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Abstract: To assess the adverse effect of a toxin, animal bioassay experiments are frequently designed and performed on animals. In

a typical experiment, pregnant mice are exposed to a dose of a chemical during a critical period of gestation. Animals are sacrificed

before term and uterine content is examined for the number of fetuses that are dead/resorbed, malformed or normal. The outcomes are

used to fit a dose-response relationship for risk assessment and determination of safe dosage levels. The choice of the dose-response

model can severely affect the results. Although several models can fit the data well in the experimental dose ranges, when extrapolated

to low human exposure levels, the estimate of safe exposure levels can vary substantially. To reduce uncertainty in the presence of

multiple outcomes from developmental toxicity experiments, we propose the application of the Bayesian Model Averaging (BMA)

technique whereby a series of candidate dose-response models are used, the safe exposure level is determined based on each model,

and a weighted average is used for the final estimate. Simulation studies are presented to show that the methodology works well and

can reliably be applied in practice. The methodology is further illustrated using a real experimental data set.

Keywords: Bayesian model averaging, MCMC, dose multinomial response data, risk assessment, Dirichlet-Trinomial model.

1 Introduction

Developmental toxicity studies are conducted on
laboratory animals to assess the harmful effects and
incidence of developmental disease as result of exposure
to a toxic substance. Typically in such studies, pregnant
female animals are exposed to a dosage of a chemical
during a critical time of the gestation period. Animals are
sacrificed just before term and the uterine contents are
examined for a variety of developmental defects such as
death, resorption, malformation and the fetal weight.
Exposure generally occurs at dosage levels that are much
higher than usual human to induce toxicity in a limited
number of animals. A dose response model is then fitted
to the proportion of affected fetuses. The model is used to
estimate the risk at low exposure levels and the
benchmark doses. Traditionally, a single outcome, such as
the number of fetuses with malformation or the total
number of affected offspring including dead/resorbed and
malformed fetuses, were used for model fitting, see for
example [1], [2] and [3]. This was the motivation behind
[4] where the authors considered a model averaging

approach to reduce uncertainty due to the choice of the
dose-response model and demonstrate the application of
Bayesian model averaging technique in developmental
toxicity studies. However, it should be realized that
consideration of a single outcome does not truly
characterize developmental toxicity experiments. More
realistically, a multiple combination of continuous and
discrete outcomes, such as fetal weight, viability, and
malformation status of the fetus, are simultaneously
observed. Thus, concurrent outcomes should be
considered simultaneously. Here, we consider the
problem of risk assessment for multiple binary outcomes
using the Bayesian Model Averaging (BMA)
methodology.

A major difficulty in modeling outcomes from
developmental toxicity experiments is the existence of the
intra-litter correlation. Authors have studied modeling of
multiple outcomes in developmental toxicity studies with
varying approaches in incorporating the litter effects. For
example, [5] considered a generalization of the
beta-binomial model by applying the Dirichlet-trinomial
distribution to multiple outcomes, [6] modelled the fetal
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death, fetal weight, and malformation, [7] used a
multinomial dose-response model along with a modified
Weibull distribution, and [8] proposed a double
beta-binomial model using the quasi-likelihood method.
The advantage of the multinomial approach is that it
accounts for the hierarchical structure of the fetal
development. More specifically, a fetus can become
malformed only if resorption or death does not occur. [9]
provide a useful discussion of various approaches. The
authors further argue that their choice of the
dose-response model might make more biological sense
than the Weibull model of [2], since malformation and
death can be associated with some underlying continuous
phenomena.

Here, we consider the problem of modeling the
trinomial responses from developmental toxicity studies.
Our approach will be similar to that of [5] and [8]. Instead
of using two single logistic distributions to express the
dose-response relationships between the mean response
probability of death/resorption and malformation with the
dose, we propose a model averaging method to reduce
uncertainty due to the choice of dose-response models. In
the next section, we describe the modeling structure of the
process.

2 Model Description

Suppose that a developmental toxicity experiment
consists of a control and g nonzero dose levels with
0 = d0 < d1 < .. . < dg. Assume that mi, i = 0,1, . . . ,g
pregnant female animals are exposed to a dose di of a
known teratogenic substance and let ni j; j = 1, . . . ,mi,
i = 1, . . . ,g be the total number of fetuses from jth dam in
the ith dose group. Note that ni j includes all normal
fetuses as well as the dead/resorbed, and malformed ones.
Generally, exposure occurs during a critical time when
skeletal structure of the fetus is being formed and can be
through gavage, diet, drink, inhalation, dermal, or any
other route. For example, with murine, exposure usually
is during gestation days of 5 through 12. Animals are
sacrificed just before term and affected fetuses are
counted upon examination of the uterus content for each
animal. Now, fetuses can be affected in a variety of ways.
One possible outcome is fetal death or resorption.
Generally, in developmental toxicity experiments, no
distinction is made between fetal death and resorption.
Embryos can be born with skeletal defect or other
malformations. Finally, another possible outcome is the
normal healthy fetus. Many constructed models of
developmental toxicity experiments considered only a
dichotomy of responses as to whether or not a fetus was
normal or abnormal with abnormality defined as
including both malformation and death/resorption.
Several models were used for this binary response
approach. In fact, Khorsheed & Razzaghi [4] applied the
model averaging technique to reduce the uncertainty due
to the choice of models for dichotomous outcomes in

developmental toxicity experiments. However, the
realization of the multinomial nature of the outcomes is
crucial. Following Chen et al. [5], several researchers
considered the multinomial nature of the outcomes.
Perhaps Chen et al [5] are the first to consider the
responses as a trichotomy. It is noted that fetal weight is
also a crucial indicator of toxicity. Other authors
considered joint modeling of discrete and continuous
outcomes. Specifically, Catalono and Ryan [10] defined
bivariate latent variables to jointly model discrete and
continuous outcomes. Regan and Catalano [11] proposed
a likelihood-based model that is an extension of a
correlated probit model to incorporate continuous
outcomes . Najita and Catalano [12] studied the BMD
determination for multiple outcomes from developmental
toxicity experiments. In this paper, however, we only
consider the advantages of the model averaging approach
in the hierarchical structure described for discrete
trinomial responses. Thus, one consideration may be the
incidence of death/resorption, malformation, and normal
outcomes as used in [5]. Another consideration, as
applied in [13], is to dichotomize the fetal weight and
consider the malformation, fetal weight status, and
normal as the trinomial response. For simplicity, in the
development of the model, we use the first consideration
although the second consideration is identical. In fact, our
simulation study will be based on the second
consideration. Accordingly, let Yi j = (Yi j1,Yi j2,Yi j3) be
the observed trinomial vector of the jth dam in the ith

dose group, where the components of the vector Yi j

represent the number of dead/resorbed, malformed, and
normal fetuses respectively. Clearly,

Yi j1 +Yi j2 +Yi j3 = ni j j = 1, . . . ,mi, i = 1, . . . ,g

Let θ1(di) be the probability that at exposure level of di; i=
0,1, . . . ,g an implanted embryo dies or is resorbed during
the gestation. Thus, the probability P1(di) associated with
Yi j1 is given by

P1(di) = µ1(di)

Given that a fetus survives death/resorption, let the
conditional probability that it becomes malformed be
θ2(di). Then, the probability associated with Yi j2 is given
by

P2(di) = [1− µ1(di)]µ2(di)

Finally, the probability that a fetus is born normal,
associated with Yi j3, can be expressed as

P3(di) = [1− µ1(di)][1− µ2(di)]

Clearly, the choice of the risk functions µ1(di) and µ2(di)
can severely affect the risk estimates. [5] used the Weibull
model

µi(d) = 1− exp(−exp(αi+βilog(d)) i = 1,2
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and [7] generalized the model by adding the number
of implants of the litter as a covariate, while [9] applied
the modified probit model. The fact is that there is not a
single dose-response relationship that is universally
accepted as producing the best results. We therefore
believe that a model averaging approach can be promising
in this regard.

3 Incorporating the Litter Effect

One of the main characteristics of the developmental
toxicity experiments is the fact that fetuses from the same
litter show more similarity in response than from different
litters. Existence of this extra binomial variation results in
overdispersed outcome data and ignoring this litter effect
can result in severely erroneous conclusion.

To incorporate this litter effect in the case of binary
responses, several approaches are possible. The most
common is to assume that pi j, the response probability of
an adverse effect including death/resorption and
malformation in the jth litter of the ith dose group
follows a beta distribution. In that case, the unconditional
distribution of the number of responses in the jth litter of
the ith dose group becomes the familiar beta binomial
distribution. This approach was first proposed by [14]. In
fact, this was the approach adopted by [4] to illustrate the
application of Bayesian model averaging in benchmark
dose analysis for developmental toxicity experiments. As
described in that paper, other methods have been
proposed for modeling dichotomous responses in
dispersed developmental toxicity outcomes. For example,
Ryan [3] applied the Generalized Estimating Equation
(GEE) approach, while [15] discussed the application of
the quasi-likelihood method.

Now, for the multinomial response consideration, the
natural extension of the beta-binomial distribution is the
Dirichlet-Trinomial model, which was discussed and
adopted by [5]. Accordingly, we assume a trinomial
distribution for the response vector Yi j that is

P(yi j1,yi j2,yi j3|pi j1, pi j2, pi j3) =

(

ni j

yi j1,yi j2

)

p
yi j1

i j1 p
yi j2

i j2 p
yi j3

i j3

where pi j1, pi j2, pi j3 are respectively the probabilities that
the jth litter of the ith dose group is dead/resorbed,
malformed or normal with pi j1 + pi j2 + pi j3 = 1 and

(

ni j

yi j1,yi j2

)

=
ni j!

yi j1!yi j2!(ni j − yi j1 − yi j2)!

Also, if we express the joint distribution of
pi j1, pi j2, pi j3 as the Dirichlet distribution given by

P(pi j1, pi j2, pi j3) =
Γ (αi +βi+ γi)

Γ (αi)Γ (βi)Γ (γi)
p

αi−1
i j1 p

βi−1
i j2 p

γi−1
i j3

where αi,βi,γi > 0, the unconditional distribution of Yi j is
given by

P(yi j1,yi j2,yi j3) =
ni j!

yi j1!yi j2!yi j3!
.

Γ (αi +βi + γi)Γ (yi j1 +αi)Γ (yi j2 +βi)Γ (yi j3 + γi)

Γ (ni j +αi +βi+ γi)Γ (αi)Γ (βi)Γ (γi)
(1)

which is a generalization of the beta-binomial
distribution, called the Dirichlet-Trinomial distribution,
see [16]. Under the Dirichlet-Trinomial model, we have
E(Yi j1) = ni jµi1 and E(Yi j2|yi j1) = (ni j − yi j1)µi2 where
µi1 = αiθi and µi2 = βiθi(1 − αiθi) with

θi = (αi +βi + γi)
−1

. The intralitter correlation for the

Dirichlet-Trinomial model is ρi −
θi

1+θi
. The parameters

µi1 and µi2 can be interpreted as the means of pi j1 and
pi j2, respectively. As noted in [5], since in the model
yi j1,yi j2, and yi j3 are mutually negatively correlated, the
Dirichlet-Trinomial model assumes that the correlations
between number of deaths/resorptions, malformations,
and normal fetuses are negative. Several other properties
of the Dirichlet-Trinomial distribution in modeling the
multiple outcomes from developmental toxicity
experiments are discussed in [5]. Specifically, the authors
show that the Dirichlet-Trinomial distribution can be
expressed as the product of two beta-binomial models and
that it is a special case of the more general class of
distributions called the double beta-normal

P(yi j1,yi j2,yi j3) =
ni j!

yi j1!(ni j − yi j1)
.

Γ (αi + δi)Γ (yi j1 +αi)Γ (ni j − yi j1 + δi)

Γ (ni j +αi + γi)Γ (αi)Γ (δi)
.

(ni j − yi j1)!

yi j2!(ni j − yi j1 − yi j2)!
.

Γ (βi + γi)Γ (yi j2 +βi)Γ (ni j − yi j1 − yi j2 + γi)

Γ (ni j − yi j1 +βi+ γi)Γ (βi)Γ (γi)
(2)

with constraint δi = βi + γi.
The maximum likelihood estimates of the parameters

were derived and the model was used in risk assessment
for an experiment on developmental effects resulting from
exposure to hydroxyurea. No specific dose response
model was used and µi1 and µi2 were treated as
parameters rather than functions of dose. The double
beta-binomial model was used by [8] for simultaneous
modeling of multinomial responses in developmental
toxicity experiments. The authors use the linear-logistic
dose-response models

logit(µ ir) = log(
µir

1− µir

) = ar + brdi r = 1,2. (3)

to express the mean functions. Rather than the
maximum likelihood method, [7] applied the generalized
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estimating equation (GEE) approach to estimate the
parameters. An extended Dirichlet-Trinomial covariance
function was used to express overdispersion. They
showed that their method has some statistical and
computational advantages over separate analysis of the
end points. However, Gaylor [17] argues that because of
the differences in the sensitivities of dams at a given dose
within a group, more variability in the data is expected
than could be explained by the trinomial distribution. The
author suggests using the quasi-likelihood approach
described in [18] to account for the overdispersion
induced by the litter effect. The quasi-likelihood model
was used by [8].

Since we aim to demonstrate the application of the
Bayesian model averaging, we simply apply the
Dirichlet-Trinomial model (1) similar to [5], but instead
of treating the means µi1 and µi2 as parameters, we
express them as functions of dose. Also, rather than using
a single dose-response model to express µi1 and µi2, as in
[19] and [8], we use a weighted average of several models
and determine the weights using a Bayesian model
averaging approach.

4 Risk Assessment Using Bayesian Model

Averaging

For risk assessment, we use a procedure described in [9]
whereby the overall risk is measured by the probability of
being affected (either dead/resorbed or malformed) i.e.

P(d) = 1−P3(d) = 1− [1− µ1(d)][1− µ2(d)] (4)

Now, as explained by Khorsheed and Razzaghi [4], if
we define the measure of risk as the excess risk above the
background,

π(d) = P(d)−P(0) (5)

then the benchmark dose (BMD) is the dosage level that
sets the above risk equal to a small negligible risk, such as
5% to 10%. The benchmark dose lower bound (BMDL) is
the lower 95% confidence limit of BMD. An estimate of
the variance of BMD may be obtained using approximate
normality of BMD as suggested by [9] or by
bootstrapping. Thus, in the Dirichlet-Trinomial model
given in (1), we first derive a reparameterization by
substituting

αi =
µi1

θi

(6)

βi =
µi2

θi(1− µi1)
(7)

γi =
{(1− µi1)}

2 − µi2

θi(1− µi1)
(8)

The mean functions µi1 and µi2 are then replaced by a
dose-response function selected from a set of k candidate
models µrk(d) = Fk(ω1rk + ω2rkdh) for r = 1,2 and
k = 1, . . . ,K. After estimating all model parameters, we
can determine BMD and BMDL for each candidate
model. We then use the Bayesian model averaging
technique described below to derive the overall weighted
BMD and BMDL.

In the BMA methodology, we begin by assuming that
all the K models have a priori equal weights, that is

P(Wk) =
1

K
k = 1,2, . . . ,K

Then, the final weights are estimated by the posterior
model probabilities, which by Bayes’ theorem are given
by

P(Wk|L) ∝ K−1P(L|Wk) k = 1,2, . . . ,K

where P(L|Wk) represents the marginal distribution of the
likelihood given each model. Now, as explained in [20],
the computation of the marginal distributions for
calculation of the posterior model probabilities in the
implementation of BMA requires solving an integral that
is difficult to calculate except for very simple cases.
Indeed, in most cases, especially data related to
environmental and epidemiological studies derivation of
closed form solutions is infeasible and the use of the
Bayesian Information Criteria (BIC) to approximate the
marginal distributions has successfully been adopted.
Specifically, [21] suggests the following approximation,

P(Wk|L) ∝ exp(−
1

2
BIC(Wk)) k = 1, . . . ,K

with

BIC(Wk) =−2log(maxL|Wk)+ aklog(n)

where ak is is the number of parameters for Wk, n is the
sample size and maxL is the maximum of the likelihood
function. In developmental toxicity experiments, the
sample size is the litter size. According to [22], this
approximation works well in moderate sample sizes when
the covariates are independent. Therefore, the weights
may be obtained by

P(Wk|L) =
exp(− 1

2
BIC(Wk))

∑K
r=1 exp(− 1

2
BIC(Wr))

k = 1, . . . ,K

This approach has been successfully implemented in
several applications with dichotomous responses, see for
example [23] and [24]. However, for calculating the
weights, [25] suggests replacing BIC(Wk) by

∆(k) = BIC(Wk)−min1≤r≤KBIC(Wr) (9)
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The advantage of this technique is that the ”∆ values are
on a continuous scale of information and are interpretable
regardless of the measurement scale and whether the data
are continuous, discrete or categorical.” Here, the
technique is found to be computationally more stable
especially when BIC(Wk) is relatively large.
Implementing this approach on the set of data analyzed
by [26], the same weights are obtained. For further
information, the reader is referred to [27] and [25].

5 Simulation

For a simulation of the developed methodology, we
mimic an experiment that was conducted at the Research
Triangle Park Institute under a contract to the National
Toxicology Program. The experiment was designed to
assess the development toxicity of the chemical ethylene
glycol [28] and consisted of a control and three non-zero
dose levels. Molenbergh and Ryan [13] used the same
data to illustrate their model for multiple binary data.
They considered the incidence of the following trinomial
responses:

1.Malformation
2.Low fetal weight
3.Normal

for each fetus. The fetal weight was dichotomized and
classified as low if it was below or equal to 0.75g,
otherwise normal. The study conducted by [11] gave the
means and standard deviations of the litter sizes along
with the proportions of malformation.

For each dose group 0, 0.75, 1.5 & 3.0 g/kg, we
simulated litter sizes using the empirical distribution
associated with the means and standard deviations
estimated by [11]. To generate the probabilities of
response within each litter, we used the values displayed
in Table 1 of [13] and the Dirichlet distribution. The
individual pup-specific data are then determined via
generating ni j Trinomial random variables using the
simulated probabilities of response.

Table 1 presents the numbers of (a) malformed, (b)
low weight, and (c) normal outcomes generated for each
dose group. To implement the adopted Bayesian Model
Averaging technique, pairs of five dose-response models
have been used to estimate the mean functions µir(d) for
i = 1, . . . ,4 and r = 1,2. These models are:

1.Logistic

P1(d) = {1+ exp[−(a1r+ b1rd)]}
−1 (10)

2.Probit

P2(d) = φ(a2r + b2rd) (11)

where φ represents the commulative normal
distribution.

3.Gamma

P3(d) = c3r +(1− c3r)Γ (b3rd,a3r) (12)

where Γ is the commulative gamma distribution,
a3r,b3r > 0 and 0 < c3r < 1.

4.Quantal Quadratic:

P4(d) = 1− exp(−(a4r+ b4rd
2)) (13)

5.Weibull

P5(d) = 1− exp(−(a5r+ b5rd
h
5r)) (14)

To fit the response models, equation (1) and the
reparameterization equations (6)-(8) are used during the
application of MCMC Metropolis-Hasting sampling
within a Bayesian framework.

Fig. 1 displays the negative log likelihood values of
the fitted pairs of dose-response models for each
simulated data set. As demonstrated in [5], each model
minimum value of the log likelihood is calculated by
summing up the individual log likelihood estimates
obtained at each dose.

Table 2 displays the corresponding BIC values and the
associated model weights. The results in Table 2 reveal
that the quantal quadratic model accounts for more than
58% of the weights followed by the probit (21.1%) and
logistic (19.9%) models.

The BMA estimates of P(0), overall risk P(d), and excess
risk π(d) are obtained using the weighted averages of
µir(d) for r = 1&2 for all fitted models through (4).
Using parameter estimates for the control dose (d = 0)
models, the risk at some small doses such as
d = 0.01,0.02,0.05 and 0.1 is derived. Furthermore, by
considering 1000 MCMC replications, as demonstrated in
Fig. 2, the associated variances and 95% upper confidence
values of risk are determined. Table 3 summarizes the
results. Expectedly, the later table confirms that the
overall risk increases with dose level.

Moreover, we estimated the benchmark dose (BMD)
for the following excess risk values: 0.01, 0.05, and 0.1
over the control using equations (4) & (5). The BMDL is
derived via exploiting the asymptotic normality of the
BMD estimates associated with the 1000 MCMC
replications and constructing 95% lower confidence limit.
Table 4 displays the approximated BMDs, their standard
deviations, and the BMDLs at the different excess risk
values. Obviously, the BMD and BMDL values increase
as the added risk is enlarged.
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Table 1: The generated data with dams = 25, 24, 22, and 23,

respectively.

Dose = 0 Dose = 0.75 Dose = 1.5 Dose = 3.0

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

0 0 9 0 0 11 2 2 11 1 6 2

0 0 8 3 4 6 3 3 5 1 4 1

0 2 10 0 0 9 6 3 4 4 1 2

0 1 8 0 3 11 2 5 0 4 6 4

0 0 14 0 3 10 2 2 4 2 3 3

0 0 13 1 0 8 3 4 4 3 4 2

0 0 13 0 2 7 2 1 13 0 3 4

0 0 15 0 0 9 2 2 2 2 7 0

0 0 15 0 0 9 5 5 5 4 5 1

0 0 9 0 0 14 0 0 6 3 5 2

0 0 16 0 0 10 2 7 2 1 6 2

0 0 11 3 1 7 2 5 6 6 2 2

0 0 11 1 2 10 4 2 4 3 2 5

0 0 14 2 1 11 5 2 5 5 5 3

0 0 13 0 0 13 2 2 7 3 4 4

0 0 11 2 2 7 4 2 2 1 5 5

0 0 11 2 2 8 3 3 7 4 7 0

0 1 10 0 2 10 3 0 5 2 6 4

0 0 9 1 1 10 0 2 4 3 3 2

0 1 9 0 2 12 1 1 9 2 6 2

0 0 12 5 1 8 1 2 3 4 4 5

0 0 15 2 0 6 3 5 3 3 5 1

0 0 12 1 3 10 4 5 0

0 1 7 2 1 7

0 0 15

Table 2: BIC values and the corresponding weights of the fitted

dose-response models for the simulated data set.

Model BIC Weight

Logistic 2084.149 0.1986526

Probit 2084.032 0.2106204

Gamma 2093.441 0.001906841

Quantal Quadratic 2081.992 0.5841498

Weibull 2091.649 0.004670414

Table 3: The estimated overall risk at some selected low dose

levels and the corresponding 95% confidence values.

Dose(d) P(d) P(d) 95% upper

confidence value

0.01 0.2495788 0.2506823

0.02 0.2518427 0.2529466

0.05 0.2600474 0.2611539

0.1 0.2783115 0.2794271

Illustrative experimental application

In this section, we illustrate our BMA methodology for
multiple outcomes using data obtained from [5]. The
experiment was conducted to assess the development
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Fig. 1: The −log likelihood values associated with the MCMC

estimates for the fitted models of the simulated datasets at the

different dose levels.
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Fig. 2: Trace plots of pairs of the Probit model parameters

with the associated θ estimated values derived from MCMC

long run of 10000 iterations generated for the simulated

dataset at dose level 0.75. The posterior mean estimates

with the corresponding standard deviations in parentheses

are: a21 = −4.423(0.005),b21 = 4.622(0.0009),a22 =
−4.362(0.0005),b22 = 4.458(0.016), and θ = 0.259(0.003).

effects resulting from exposure to hydroxyurea. It
consisted of a control group (0 dose) and three treatment
groups classified as: low dose (150), medium dose (200),
and high dose (250). The hydroxyurea data in each
treatment group include the number of implementation
litters, dead/resorbed, malformed, and total number of
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Table 4: BMA estimates for BMD with their corresponding

standard deviations in parentheses and BMDL at different excess

risk values.

Excess risk 0.01 0.05 0.1

B̂MD 0.04155

(0.0001290994) 0.14135

(0.0030335410) 0.22675

(0.0063510702)

B̂MDL 0.04133763 0.1363598 0.2163025

fetuses. No data about the control group are made
available. Therefore, only the non-zero dose data set will
be used in this study for the purpose of demonstration.

[8] fitted a pair of logistic models for this set of
dead/resorbed and malformation data. In this research,
pairs of five response models given in equations (10-14)
are fitted using MCMC techniques and a Bayesian
approach. The resulting parameter estimates and the
corresponding log-likelihood values are presented in
Table 5. The weight of each model is determined
according to the BIC criterion as described earlier. Table
6 displays the associated BIC values and model weights.
Fig. 3 and Table 7 present the averaged dose-response
models µir and the associated risks with each dose level,
respectively.

Because no data are available for the control dose
(d = 0) and the associated excess risk with the low dose is
very small (< 0.005), as revealed in Table 7, the
estimated low dose model is used as a control model.

The approximated benchmark doses (BMDs) for excess
risk values of 0.05 and 0.1 over the background are 191.8
and 228.8, respectively.

Using the response model parameter estimates of 1000
MCMC replications, estimates of BMD mean, standard
deviation and BMDL at the selected excess risk values are
obtained and displayed in Table 8.

The results shown in Table 5 reveal that estimates of
the reparameterization parameter, θi, for all three
treatment doses are between 0.2 and 0.27. This result
matches the expectations of experts in fitting teratological
data for example, see [5]. The model weights listed in
Table 6 indicate that the Logistic model has the highest
account of weights (44.2%), which is in line with [8]
choice of dose-response model that best fits the
hydroxyurea data. Fig.3 reveals that the averaged
dead/resorbed response increases, while averaged
malformation response decreases with higher dose levels
because the exposure to elevated levels of hydroxyurea
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Fig. 3: The averaged dose-response models for hydroxyurea data.

minimizes the total number of living fetuses and
consequently fewer malformed fetuses remain. Moreover,
the P(0) estimates in Table 7 give an evidence of similar
initial overall risk of about 0.28 regardless of the
associated dose level. As expected, the BMD and BMDL
values increase with increments of added risk.

6 Conclusion

Concern over the protection and health of a developing
embryo has been grown rapidly over the last several
decades. Bioassay experiments on laboratory animals
have been designed and conducted to assess the potential
developmental risks in unborn children as result of
maternal exposure to environmental and industrial toxins.
Several statistical models have been developed to provide
a mathematical framework for the estimation of risk when
the mother is exposed during a critical time of pregnancy.
These models are structured to facilitate extrapolation
from high experimental doses to low human exposure
levels. Many models assume a dichotomous response
from developmental toxicity experiments, but some are
more realistic and allow for multiple outcomes. One
approach for estimating a threshold for safe exposure
level that has found widespread popularity is the
benchmark dose (BMD) methodology. The advantage of
the benchmark dose method is that it can be applied to
both discrete and continuous outcomes. However, the
method is known to be model dependent and can vary
substantially based on the assumed dose-response
relationship. To reduce this model dependence, a
methodology based on model averaging has been
proposed and successfully applied. Several potential
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Table 5: The log-likelihood values, L, parameter estimates for

pairs of dose-response models and estimated θi values for i =
1,2,3.

Model Parameter Low dose Medium dose High Dose

Logistic a11 0.02390101 -0.7904562 0.1364078

b11 -0.9703013 0.2639519 0.02887366

a12 -2.217992 -0.9504916 -2.474379

b12 0.2426339 -0.6432312 0.004821484

θi 0.2613715 0.2181258 0.2438043

L -224.7381 -260.6348 -562.2774

Probit a21 -1.406183 -1.675734 -1.6712727

b21 0.1976464 0.750125 0.7320323

a22 -2.409988 -2.646601 -1.9864809

b22 0.7179207 0.6607857 0.2319488

θi 0.2613632 0.2183735 0.2433926

L -226.1509 -260.6872 -562.0023

Gamma a31 1.786545 1.580096 1.353346

b31 0.2767687 0.3327715 0.2280071

c31 0.08916573 0.2373231 0.3686591

a32 1.735629 1.796754 3.177613

b32 0.2391621 0.08086992 0.2340125

c32 0.0444897 0.05983448 0.06160946

θi 0.2611724 0.2182088 0.2433884

L -225.144 -261.5022 -562.7745

Quantal a41 0.0001952265 0.02579366 0.003313833

Quadratic b41 0.09258587 0.1400943 0.1312673

a42 0.04403493 0.04639637 0.01963903

b42 0.04262925 0.01255803 0.009270703

θi 0.2613239 0.2186908 0.2439582

L -224.7639 -260.6143 -562.3277

Weibull a51 0.06147006 0.1478446 0.1600666

b51 0.09814872 0.2103591 0.2607989

h51 0.9883212 1.054518 0.0320832

a52 0.03247388 0.03412807 0.02300154

b52 0.07440968 0.03174825 1.017156

h52 0.9847963 0.9409696 0.78945

θi 0.2614004 0.2180075 0.2439062

L -224.7299 -260.6272 -562.1716

Table 6: BIC values and the corresponding weights of the fitted

dose-response models for hydroxyurea data.

Model BIC Weight

Logistic 2117.800 0.4415892

Probit 2120.180 0.1343274

Gamma 2130.340 0.0008354126

Quantal Quadratic 2117.911 0.417707

Weibull 2126.556 0.005540975

models are used and a weighted average of the BMDs is
determined. We have demonstrated the application of the
model averaging technique in developmental toxicity
experiments with multiple outcomes. The Bayesian
model averaging (BMA) procedure was used to estimate
the weights. Both the simulation study and the illustrative
example showed that the method works well and can
successfully be applied. In fact, it is encouraging to note
that the logistic and the quantal quadratic models appear
to pick up most of the weights in the averaged model.

The traditional approach for animal models in testing of

Table 7: BMA estimates of P(0), overall risk P(d), and excess

risk π(d) obtained using MCMC parameter estimates of dose-

response models associated with the three dose groups.

Dose Level P(d) P(0) π(d)
Low 0.2870439 0.2825706 0.0044733

Medium 0.4907544 0.2762921 0.2144623

High 0.5914754 0.2792948 0.3121806

Table 8: BMA estimates for BMD with their corresponding

standard deviations in parentheses and associated BMDL at

different excess risk values.

Excess risk 0.05 0.1

B̂MD 180.3778

(0.3032146) 216.0361

(0.6183924)

B̂MDL 179.879 215.0188

developmental effects have relied on experimenting with
mammals especially mice and rats. However, the
application of high throughput models using zebrafish
and other creative systems such as limb bud culture,
hydra assay and whole embryo culture were investigated
as alternatives to the traditional methods for cost
reduction and acceleration of the testing process.
Although these methods are rapidly evolving, the
validation and their application in teratogenic testing is
still in an early stage. No statistical models have been
developed for risk assessment. For a description of these
new approaches, we refer to [29] and [30]. The aim of this
work is to demonstrate that the powerful BMA technique
can produce reliable results in developmental toxicity
experiments.
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