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Abstract: In this paper, we solve the Dirichlet problem for a linear second-order partial differential equation with the Riemann-

Liouville fractional derivative. When the order of fractional differentiation is an integer, the equation under consideration transforms

into a mixed equation of the Lavrent’ev-Bitsadze type. Existence theorem is proved using the Fourier method and methods of special

functions theory.
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1 Introduction

In the domain Ω = {(x,y) : 0 < x < r,−a < y < b}, a, b > 0, we consider the equation

uxx(x,y)−Dα
0yuy(x,y) = 0, 0 < α < 1,y 6= 0, (1)

with the Riemann-Liouville operator Dα
0y [1], [2]:

Dα
0yv(x,y) =















signy

Γ (−α)

y
∫

0

|y− t|−α−1v(x, t)dt, α < 0,

v(x,y), α = 0,

signny ∂ n

∂yn Dα−n
0y v(x,y), n− 1 < α ≤ n, n ∈ N.

Note, as α = 1 equation (1) transforms into a mixed equation

uxx(x,y)− signyuyy(x,y) = 0. (2)

Differential equations of fractional order occur in mathematical modeling of physical processes in environmental
systems with fractal geometry [1, Chap. 5]. Boundary value problems for linear partial differential equations with
fractional order less than two are investigated in [3] and [4] (see also the References).

In [5], the Dirichlet problem is investigated for the generalized Laplace equation with the Caputo derivative. The
Dirichlet problem for a nonlocal wave equation with the Caputo derivative is addressed in [6] and [7].

The Dirichlet problem for the Lavrent’ev-Bitsadze equation is handled in [8] and [9]. In [10], the Dirichlet problem is
investigated for a mixed-type equation with a singular coefficient.

Assume Ω− = Ω ∩ {y < 0}, Ω+ = Ω ∩ {y > 0}. The function u(x,y) belonging to the class u(x,y) ∈ C(Ω̄ ),

Dα−1
0y uy(x,y) ∈ C(Ω̄−)∩C(Ω̄+), uxx(x,y), Dα

0yuy(x,y) ∈ C(Ω−∪Ω+) and satisfying equation (1) in Ω−∪Ω+ is called

here a regular solution to equation (1) in the domain Ω .
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This paper is organized as follows: In Section Two we solve the Dirichlet problem for equation (1) in the domain Ω .
First, we prove the auxiliary lemma. Next, we solve the Dirichlet problem for equation (1) in the domain Ω− and solve
in the domain Ω+ assuming the trace of the solution on y = 0 is known. In addition, using the conjugation conditions, we
have the trace of the desired solution in the line y = 0. Section Three is devoted to conclusion. .

The present paper aims to prove the existence theorem to the Dirichlet problem for equation (1) in the domain Ω .

2 Dirichlet problem

Here, we consider the following problem: Find the regular solution to equation (1) in Ω satisfying the conditions

u(0,y) = u(r,y) = 0, −a ≤ y ≤ b, (3)

u(x,−a) = τa (x) , u(x,b) = τb (x) , 0 ≤ x ≤ r, (4)

where τa(x) and τb(x) are the given continuous functions in the segment [0,r],

τa(0) = τa(r) = 0, τb(0) = τb(r) = 0,

lim
y→0+

Dα−1
0y uy = lim

y→0−
Dα−1

0y uy. (5)

We know [11], the set of real zeros of a Mittag-Leffler type function

Eρ ,µ (z) =
∞

∑
k=0

zk

Γ (ρk+ µ)
, ρ > 0, µ ∈C,

is finite for all ρ < 2, µ ∈ C. In [12], it is proved as µ = ρ and µ = 1 the set is not empty.

Theorem 1. Assume τa(x) ∈C2[0,r], τb(x) ∈C4[0,r], the functions τ ′′′a (x) and τ
(V )
b (x) are piecewise continuous on the

segment [0,r],τ ′′a (0) = τ ′′a (r) = 0, τ ′′b (0) = τ ′′b (r) = 0, τ
(IV )
b (0) = τ

(IV )
b (r) = 0,

bα+1

r2
≥ h

π2
, (6)

h = max{t ∈R : Eα+1,α+1(−t)Eα+1,1(−t) = 0}. The above implies the existence of a regular solution to problem (1)–(5).

First, prove the lemma.

Lemma 1. Let C(y,λ ) =
|y|α Eα+1,α+1(λ |y|α+1)

aα Eα+1,α+1(λ aα+1)
,−a < y < 0. For any λ > 0 the estimates

0 ≤C(y,λ ) ≤ 1, (7)

0 ≤ Eα+1,1(λn|y|α+1)−C(y,λ )Eα+1,1(λnaα+1)≤ 1. (8)

are valid.

Indeed, the function C(y,λ ) is the solution to the ordinary fractional differential equation

Dα
0yv′(y)+λ v(y) = 0, −a < y < 0. (9)

At the point y ∈ (−a,0) of the maximum value of the function v, we have [1]

Dα+1
0y v ≤ v(y)|y|−α−1

Γ (−α)
.

Thus,

Dα+1
0y v− v(0)

|y|α+1Γ (−α)
≤ v(y)

|y|α+1Γ (−α)
− v(0)

|y|α+1Γ (−α)
.
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Since Dα+1
0y v− |y|−α−1v(0)

Γ (−α) = Dα
0yD1

0yv, we obtain

Dα
0yD1

0yv ≤ |y|−α−1

Γ (−α)
(v(y)− v(0)).

As v(y)− v(0)> 0, Γ (−α)< 0, then Dα
0yD1

0yv =−Dα
0yv′(y)< 0, i. e. for any −a < y < 0

Dα
0yv′(y)> 0.

Thus, we get
Dα

0yv′(y)+λ v(y)> 0,

that contradicts (9). Consequently, the greatest positive or the smallest negative value of the function v(y) is as y =−a or
y = 0. On the other hand,

C(0,λ ) = 0,Cn(−a,λ ) = 1,

implies estimate (7). Similarly, we can establish the validity of estimate (8). The lemma is valid.
Proof of the theorem 1. Find a solution for problem (1)− (4) in the form of

u(x,y) = θ (y)u(x,y)++θ (−y)u(x,y)−,

where θ (y) = 0,y < 0,θ (y) = 1,y ≥ 0. Fhe functions u−(x,y) and u+(x,y) are the solutions to the problems:

∂ 2u

∂x2
+

∂

∂y
Dα−1

0y uy = 0, (10)

u(0,y) = u(r,y) = 0, −a ≤ y ≤ 0, (11)

u(x,−a) = τa (x) , u(x,0) = τ0 (x) , 0 ≤ x ≤ r, (12)

and
∂ 2u

∂x2
− ∂

∂y
Dα−1

0y uy = 0, (13)

u(0,y) = u(r,y) = 0, 0 ≤ y ≤ b, (14)

u(x,0) = τ0 (x) , u(x,b) = τb (x) , 0 ≤ x ≤ r, (15)

respectively,
where the function τ0(x) is as yet unknown. Assuming that τ0(x) is known we can write out the solutions to these

problems. We assume that τ0(x) ∈C2[0,r], τ ′′′0 (x) is a piecewise continuous function on the interval [0,r].
A formal solution of problem (10)-(12) is

u(x,y)− =
∞

∑
n=1

un(x,y)
− =

∞

∑
n=1

{

τanC(y,λn)+

τ0n

[

Eα+1,1(λn|y|α+1)−C(y,λn)Eα+1,1(λnaα+1)
]}

sin(
√

λ nx), (16)

where

τ0n =
2

r

r
∫

0

τ0(ξ )sin(
√

λ nξ )dξ , τan =
2

r

r
∫

0

τa(ξ )sin(
√

λ nξ )dξ , λn =
(πn

r

)2

.

Taking into account the estimates (7), (8), and the Fourier coefficient properties

|τan|= o(n−2),n → ∞, (17)

|τ0n|= o(n−3),n → ∞, (18)
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we obtain

|un(x,y)
−| ≤ |τ0n|+ |τan|< K

1

n2
.

It is known from [11] and [13], as λ → ∞, the asymptotic representations

aα Eα+1,α+1(λ aα+1) =
eλ

1
α+1 a

(α + 1)λ
α

α+1

+O
(

λ−2
)

, Eα+1,1(λ aα+1) =
eλ

1
α+1 a

α + 1
+O

(

λ−1
)

. (19)

are valid. Hence,

C(y,λn) = O

(

exp(λ
1

α+1
n |y|− a)

)

, 0 < |y|< a,

Eα+1,1(λn|y|α+1)−C(y,λn)Eα+1,1(λnaα+1) = O(1/λn) .

Considering these two estimates and estimates (17) and (18), we can get

|λnun(x,y)
−| ≤

λn

(

|τ0n|1/λn + |τan|eλ
1

α+1
n |y|−a

)

≤ N

(

1

n2
+ eλ

1
α+1

n |y|−a

)

,

N is some constant. Thus, the series
∞

∑
n=0

∂ 2

∂x2 un(x,y)
− = −

∞

∑
n=0

λnun(x,y)
−,

∞

∑
n=0

Dα
0y

∂
∂y

un(x,y)
− =

∞

∑
n=0

λnun(x,y)
− converge

absolutely and uniformly with respect to any closed subset of Ω−. The functions uxx(x,y)
−,Dα

0y
∂
∂y

u(x,y)− are continuous

in Ω− since the common terms in these series are continuous and the uniformly convergent series of continuous functions
defines the continuous functions. This proves the function u(x,y)− is the regular solution to equation (10) and satisfies
conditions (11) and (12). Next, we construct a formal solution for problems (13)-(15) as

u(x,y)+ =
∞

∑
n=1

{

τbnS(y,λn)+

+τ0n

[

Eα+1,1(−λnyα+1)− S(y,λn)Eα+1,1(−λnbα+1)
]}

sin(
√

λnx), (20)

where

S(y,λn) =
yα Eα+1,α+1(−λnyα+1)

bαEα+1,α+1(−λnbα+1)
,

bγEγ+1,γ+1(−λnbγ+1) 6= 0. (21)

For Mittag-Leffler type functions of series (20), as λn → ∞, we have

Eα+1,1(−λnbα+1) =
b−α−1

λnΓ (−α)
+O(1/λ 2

n ), (22)

Eα+1,α+1(−λnbα+1) =− b−2α−2

λ 2
n Γ (−α − 1)

+O(1/λ 3
n ). (23)

Subject to (21) by asymptotic (23), we get the estimate

|λ 2
n b2α+2Eα+1,α+1(−λnbα+1)|>C.

By (23), replacing b by y, we obtain

|Eα+1,α+1(−λnyα+1)| ≤ M

1+λ 2
n y2(α+1)

, λnyα+1 ≥ 0.

With these two estimates, we have

|S(y,λn)| ≤
yα λ 2

n b2α+2

bα(1+λ 2
n y2(α+1))

. (24)
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Denote by zε = λ 2ε
n y2ε(α+1). Then, yαλ 2 = zε λ 2−2εyα−2ε(α+1). Therefore, by (24):

|S(y,λn)| ≤ λ 2−2ε
n yα−2ε(α+1) zε

1+ z
, 0 ≤ ε ≤ 1.

Due to sup
z>0

zε

1+z
=C(ε) = (1− ε)1−εεε obtain

|S(y,λn)| ≤C(ε)λ
2(1−ε)
n yα−2ε(α+1), 0 < ε < 1. (25)

Employing (25), we get

|Eα+1,1(−λnyα+1)− S(y,λn)Eα+1,1(−λnbα+1)| ≤ M1

1+λnyα+1
+

|S(y,λn)|
1+λnbα+1

≤

M1 +M2bα+1C(ε)n2−4ε yα−2ε(α+1), y ≥ 0, ε <
α

2(α + 1)
.

Hence,
|u(x,y)+| ≤ |τbn|n4−4ε + |τ0n|(M1 +M2bα+1C(ε)n2−4ε yα−2ε(α+1)),

Since, by the assumption

|τbn|= O(n−5),n → ∞, (26)

we get

|u(x,y)+| ≤ n−4ε−1 +(M1n−3 +M2bα+1C(ε)n−4ε−1yα−2ε(α+1)).

This implies absolute and uniform convergence of the series (20). Using the estimates

Eα+1,1(−λnyα+1)− S(y,λn)Eα+1,1(−λnbα+1) = O(1/λn) ,

S(y,λn) = O(1),

following from (22) and (23), we obtain

|λnun(x,y)
+| ≤ λn|τbn|K +Mλn|τ0n|(1/λn)< K1n−3,

K1 is some constant.

Consequently, we can see the convergence of the series
∞

∑
n=1

∂ 2

∂x2 un(x,y)
+ =−

∞

∑
n=1

λnun(x,y)
+,

∞

∑
n=1

Dα
0y

∂
∂y

un(x,y)
+ =−

∞

∑
n=1

λnun(x,y)
+.

Using conjugation condition (5), find τ0n. Applying the operator Dα−1
0y

∂
∂y

to function (16) and fractional integro-

differentiation of Mittag-Leffler type functions

D
γ
at |t − a|µ−1E1/ρ(λ |t − a|ρ ; µ) = |t − a|µ−γ−1E1/ρ(λ |t − a|ρ ; µ − γ), γ ∈R, (27)

µ > 0ifγ 6∈ N∪{0},andµ ∈ R, ifγ ∈ N∪{0},
we obtain

Dα−1
0y

d

dy
C(y,λn) =− Eα+1,1(λn|y|α+1)

aαEα+1,α+1(λnaα+1)
, Dα−1

0y

d

dy
Eα+1,1(λn|y|α+1) =−|y|Eα+1,2(λn|y|α+1).

and aiming y → 0, on the left-hand side of (5), we obtain

lim
y→0

Dα−1
0y u+y =

∞

∑
n=1

{

τbn

bαEα+1,α+1(−λnbα+1)
− τ0n

Eα+1,1(−λnbα+1)

bαEα+1,α+1(−λnbα+1)

}

sin(
√

λnx).

Since

Dα−1
0y

d

dy
S(y,λn) =

Eα+1,1(−λnyα+1)

bαEα+1,α+1(−λnbα+1)
,
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Dα−1
0y

d

dy
Eα+1,1(−λnyα+1) = yEα+1,2(−λnyα+1).

On the right-hand side of (5), we have

lim
y→0−

Dα−1
0y u−y =

∞

∑
n=1

{ −τan

aα Eα+1,α+1(λnaα+1)
+ τ0n

Eα+1,1(λnaα+1)

aαEα+1,α+1(λnaα+1)

}

sin(
√

λnx).

Therefore,

τ0n =
aα Eα+1,α+1(λnaα+1)

∆
τbn +

bαEα+1,α+1(−λnbα+1)

∆
τan,

where
∆ = aα Eα+1,α+1(λnaα+1)Eα+1,α+1(−λnbα+1)+ bαEα+1,α+1(−λnbα+1)Eα+1,1(λnaα+1).

Since aα Eα+1,α+1(λnaα+1) > 0, Eα+1,1(λnaα+1) > 0, and due to (6), (23) Eα+1,α+1(−λnbα+1) < 0,

Eα+1,α+1(−λnbα+1)< 0. Then, ∆ 6= 0. By asymptotic formulas (19) and (23) and estimates (17) and (26), we get

τ0n = O(λn) |τbn|+O
(

λ
α

α+1−1
n

)

|τan|= O

(

1

n3

)

.

Substituting the expression obtained above for τ0n into (16) and (20), we get the required solution. This proves the
theorem 1.

3 Conclusion

In this paper, the Dirichlet problem for a linear second-order partial differential equation with a fractional derivative is
solved in a rectangular domain using the Fourier method. We proved values b and r that guarantee the existence of a
solution in the whole domain Ω . In [14], we have proved the uniqueness of the solution.
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