x7 (t) = f7 (x1 (t) ,x2 (t) , . . .x7 (t)) , t > 0 and x7 (0) = x07,
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Let D = {x1,x2,x3, x4,x5,x6,x7 ∈ R : |xi (t)≤ a, t ∈ [0,T ] , i = 1,2, . . . ,7|} . The functions fi satisfy the Lipschitz
condition on R3

+ if

| fi (s1,x1,y1)− fi (s2,x2,y2)| ≤ K2‖X1 (t)−X2 (t)‖2, (7)

Where,

‖X1 (t)−X2 (t)‖2 = |S1 − S2|+ |IA1 − IA2|+ |Is1 − Is2|+ |RA1 −RA2|+

|Rs1 −Rs2|+ |Ms1 −Ms2|+ |xs1 − xs2|

and K2 is the Lipschitz constant.

Condition (7) is equivalent to show that: each
∂ fi
∂x j

(x1 (t) ,x2 (t) , . . .x7 (t)) exists and satisfies the following relation:

∂ fi

∂x j

(x1 (t) ,x2 (t) , . . .x7 (t))≤ K2, ∀ i, j = 1,2, . . .7 and n = 1,2,3, . . . ,9[20].

Then each of fi satisfies the Lipschitz condition and is absolutely continuous with respect to xi ∀ i = 1,2, . . .7.
Theorem 5.1. The proposed model (5) has a unique solution which is uniformly Lyapunov stable solution.
Proof. The model (5) can be written in a matrix form as follows:

Dα X (t) = F (X (t)) , t > 0 and X (0) = X0

Where
X (t) = (x1 (t) x2 (t) . . . x7 (t))

τ ,F (X (t)) =

( f1 (x1 (t) , x2 (t) , . . .x7 (t)) f2 (x1 (t) , x2 (t) , . . .x7 (t)) . . . f7 (x1 (t) , x2 (t) , . . .x7 (t)))
τ

Where the column vector(x1 (t) x2 (t) . . . x7(t))
τ
, is the solution vector of the system (5) and x1,x2, . . .x7 ∈C [0,T ] .

So, we can deduce that the system (5) has a unique solution which is uniformly Lyapunov stable solution [21, 28].
The two basic reproductive numbers of the system (5) have been implemented in [11] for α = 1 as follows:

Rn
0 = (1− p)

βA

γ
+ p

βS

γ
and Ra

0 = q2 (1− p)
βA

γ
+ qp

βS

γ
(8)

Where Rn
0 is for the individuals who adopt normal behavior while Ra

0 is for the individuals who adopt altered behavior.
Similarly, we can deduce the two basic reproductive numbers of the system (5) as follows:

R
n
0 = (1− p)

β α
A

γ
+ p

β α
S

γ
and R

a
0 = q2 (1− p)

β α
A

γ
+ qp

β α
S

γ
(9)

The effect of the fractional order α on the numerical values of R
n
0 and R

a
0 is clear from (9). In other words, the memory

parameter α can affect the values of the basic reproductive numbers of the fractional order model (5) and for α→0, the
system (5) has a perfect memory.

5 Numerical results and discussions

Most of the fractional order models have no analytic solutions, so numerical methods can be used to obtain approximate
numerical solutions for such models. In this paper, generalized Euler method is used to solve the fractional order models
(4) and (5). The parameters values are given in [11] as follows:

1

γ
=

1

ν
= 2.8, βS = βA = 0.5,

1

m
= 0.01, ρ = 10,µ = 10−8.

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 3, 447-457 (2022) / www.naturalspublishing.com/Journals.asp 453

Fig. 1: The number of infective symptomatic individuals IS of system (4) for p = q = 1, α = 1(the blue line), α = 0.95 (the green line),

and α = 0.9, (the red line).

Fig. 2: The number of infective symptomatic individuals IS of system (4) for p = 1,q = 0.85, α = 1(the blue line), α = 0.95 (the green

line), and α = 0.9, (the red line).
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Fig. 3: The number of infective symptomatic individuals IS of system (4) for p = 0.7,q = 0.6, α = 1(the blue line), α = 0.95 (the green

line), and α = 0.9, (the red line).

Fig. 4: The number of infective symptomatic individuals IS of system (5) for p = q = 1, α = 1(the blue line), α = 0.95 (the green line),

and α = 0.9, (the red line).
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Fig. 5: The number of infective symptomatic individuals IS of system (5) for p = 1,q = 0.85, α = 1(the blue line), α = 0.95 (the green

line), and α = 0.9, (the red line).

Fig. 6: The number of infective symptomatic individuals IS of system (5) for p = 0.7,q = 0.6, α = 1(the blue line), α = 0.95 (the green

line), and α = 0.9, (the red line).
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Numerical results indicate that, decreasing the values of p and q implies to a reduction in the number of infective
symptomatic individuals IS (see figures 1-6). For x 6= 0, people take some time to amend their behavior as shown in
figures 1 & 4. Increasing the value of q implies to effective early strategy in human population as shown in figures 2, 3,
5, 6. On the other hand, when q decreases, the number of infected people embracing amended behavior decreases (see
figures 3 & 6). Nevertheless, small values of q implies to enormous epidemic waves as shown in figures 3 & 6. Only
infected symptomatic people can transmit the disease For p = 1 (see figures 1,2,4,5). But if p 6= 1, then asymptomatic
and symptomatic people can transmit diseases with the same rate. Also when α→0, the numerical results strongly
depend of the previous states not only on the current state. In other words, means that when the memory parameter α→0
the altered learning behavior of the population increase and the epidemic risk will vanish faster as shown in figures (1-6).

6 Conclusion

In this paper, a non-integer order model is proposed to study the impact of people behavioral changes in the spread of
infectious diseases during emerging epidemics. The model is circumscribed by an evolutionary game theory. We studied
the impact of memory and altered learning behavior in human population which plays a significant role in epidemic
dynamics. Numerical simulations show how small changes in the values of the non-integer order α (the memory index)
can make dramatic changes in the number of infective symptomatic individuals. The impact of the reduction factor of the
infectious contacts number q and the developing symptoms probability q are discussed in this work. The epidemic size
can be decreased by decreasing the value of q as shown in Figures (1,2,4,5). For p 6= 1, both asymptomatic and
symptomatic people become infectious. However, for small values of q several epidemic waves can take place as shown
in Figures (3,6). We improve the performance of the integer system presented in [11] by introducing the fractional order
α to this system. In other words, we add a new degree of freedom in order to study the impact of population memory and
its associated learning process on the epidemic dynamics. The memory effect on the basic reproductive number of the
presented fractional order model. For α→0, the fractional order system has a perfect memory. Studying human
behavioral changes during outbreaks is essential to help public health organizations and decision makers to make
strategic action plans for epidemic control.
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