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Abstract: In this paper we established some explicit expressions and recurrence relations for single and product moments ofk−th
lower record values from J-shaped distribution. Further, using a recurrence relation for single moments we obtain characterization of
J-shaped distribution.
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1 Introduction

The model of record statistics defined by Chandler [8] as
a model for successive extremes in a sequence of
independent and identically distributed(iid) random
variables. This model takes a certain dependence structure
into consideration. That is, the life-length distributionof
the components in the system may change after each
failure of the components. For this type of model, we
consider the lower record statistics. If various voltages of
equipment are considered, only the voltages less than the
previous one can be recorded. These recorded voltages
are the lower record value sequence.
Record values are found in many situations of daily life as
well as in many statistical applications. Often we are
interested in observing new records and in recording them
e.g. Olympic records or world records in sports.
Motivated by extreme weather conditions.

Let X1,X2, . . . be a sequence ofiid random variables
with distribution function (d f ) F(x) and probability
density function (pd f ) f (x). Suppose
Yn = min{X1,X2, . . . ,Xn} for n ≥ 1. we sayX j, j ≥ 1 is a
lower record value of this sequence, ifYj < Yj−1 for
j > 1. And we suppose thatX1 is a first lower record
value. The indices at which the lower record values occur
are given by record times{L(n),n ≥ 1 ≥, where
Ln = min{ j| j > L(n − 1),X j < XL(n−1)}, n > 1, with

L(1) = 1. For more details and references, see Ahsanullah
[1], Arnold and Balakrishnan [2] and Arnoldet al. [3].
For a fixedk ≥ 1 we define the sequence{L(k)

n ,n ≥ 1} of
k−th lower record times of{Xn,n ≥ 1} as follows

L(k)
1 = 1,

L(k)
n+1=min{ j> L(k)

n : Xk : Lk(n)+k−1>Xk : j+k−1}.

For k = 1 and n = 1,2, . . . we write L(1)
1 = Ln. Then

{Ln,n ≥ 1} is the sequence of record times of{Xn,n ≥ 1}.

The sequence{Y (k)
n ,n ≥ 1}, whereY (k)

n = X
L
(k)
n

is called

the sequence ofk lower record values of{Xn,n ≥ 1}. For

convenience, we shall also takeY (k)
0 = 0. Note thatk = 1

we haveY (1)
n = XLn ,n ≥ 1, which are record value of

{Xn,n ≥ 1}. MoreoverY (k)
1 = min{X1,X2, . . . ,Xk}= X1:k.

Let {X (k)
n ,n≥ 1} be the sequence ofk−th lower record

values then from (1.1). Then thepd f of X (k)
L(n), n ≥ 1 is

given by

f
X
(k)
L(n)

(x) =
kn

(n−1)!
[−ln(F(x))]n−1[F(x)]k−1 f (x) (1.1)
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and the jointpd f of X (k)
L(m)

andX (k)
L(n), 1≤ m < n, n > 2

is given by

f
X
(k)
L(m)

,X
(k)
L(n)

(x,y)=
kn

(m−1)!(n−m−1)!
[−ln(F(x))]m−1

×[−ln(F(y))+ ln(F(x))]n−m−1[F(y)]k−1 f (x)
F(x)

f (y), x < y.

(1.2)
We shall denote

µ(r)
L(n):k = E((X (k)

L(n))
r), r,n = 1,2, . . . ,

µ(r,s)
L(m,n):k = E((X (k)

L(m))
r ,(X (k)

L(n))
s), 1≤ m ≤ n−1 and r,s = 1,2, . . . ,

µ(r,0)
L(m,n):k = E((X (k)

L(m)
)r) = µ(r)

L(m:k) , 1≤ m ≤ n−1 and r = 1,2, . . . ,

µ(0,s)
L(m,n):k = E((X (k)

L(n))
s) = µ(s)

L(n:k) , 1≤ m ≤ n−1 and s = 1,2, . . . ,

Various development on record values in found to be
Kumar and Singh [13], Kumar and Khan [15], Kumar
[14] and Kumar and Kulshrestha [16]. Explicit expression
and recurrence relations for single and product moments
of k−th lower record values from exponentiated
log-logistic distribution are derived by Kumar [12].
Recurrence relations for single and product moments of
record values from generalized Pareto, lomax,
exponential and generalized extreme value distribution
are derived by Balakrishnan and Ahsanullah [4], [5] and
[6] and Balakrishnanet al. [7] respectively. Pawlas and
Szynal [18], [19] and Saran and Singh [20] have
established recurrence relations for single and product
moments ofk−th record values from Weibull, Gumbel
and linear exponential distributions. Kamps [11]
investigated the importance of recurrence relations of
order statistics in characterization.
In the present study, we established some explicit
expressions and recurrence relations satisfied by the
single and product moments of lowerk− record values
from the J-shaped distribution. A characterization of this
distribution has also been obtained on using a recurrence
relation for single moments.

A random variableX is said to have J-shaped
distribution if its pd f is given by

f (x)=
2α
β

(

1− x
β

)[ x
β

(

2− x
β

)]α−1
, 0< x< β , 0<α <1.

and the correspondingd f is

F(x)=
[ x

β

(

2− x
β

)]α
, 0< x< β , 0<α < 1.

The distribution is called J-shaped becausef (x) > 0,
f
′
(x)< 0 and f ” (x)> 0 for all 0< x < β .

Topp and Leone [21] introduced this distribution and
derived its first four moments, they gave no motivation to
the distribution expect referring to its suitability to model
failure data.
We assume through this study, with out loss of generality,

thatβ = 1, in which case thepd f andd f are respectively
reduced to

f (x)= 2α(1−x)[x(2−x)]α−1, 0< x< 1, 0<α < 1
(1.3)

and the correspondingd f is

F(x)= [x(2−x)]α , 0< x< 1, 0<α < 1.
(1.4)

For more details on this distribution and its application
one may refer to Topp and Leone [21] Nadarajah and
Kotz [17].

2 Relations for Single moment

Note that for J-shaped distribution defined in (1.5)

x(2−x) f (x)= 2α(1−x)F(x).
(2.1)

The relation in (2.1) will be exploited in this paper to
derive recurrence relations for the moments of record
values from the J-shaped distribution.
We shall first establish the explicit expression for the

single moment ofk−th lower record valuesµ (r)
L(n):k. Using

(1.1), we have

µ (r)
L(n:k) =

kn

(n−1)!

∫ 1

0
xr[F(x)]k−1[−ln(F(x))]n−1 f (x)dx.

(2.2)
By setting t = F(x) in (2.2), since

F−1(x) =
(

1−
√

1− x1/α
)

, we get

µ (r)
L(n):k =

kn

(n−1)!

∫ 1

0
[F−1(t)]rtk−1[−lnt]n−1dt. (2.3)

A power series expansion for
(

1+
√

1+λ
)u

is given by

(see p. 21 of Gradshteyn and Ryzhik [9])

(

1+
√

1+λ
)u

= 2u
[

1+
u
1!

(λ
2

)

+

u(u−3)
2!

(λ
2

)2
+

u(u−4)(u−5)
3!

(λ
2

)3
+ · · ·

]

, (2.4)

for any real numberu.

Applying (2.4) for
(

1−
√

1− t1/α
) j

, we obtain

(

1−
√

1− t1/α
) j

=
∞

∑
v=0

pvt
( j+v)/α ,

where
p0 = 2− j, p1 = j2− j andpu = 2−( j+2v)∏v−1

b=1 j( j+ v+

c© 2014 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.3, No. 3, 237-241 (2014) /www.naturalspublishing.com/Journals.asp 239

b) for v = 2,3, . . ..
Thus (2.3) becomes

µ (r)
L(n):k =

kn

(n−1)!

∞

∑
p=0

ap

∫ 1

0
t((r+p)/α)+k−1[−lnt]n−1dt.

Again by putting,z =−lnt, we obtain

µ (r)
L(n):k =

kn

(n−1)!

∞

∑
p=0

ap

∫ 1

0
e−[((r+p)/α)+k]t tndt

= (αk)n
∞

∑
p=0

ap

[αk+ j+ p]n
. (2.5)

Remark 2.1: For k = 1 in (2.5) we deduce the
explicit expression for single moments of lower record
values from the J-shaped distribution.

Recurrence relations for single moments ofk−th lower
record values fromd f (1.1) can be derived in the following
theorem.
Theorem 2.1: For a positive integerk ≥ 1 and forn ≥ 1
andr = 0,1,2, . . .,

(

1+
2αk
r+1

)

µ (r+1)
L(n):k = 2

(

1+
αk
r

)

µ (r)
L(n):k

+2αk
( 1

r+1
µ (r+1)

L(n−1):k −
1
r

µ (r)
L(n−1):k

)

. (2.6)

Proof We have

2µ (r)
L(n):k − µ (r+1)

L(n):k =
kn

(n−1)!

∫ 1

0
xr(2− x)[F(x)]k−1[−ln(F(x))]n−1 f (x)dx. (2.7)

On using (2.1), then (2.7) reduced to

2µ (r)
L(n):k − µ (r+1)

L(n):k =
2αkn

(n−1)!

∫ 1

0
xr−1(1− x)[F(x)]k[−ln(F(x))]n−1dx. (2.8)

Integrating by parts treatingxr−1(1− x) for integration
and the rest of the integrand for differentiation,then (2.8)
becomes

2µ (r)
L(n):k − µ (r+1)

L(n):k =
2αkn

(n−2)!
∫ 1

0

(xr

r
− xr+1

r+1

)

[F(x)]k−1[−ln(F(x))]n−2 f (x)dx

− 2αkn

(n−1)!

∫ 1

0

(xr

r
− xr+1

r+1

)

[F(x)]k−1[−ln(F(x))]n−1 f (x)dx

= 2αk
(1

r
µ (r)

L(n−1):k−
1

r+1
µ (r+1)

L(n−1):k

)

−2αk
(1

r
µ (r)

L(n):k−
1

r+1
µ (r+1)

L(n):k

)

and hence the result we obtained.
Remark 2.2 Setting k = 1 in (2.6) we deduce the
recurrence relation for single moments of lower record
values from the J-shaped distribution.

3 Relations for Product moment

Making use of (1.2), we can derive recurrence relations for
product moments ofk−th lower record values from (1.5).
Theorem 3.1: For 1≤ m ≤ n−2 andr,s = 1,2, . . . ,

(

1+
2αk
s+1

)

µ (r,s+1)
L(m,n):k = 2

(

1+
αk
s

)

µ (r,s)
L(m,n):k

+2αk
( 1

s+1
µ (r,s+1)

L(m,n−1):k −
1
s

µ (r,s)
L(m,n−1):k

)

. (3.1)

Proof: From equation (1.2) for 1≤ m ≤ n−2 andr,s =
0,1,2, . . . ,

2µ (r,s)
L(m,n):k−µ (r,s+1)

L(m,n):k

=
kn

(m−1)!(n−m−1)!

∫ ∞

0
xr[−ln(F(x))]m−1 f (x)

[F(x)]
I(x)dx,

(3.2)
where

I(x)=
∫ x

0
ys(2−y)[−ln(F(y))+ln(F(x))]n−m−1[F(y)]k−1 f (y)dy.

(3.3)
On using (2.1), then (3.3) reduced to

I(x)= 2α
∫ x

0
ys−1(1−y)[−ln(F(y))+ln(F(x))]n−m−1[F(y)]kdy.

Integrating I(x) by parts treatingys−1(1 − y) for
integration and the rest of the integrand for
differentiation, and substituting the resulting expression
in (3.2), we get

2µ(r,s)
L(m,n):k−µ(r,s+1)

L(m,n):k =
2αkn

(m−1)!(n−m−1)!

∫ 1

0

∫ x

0
xr
( ys

s
− ys+1

s+1

)

×[−ln(F(x))]m−1[−ln(F(y))+ ln(F(x))]n−m−1[F(y)]k−1 f (x)
[F(x)]

f (y)dydx

+
2α(n−m−1)kn

(m−1)!(n−m−1)!

∫ 1

0

∫ x

0
xr
( ys

s
− ys+1

s+1

)

×[−ln(F(x))]m−1[−ln(F(y))+ ln(F(x))]n−m−2[F(y)]k−1 f (x)
[F(x)]

f (y)dydx

and hence the result we obtain.
Remark 3.1 Setting k = 1 in (3.3), we deduce the
recurrence relation for product moments of lower record
values from the J-shaped distribution.
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4 Characterization

Theorem 4.1: Let X be a non-negative random variable
having an absolutely continuous distribution functionF(x)
with F(0) = 0 and 0< F(x)< 1 for all x > 0, then

(

1+
2αk
r+1

)

µ (r+1)
L(n):k = 2

(

1+
αk
r

)

µ (r)
L(n):k

+2αk
( 1

r+1
µ (r+1)

L(n−1):k −
1
r

µ (r)
L(n−1):k

)

(4.1)

if and only if

F(x)= [x(2−x)]α , 0< x< 1, 0<α < 1.

Proof: The necessary part follows immediately from
equation (2.5). On the other hand if the recurrence
relation in equation (4.1) is satisfied, then on using
equation (1.2), we have

kn

(n−1)!

∫ 1

0
xr+1[F(x)]k−1[−ln(F(x))]n−1 f (x)dx

=
2kn

(n−1)!

∫ 1

0
xr[F(x)]k−1[−ln(F(x))]n−1 f (x)dx

+
2αkn

r(n−1)!

∫ 1

0
xr[F(x)]k−1[−ln(F(x))]n−1 f (x)dx

− 2αkn

(r+1)(n−1)!

∫ 1

0
xr+1[F(x)]k−1[−ln(F(x))]n−1 f (x)dx

+
2αkn

(r+1)(n−2)!

∫ 1

0
xr+1[F(x)]k−1[−ln(F(x))]n−2 f (x)dx

− 2αkn

r(n−2)!

∫ 1

0
xr[F(x)]k−1[−ln(F(x))]n−2 f (x)dx. (4.2)

Integrating the last two integrals on the right hand
side of equation (4.2) by parts and simplifying the
resulting expression, which reduces to

kn

(n−1)!

∫ 1

0
xr[F(x)]k−1[−ln(F(x))]n−1{(x−2) f (x)

−2αF(x)+2αxF(x)}dx. (4.3)

Now applying a generalization of the Müntz-Szász
Theorem (Hwang and Lin, [10]) to equation (4.3), we get

f (x)
F(x)

=
2α(1− x)
x(2− x)

which proves that

F(x)= [x(2−x)]θ , 0< x< 1, 0< θ < 1.

5 Conclusion

In this study some explicit expression and recurrence
relations for single and product moments of lower record
values from the J-shaped distribution have been
established. Further, characterization of this distribution
has also been obtained on using a recurrence relation for
single moments.
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