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Abstract: In this paper, a fractional dynamical model of Salmonella with time delay is studied numerically. The proposed model is

administered by a system of fractional delay differential equations, where the fractional derivative is defined in the sense of the Caputo

definition. The parameters are modified regarding to the order of the fractional derivative. The stability of the disease free equilibrium

point and endemic equilibrium point is investigated for any time delay. Weighted difference numerical technique is introduced to

simulate the proposed model. This scheme was unconditionally stable when the weight factor is less than 1. Numerical simulations

with some comparison are introduced to show the applicability and effectivity of the proposed method to solve such stiff systems of

fractional delay differential equations and to confirm the theoretical studies.
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1 Introduction

Epidemics are one of the most serious health issues facing the world today, and they must be addressed. For a long time,
researchers have been studying the dynamics of epidemic diseases. The most effective approach for studying epidemic
dynamics is to use models that include time derivatives and are composed of systems of ordinary differential equations.
Each equation in these models represents the change in the number of bodies in various categories as determined by
continuous variables ([1], [2]).

Salmonella is well known to be a major public health concern throughout the world. Every year in the United States,
it causes approximately 1.4 million clinical cases, 16,000 hospitalizations, and 600 deaths. It is a major zoonotic disease
that is passed from animals to humans through milk, beef, eggs, and other dairy products, or through direct contact with
sick animals and their surroundings. Salmonella can be found in the intestines of humans, animals, and birds. Typically,
the illness lasts 4 to 7 days, and most people recover without medical attention. However, in some cases, diarrhea is so
dangerous that the patient must be hospitalized.

Due to the impact of epidemics is always delayed in time, it is necessary to incorporate memory into differential
epidemics models. As a result, models in which the current state is dependent on all of its previous states rather than
just the first previous one are better suited to describing the epidemic’s flow. Moreover, because fractional derivatives are
defined in terms of an integral form over the entire history of the plan [3], they can be used to describe the hereditary
properties inherent and memory in different processes. and materials. Therefore, the derivatives models described using
fractional derivatives are better suited to epidemics models. For numerous applications involving epidemic models, models
built with fractional-order derivatives have been proved to outperform models built with integer-order derivatives in terms
of real-world fit ([1], [4] and [5]). In addition, due to biological systems have time lags, we presented a Salmonella
fractional-order model with some delay terms in this paper to depict the dynamic of Salmonella with memory effect,
which includes the effect of previous values of the variables. This model’s stability will be investigated.
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Fractional calculus gained a lot of importance due to its attractive applications in many scientific fields such as biology
([1], [4], [6] ), system control ([3], [7], [8]), viscoelasticity [9], thermoelasticity ([10], [11]), hydrology [12], finance [13]
and fractional dynamics [14].

Delay fractional differential equations have recently attracted the attention of many researchers ([15], [16], [17], [18],
[19], [20] and [21]). In order to characterize the solution behavior of delay fractional differential equations, accurate
approximation and efficient numerical techniques are essential.

The main contribution of this work is to numerically investigate the following fractional-order Salmonella epidemic
model with time delay memory τ:

c
0Dα

t S(t) = µαN + rαR(t)− (β α
c Ic(t)+β α

s Is(t − τ)+β α
lt Ilt(t)+ µα)S(t),

c
0Dα

t Ic(t) = f α(β α
c Ic(t)+β α

s Is(t − τ)+β α
lt Ilt(t))S(t)− (eα +mα + µα)Ic(t),

c
0Dα

t Is(t) = (1− f α)(β α
c Ic(t)+β α

s Is(t − τ)+β α
lt Ilt(t))S(t)+ eαIc(t)− (hα + µα)Is(t),

c
0Dα

t Ilt(t) = f α
lt hα Is(t)− (hα

lt + µα)Ilt(t),
c
0Dα

t R(t) = (1− f α
lt )h

αIs(t)+ hα
lt Ilt(t)− (rα + µα)R(t), (1)

subject to the initial conditions:

S(0) = s0 ≥ 0, Ic(0) = ic0 ≥ 0, Ilt(0) = ilt0 ≥ 0, and R(0) = r0 ≥ 0.

and
Is(t) = is0 ≥ 0, t ∈ [−τ,0].

This fractional order delay Salmonella model is numerically approximated using an efficient implicit technique for
numerical treatments.

All of the parameters in this system are linked to the fractional-order α. For the sake of clarity in the notations, we
will remove the symbol α from above of the parameters to simplify the notations. Table (1) describes all variables and
parameters in the suggested system (1), along with their definitions.

The flow of individuals from and into the various groups is described in System (1). Therefore, once infected, a
susceptible individual moves from the susceptible compartment to the infectious compartment, where it becomes
infectious. The infected animals enter the reconstructed compartment. Individuals who have recovered from the disease
have temporary immunity and are classified.

Salmonella infection mathematical modeling was important in understanding disease transmission. In the case α = 1,
Y. Y. Lo [22] proposed the above system. Due to the impact of the epidemic is not instantaneous, we prepare in fractional-
order with time delay case, so incorporating memory is very important for explaining and understanding the flow of
salmonella epidemic. More details about the proposed system’s biological impulse and its assumptions can be found in
([22]).

1.1 Preliminaries

Many definitions of fractional derivatives have been introduced in the literature (see e.g., [3], [23], [24]). The time
fractional derivatives are typically defined using the operators Riemann-Liouville, Grunwald-Letnikov, and Caputo.
Caputo’s definition of the fractional derivative is now one of the most commonly used fractional derivatives in
engineering and applied science because it deals with any initial value problem appropriately.

Definition 1.The Caputo fractional derivatives of order α , α ∈ R+, are defined as follows:

(c
0Dα

t f )(t) =
1

Γ (n−α)

∫ t

0

f (n)(x)

(t − x)1−n+α
dx, t > 0, (2)

where f (x) ∈Cn[0,∞[, n = [α]+ 1.

In particular, when 0 < α ≤ 1, we have:

(c
0Dα

t f )(t) =
1

Γ (1−α)

∫ t

0

f ′(x)

(t − x)α
dx, t > 0, (3)

It is well known that the Caputo fractional derivative has the following properties:

–c
0Dα

t k = 0, k is constant.
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Table 1: All symbols in the system (1) and their definition

Symbol Definition
t Time, t ≥ 0.
α Order of the fractional derivative.
c
0Dα

t Caputo fractional derivative.
S(t) Individuals that do not have the bacterial infection (susceptible).
Ic(t) Individuals that have the bacterial infection (clinically infected).
Is(t) Individuals that recovered from the infection and have temporary immunity (subclinically infected).
Ilt(t) Individuals without clinical signs reported to shed Salmonella persistently or intermittently.
R(t) Number of recovered individuals.
N Size population, N = S(t)+ Ic(t)+ Is(t)+ Ilt(t)+R(t).
µ Replacement and exit rate (denotes the mortality rate in every compartment).
βc Transmission coefficient for clinical animals.
βs Transmission coefficient for subclinical animals.
βlt Transmission coeffcient for long-term shedders.
f Proportion of infected animals that develop clinical case.
flt Proportion of subclinical cases that become long-term shedders.
e Rate of clinical cases that become subclinical.
h Recovery rate for subclinical case.
hlt Recovery rate for long-term shedders.
m Disease-induced induce mortality rate.
r Immunity loss rate.

–Caputo’s fractional differentiation is a linear operation. i.e.,

c
0Dα

t (λ f (t)+ γg(t)) = λ c
0Dα

t f (t)+ γ c
0Dα

t g(t).

The article is structured as follows: Section 2 introduces the basic reproduction number and the stability analysis.
Section 3 employs the weighted average finite difference method to approximate the proposed model’s solutions. Section
5 reports numerical simulations for the suggested model to demonstrate the efficiency and applicability of the method
used. Finally, in Section 6, a brief conclusion is provided.

2 Basic reproduction number and stability analysis

2.1 Basic reproduction number

The basic reproduction number, R0, is defined as the average number of secondary infections generated when a single
infective individual is introduced into a host population where the remaining of the population is susceptible ([2], [22]).
This parameter is used to determine the local stability of the disease-free equilibrium. If R0 < 1, a locally asymptotically
stable equilibrium exists. From a biological standpoint, this means that the infected individual, on average, produces less
than one new infected over the course of the infectious period. Therefore, the infection will be stopped, and the model
will eventually reach a locally stable disease-free equilibrium. The disease-free equilibrium, on the other hand, is locally
unstable when R0 > 1. Each infected individual will spread the disease to at least one susceptible individual, and thus the
infection will persist.

The the basic reproduction number R0 for system (1) is:

R0 =
f βcs0

e+ µ +m
+

(1− f )βss0

h+ µ
+

f eβss0

(e+ µ +m)(h+ µ)

+
(1− f ) flthβlts0

(h+ µ)(hlt + µ)
+

f e flt hβlts0

(e+ µ +m)(h+ µ)(hlt + µ)
. (4)

2.2 Stability analysis

Theorem 1.[25] The system (1) is locally asymptotically stable if and only if the eigenvalues λi of the Jacobian matrix

J = ∂g

∂ t
satisfy |arg(λi)|>

απ
2
.
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2.2.1 Stability of the disease free equilibrium point

System (1) has a disease-free equilibrium point ξ1 = (N,0,0,0,0).
The linearized system corresponding to (1) at ξ1 is provided by:

c
0Dα

t S(t) = µN + rR(t)−βsNIs(t − τ)− µS(t),
c
0Dα

t Ic(t) = f NβsIs(t − τ)− (e+m+ µ)Ic(t),
c
0Dα

t Is(t) = (1− f )NβsIs(t − τ)+ eIc(t)− (h+ µ)Is(t),
c
0Dα

t Ilt(t) = flthIs(t)− (hlt + µ)Ilt(t),
c
0Dα

t R(t) = (1− flt)hIs(t)+ hltIlt(t)− (r+ µ)R(t). (5)

The characteristic polynomial associated with the linearized system is

det

























λ + µ 0 βsNe−λ τ 0 −r

0 λ +(e+m+ µ) − f βsNe−λ τ 0 0

0 −e λ − (1− f )βsNe−λ τ +(h+ µ) 0 0
0 0 − flth λ +(hlt + µ) 0
0 0 −(1− flt)h −hlt λ +(r+ µ)

























= 0,

where λ is known as the eigenvalues.
This leads to

(λ + µ)(λ + r+ µ)(λ + hlt + µ)[(λ + e+m+ µ)(λ + h+ µ− (1− f )βsNe−λ τ)− e f βsNe−λ τ ] = 0.

1- for τ = 0 : the eigenvalues are given by

λ1 =−µ ,

λ2 =−µ − r,

λ3 =−µ − hlt ,

λ4 =
(1− f )βsN − h−m− e− 2µ+

√

(AN2 +BN +C)

2
,

λ5 =
(1− f )βsN − h−m− e− 2µ−

√

(AN2 +BN +C)

2
,

where
A = (β 2

s f 2 − 2β 2
s f +β 2

s ),

B = 2βse f + 2βse+ 2βs f h− 2βs f m− 2βsh+ 2βsm,

C = e2 − 2eh+ 2em+ h2− 2hm+m2
,

It is clear that, if λ4,λ5 ≤ 0 or λ4 and λ5 has negative real part then the free equilibrium point for the proposed model
is asymptotically stable

2- for τ > 0 : the eigenvalues are given by

λ1 =−µ ,

λ2 =−µ − r,

λ3 =−µ − hlt .

The remaining roots are determined as follows:

[(λ + e+m+ µ)(λ + h+ µ − (1− f )βsNe−λ τ)− e f βsNe−λ τ ] = 0.

For any value of the delay τ, these roots have no pure imaginary roots. Therefore, all of the roots of the characteristic
polynomial have negative real parts. Consequently, regardless of the delay value, the free equilibrium point is locally
asymptotically stable and this leads to the disease-free equilibrium ξ1 is locally asymptotically stable.
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2.2.2 Stability of the endemic equilibrium point

The endemic equilibrium for the system (1) exists if at least one of the infected groups is not equal zero [2]. The analytic
expression is very complicated and is not our aim. Numerically, considering the values of parameters from the section of
the numerical simulation. The basic reproduction number is R0 = 2.5771 > 1. The endemic equilibrium is
ξ2 = (193.63,0.65371,7.9516,4.1119,0.56645)

The linearization of system (1) around the endemic equilibrium point ξ2 is given by

c
0Dα

t S(t) = 0.2997+ 0.01R(t)−0.0116Is(t − τ)− 0.0011S(t),
c
0Dα

t Ic(t) = 0.1252+ 0.0058Is(t − τ)− 0.2621Ic(t),
c
0Dα

t Is(t) = 0.1252+ 0.0058Is(t − τ)+ 0.25Ic(t)− 0.0421Is(t),
c
0Dα

t Ilt(t) = 0.0057Is(t)− 0.0111Ilt(t),
c
0Dα

t R(t) = 0.0353Is(t)+ 0.01Ilt(t)− 0.0111R(t). (6)

The corresponding characteristic equation for ξ2 is:

det

























λ + 0.0011 0 0.0116e−λ τ 0 −0.01

0 λ + 0.2621 −0.0058e−λ τ 0 0

0 −0.25 λ − 0.0058e−λ τ + 0.0421 0 0
0 0 −0.0057 λ + 0.0111 0
0 0 −0.0353 −0.01 λ + 0.0111

























= 0,

where λ is the eigenvalue.

So,

(λ + 0.0111)(λ + 0.0011)[(λ + 0.2621)(λ − 0.0058e−λ τ + 0.0421)− 0.00145e−λτ] = 0.

1- for τ = 0 : the eigenvalues are given by

λ1 =−0.0111,

λ2 =−0.0011,

λ3 =−0.2683,

and

λ4 =−0.0301.

All these eigenvalues are negative, thus the endemic equilibrium point ξ2 is asymptotical stable.

2- for τ > 0 : the eigenvalues are given by

λ1 =−0.0111,

λ2 =−0.0011,

All the other roots are determined by the following equation

[(λ + 0.2621)(λ − 0.0058e−λ τ + 0.0421)− 0.00145e−λτ] = 0.

The roots of this equation are numbers with no pure imaginary part for any value of the delay τ . Therefore all the roots of
the characteristic equation have negative real parts. Hence, the endemic equilibrium point is locally asymptotically stable.

3 Weighted average finite difference scheme

Due to the exact solution to the fractional delay differential equations cannot be obtained explicitly, numerical techniques
are now very important for approximating the solution. Depending on the weight factor θ ∈ [0,1] [26], the weighted
average finite difference method (WAFDM) can be either explicit or implicit. We first discretize the Caputo fractional
operator to approximate the solutions of the system (1) using WAFDM. If we assume that the mesh points as {t0 =
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0, t1, t2, ... tN = Tf inal}, then, using the quadrature formula, the following discrete approximation of the Caputo fractional
derivative can be found [5]:

(c
0Dα

t f )(t)
∣

∣

t=tn
=

1

Γ (1−α)

∫ t

0

f ′(x)

(tn − x)α
dx, n = 1,2, ...,N,

=
1

Γ (1−α)

n

∑
i=1

∫ ih

(i−1)h
[

fi − fi−1

h
](nh− x)−αdx

=
1

(1−α)Γ (1−α)

n

∑
i=1

[
fi − fi−1

h
][(n− i+ 1)1−α − (n− i)1−α]h1−α

=
1

hα(1−α)Γ (1−α)

n

∑
i=1

[ fi − fi−1][(n− i+ 1)1−α − (n− i)1−α], (7)

so,

(c
0Dα

t f )(t)
∣

∣

t=tn
= g(α,h)

n

∑
i=1

wα
i ( fi − fi−1), (8)

where

g := g(α,h) =
1

hα(1−α)Γ (1−α)
,

and

wi := wα
i = [(n− i+ 1)1−α − (n− i)1−α], wn = 1.

System (1) using this discrtization with τ = qh and WAFDM can be written as follows

g
n

∑
i=1

wi(Si − Si−1) = µN +(1−θ )
{

rRn − (βcIcn +βsIs(n−q)+βltIltn + µ)Sn

}

+ θ
{

rRn−1 − (βcIc(n−1)+βsIs(n−q−1)+βltIlt(n−1)+ µ)Sn−1

}

,

g
n

∑
i=1

wi(Ici − Ic(i−1)) = (1−θ )
{

f (βcIcn +βsIs(n−q)+βltIltn)Sn − (e+m+ µ)Icn

}

+ θ
{

f (βcIc(n−1)+βsIs(n−q−1)+βltIlt(n−1))Sn−1 − (e+m+ µ)Ic(n−1)

}

,

g
n

∑
i=1

wi(Isi − Is(i−1)) = (1−θ )
{

(1− f )(βcIcn +βsIs(n−q)+βltIltn)Sn + eIcn − (h+ µ)Isn

}

+ θ
{

(1− f )(βcIc(n−1)+βsIs(n−q−1)+βltIlt(n−1))Sn−1 + eIc(n−1)− (h+ µ)Is(n−1)

}

,

g
n

∑
i=1

wi(Ilti − Ilt(i−1)) = (1−θ )
{

flthIsn − (hlt + µ)Iltn

}

+ θ
{

flt hIs(n−1)− (hlt + µ)Ilt(n−1)

}

,

g
n

∑
i=1

wi(Ri −Ri−1) = (1−θ )
{

(1− flt)hIsn + hltIltn − (r+ µ)Rn

}

+ θ
{

(1− flt)hIs(n−1)+ hltIlt(n−1)− (r+ µ)Rn−1

}

, (9)

this system is a nonlinear algebraic system with 5N equations of 5N unknowns (Sn, Icn, Isn, Iltn, Rn) that can be solved
using appropriate iterative method depending on the supposed initial conditions.

We notice that this schemes is explicit for θ = 1, partially implicit for 0 < θ < 1 and a fully implicit when θ = 0. In
the following section, we will demonstrate that this method is unconditionally stable in case 0 ≤ θ < 1.

3.1 Stability of WAFDM

To Investigate the stability of the weighted implicit scheme (θ 6= 1),, we consider the following linear fractional delay
differential equation [27]

(c
0Dα

t f )(t) = ρ0 f (t)+ρ1 f (t − τ), t ≥ 0, 0 < α ≤ 1, (10)
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f (t) =Ψ(t), t ∈ [−τ,0], f (0) = f0,

such that ρ0 < 0, ρ1 < ρ0 and Ψ(t) is continuous and bounded function.

Let f (tn) = fn = ξn is the approximate solution of this equation then using WAFDM with the relation (8), we can
rewrite Eq. (10) as follows:

g
n

∑
i=1

wi(ξi − ξi−1) = (1−θ )
{

ρ0ξn +ρ1ξn−q

}

+θ
{

ρ0ξn−1 +ρ1ξn−q−1

}

.

By doing the same steps in [27] we have

ξn(1−
1−θ

g
ρ0) =

n−1

∑
i=1

wα
i (ξi−1 − ξi)+ ξn−1(1+

θ

g
ρ0)+

1−θ

g
ρ1ξn−q +

θ

g
ρ1ξn−q−1, n > q,

and

ξn(1−
1−θ

g
ρ0) =

n−1

∑
i=1

wα
i (ξi−1 − ξi)+ ξn−1(1+

θ

g
ρ0)+

1−θ

g
ρ1Ψn−q +

θ

g
ρ1Ψn−q−1, n = 1,2, ...q− 1,

then

ξn =
1

(1− 1−θ
g

ρ0)

[

n−1

∑
i=1

wα
i (ξi−1 − ξi)+ ξn−1(1+

θ

g
ρ0)+

1−θ

g
ρ1ξn−q +

θ

g
ρ1ξn−q−1

]

, n ≥ 2.

We have 1

(1− 1−θ
g ρ0)

< 1, hence

ξ1 ≤ ξ0,

ξn ≤ ξn−1 ≤ ξn−1 ≤ ...≤ ξ1 ≤ ξ0.

So the proposed implicit scheme is stable.

Notice : the truncation error of this method is of order h.

4 Numerical simulations

In this section, we used the suggested technique (9) when θ = 0, to obtain the numerical simulations of the model (1).
First, let N = 500, µ = 0.0011, βc = 0.0016, βs = 0.00006, βlt = 0.00006, f = 0.5, flt = 0.14, e = 0.25, h = 0.041,

hlt = 0.01, m = 0.011, and r = 0.01. The initial conditions are S0 = N − 1, Ic = 1, Is = 0, Ilt = 0, R = 0. Figures ?? and
?? display the numerical solutions of the system (1) using WAFDM at t = 100 and t = 500, respectively. It is clear that
the proposed method is stable than the built-in MATLAB Code dd23.

Second, let N = 500, µ = 0.0011, e = 0.25, βc = 0.0016, βs = 0.00166, βlt = 0.00006, f = 0.15, flt = 0.14,
h = 0.041, hlt = 0.01, r = 0.01, and m = 0.011. The initial conditions are S0 = N − 10, Ic = 5, Is = 5, Ilt = 0, R = 0.
Figure (3) shows that the summation of the unknown (S(t)+ Ic(t)+ Is(t)+ Ilt(t)+R(t) = N strictly still constant during
the studying time when we use the implicit method while it is not constant when we use dde23, that is, the proposed
method outperforms the solver dde23.

Third, let N = 300, µ = 0.0011, e = 0.25, βc = 0.0016, βs = 0.00166, βlt = 0.00006, f = 0.15, flt = 0.14, h = 0.041,
hlt = 0.01, r = 0.01, and m = 0.011. The initial conditions are S0 = N − 10, Ic = 5, Is = 5, Ilt = 0, R = 0. Figure (4)
shows the numerical solutions of the system (1) using WAFDM at t f inal = 250, alpah = 0.7 and different values of τ.

Fourth, let N = 500, µ = 0.0011, e = 0.25, βc = 0.0016, βs = 0.00166, βlt = 0.00006, f = 0.15, flt = 0.14, h= 0.041,
hlt = 0.01, r = 0.01, and m = 0.011. The initial conditions are S0 = N − 10, Ic = 5, Is = 5, Ilt = 0, R = 0.

Figure (5) shows the numerical solutions of the system (1) using WAFDM at t f inal = 1000, α = 0.9 and different
values of τ..

Fifth, let N = 500, µ = 0.0011, e = 0.25, βc = 0.0016, βs = 0.00166, βlt = 0.00006, f = 0.15, flt = 0.14, h = 0.041,
hlt = 0.01, r = 0.01, and m = 0.011.. The initial conditions are S0 = N − 1, Ic = 1, Is = 0, Ilt = 0, R = 0. Figures (6)
and 7) show the values of R and S, respectively, which obtained by WAFDM at various values of τ and α. It is obvious
that the values of R(t) decrease by increasing of τ. In these figures, we compare our result with the result obtained by the
solver dde23 and we see that the result of WAFDM is more reality.

Also, in Figure (8) we show the relations between Is(t) and Is(t − τ) when τ = 5, α = 0.9 t f inal = 100 and we see
how R(t) changes when S(t) changes.
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5 Conclusion

In this article, we presented a fractional Salmonella model with time delay. This dynamical model is better suited to
describing biological phenomena than the classical model. We investigated the stability characteristics of the equilibrium
points of the suggested system. The numerical simulations of the suggested model were obtained using WAFDM.
Furthermore, the numerical simulations show that he implicit case has good stability properties. Some comparisons
simulations with MATLAB code dde23 are provided with various time delay values. These comparisons show that the
proposed method is superior to the dde23 code for the stiff systems. Finally, WAFDM can be used to solve fractional
delay differential systems in a straightforward and effective manner.
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Fig. 1: Profiles obtained by dde23 and WAFDM (θ = 0) for solving the fractional delay Salmonella model with different value of α
when τ = 0.
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Fig. 2: Unstable solution using dde23 and stable solution using WAFDM (θ = 0) for solving the fractional delay Salmonella model

with different value of α when τ = 0.

Fig. 3: Summation of the unknowns when τ = 10.
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Fig. 4: Profiles obtained by WAFDM (θ = 0) for solving the fractional delay Salmonella model with different value of τ when α = 0.7.
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Fig. 5: Profiles obtained by WAFDM (θ = 0) for solving the fractional delay Salmonella model with different value of τ = 0 when

α = 0.9.
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Fig. 6: Obtained values of R using dde23 and WAFDM (θ = 0) for differnt values of τ and α .
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Fig. 7: Obtained values of S using WAFDM (θ = 0) for differnt values of τ and α .

Fig. 8: The relation between Is and Is(t − τ) and the relation between R and S.
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