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Abstract: The present paper aims to model, predict, and explain presidential election results using selected quarterly macroeconomic

indicators, i.e., gross national product, consumer price index, unemployment rate and gross national product from 1994-2017. We also

seek to provide predictions of presidential winner prior to the elections based on the beta distribution and the support vector regression

(SVR) as prediction models.Two models are primarily built based on beta distribution and SVR. Due to the forecasting aspect, model

performance focuses on one goodness-of-fit measure, i.e., the prediction error rather than the squared correlation coefficient R2 as it

makes little sense in a practical regression perspective. The best model is the one with the least mean square error (MSE). In this effect

it turns out that the SVR with kernel type encapsulated postscript eps radial has a mean square error of 0.006 on the test set and is

a better model compared to the beta distribution model with a mean square error of 1.216. Thu, an accurate solution to prediction of

presidential vote elections via SVR analysis is proposed.
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1 Introduction

Within the scientific framework in line with politics, the
primary focus is to provide explanations concerning
elections. Nevertheless, in some phenomena like
presidential elections, the aim of predicting is important,
as well. It is usually the case for the citizenry both
academic and non-academic to ask themselves who the
next president will be. These interlocutors tend to require
predictions, not just explanations. They primarily want an
accurate prediction for the winner of the forthcoming
elections. In this work, we attempt to meet their quest. We
consider two models that can be employed in modeling
proportions, i.e. the beta distribution [1] and the support
vector regression [2]. Their performance is compared
using the goodness-of-fit measures as the measure square
error (MSE) and the squared correlation coefficient (R2) to
ascertain which one gives more accurate predictions
based on the selected macroeconomic time series data, i.e.

the real gross domestic product (GDP), consumer price
index (CPI), unemployment rate and the gross national
product (GNP) from the post apartheid era, (1994-2017)
in South Africa. Accordingly, we recommend an
appropriate modeling framework that provides
presidential election outcomes accurately.
The prsent paper aims to present true forecasting using
predictor models. That is, to predict the winner before the
elections take place. In that respect two prediction models
are adopted, i.e. the beta distribution and the support
vector regression (SVR). Due to our interest in prediction,
particular emphasis is put on the goodness-of-fit
measures, like the squared correlation coefficient, R2, and
prediction error given by the mean square error, [3,4]
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2 Modeling proportions

It is a hard task to select an appropriate regression model
when the dependent variable is a proportion or
percentage. When using ordinary linear regression, a big
problem arises because the model can predict values that
are not possible values less than 0 or greater than 1
particularly in voting scenarios. The other issue is that the
relationship is nonlinear, because it turns out to be
sigmoidal [5,6]. Several researchers envisage application
of a linear regression as it is much simpler; however, this
approach can be reasonable only in a few circumstances
[7]. For a thorough understanding of the situations under
which the linear regression could be justified, see [6].
There are other proportions data (i.e. data of discrete
counts) derived from discrete counts of “successes” and
“failures” in which “successes” are divided by the total
counts [8]. Each observation is a percentage from 0 to
100%, or a proportion from 0 to 1. This type of data can
be analyzed with beta regression or logistic regression.
For data that are inherently proportional (proportion
data), one can not count “successes” or “failures”, but just
divide one continuous variable by a provided denominator
value. Another instance of such proportion data is when a
proportion is estimated by intuitive measurement [9]. This
type of data can be analyzed with beta regression.

3 Beta Regression

Continuous bounded regressands, such as proportions and
rates, exist in several areas of applied statistics. Linear
regression prior to a logistic regression is commonly
employed to explore such type of data. However,
regression parameters from that type of regression are
indirectly interpretable on the original response scale, as a
consequence of Jensen’s inequality [10]. Another
approach to linear modeling prior to the logistic
transformation is involved in a direct assessment of the
bounded responses on their original scale. In this respect,
the beta regression model has recently gained much
appreciation because of the flexibility of the beta
distribution in encompassing a number of distributional
shapes over the unit interval [12,11,1]. The
two-parameter probability density function of the beta
distribution with shape parameters α and β , see Def[1].

Definition 1A random variable X is said to follow the beta

distribution with parameters (α,β ) for some α > 0 and

β > 0 if

Range(X) = (0,1)

, and for x ∈ (0,1) then

fX (x) =
Γ (α +β )

Γ (α)Γ (β )
xα−1(1− x)β−1

. We write this as X ∼ Beta(α,β ).

In our study we have assumed that the vote proportions
(percentages) of the incumbent party, the African
National Congress (ANC) follow a beta distribution;
voteANC ∼ Beta(α,β ) .
The parameters α and β are symmetrically related by
f (x | α,β ) = f (1− x | β ,α). That is, when X has a beta
distribution with parameters α and β , 1 − X has a beta
distribution with parameters β and α [14,15].

3.1 Estimation of the beta parameters

The beta distribution takes on various shapes and can be
described by two shape parameters, α and β , which are
usually cumbersome to estimate. However, the maximum
likelihood and method of moments estimation approaches
can be employed for the estimation problem.
Nevertheless, the method of moments is much more
straightforward [13,16]. The shape of the beta distribution
can readily change with variation in the parameters [13,
15]. For a detailed pieces of literature on the estimation of
beta parameters the interested reader should read [13,16].

4 Support Vector Machine-Regression

The application of support vector machine regression
(SVM-R) in this study is motivated by a growing
popularity of support vector machines (SVM) learning
algorithms for regression problems [17,18]. SVMs are
considered the best supervised learning algorithms by
scholars and researchers of the 21st century in the data
science arena.
The practical accomplishment of SVMs can be accredited
to the core theoretical basis of Vapnik–Chervonenkis
(VC)-theory [19,20] because SVM generalization
performance does not depend on the dimensionality of the
input space. Nevertheless, a number of SVM regression
application practices are carried out by ‘authority’ users.
Given that the quality of SVM models is based on a
proper setting of SVM hyper-parameters, the core
concern for users attempting to employ SVM regression
is how to set these parameter values (to ensure good
generalization performance) for a given data set [21]. In
this study, the prediction of incumbent vote proportion
problem focuses on the application of SVR, so we can use
SVR for handling continuous values in the range [0,1]
instead of SVM.
Given that the ultimate goal of the support vector
regression is to find a regression function, we then
introduce ε−support vector regression, or the
ε−insensitive loss function which we shall employ to
forecast the incumbent presidential vote.
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4.1 ε−Support Vector Regression

Given the training set

T = {(x1,y1), ...,(xm,ym)} ∈ (Rn × γ)m, (1)

where xi ∈ Rn, yi ∈ γ = R, i = 1, . . . ,m,

Linear problem

The application of linear ε− support vector regression
enhances establishing the problem as a convex quadratic
programming problem (QPP), where coefficients ω andb

are estimated by minimizing

minimize
ω,b,ξ (∗)

1

2
‖ω‖2 +CΣm

i=1(ξi + ξ ∗
i ),

subject to (ω · xi)+ b− yi ≤ ε + ξi, i = 1, . . . ,m,

yi − (ω · xi)− b ≤ ε + ξ ∗
i , i = 1, . . . ,m,

ξ
(∗)
i ≥ 0, i = 1, . . . ,m,

(2)

where (∗) symbolizes both the vector with and

without asterisks. ξ (∗) = (ξ1,ξ
∗
1 , . . . ,ξm,ξ

∗
m)

T is a slack
variable and C > 0 is a penalty parameter.

Now, we introduce the Lagrangian function to
formulate the dual problem of the primal problem
Equation (2),

L =
1

2
‖ω‖2 +C

m

∑
i=1

(ξi + ξ ∗
i )−

m

∑
i=1

(λiξi +λ ∗
i ξ ∗

i )

−
m

∑
i=1

αi(ε + ξi + yi− (ω · xi)− b)

−
m

∑
i=1

α∗
i (ε + ξ ∗

i − yi +(ω · xi)+ b,

where α(∗) = (α1,α
∗, . . . ,αm,α

∗
m)

T
, and

λ (∗) = (λ1,λ
∗, . . . ,λm,λ

∗
m)

T
are Lagrange multiplier

vectors. We can then obtain the dual problem

minimize
α(∗)∈R2m

1
2 ∑m

i=1 ∑m
j=1(α

∗
i −αi)(α

∗
j −α j)

+ ε ∑m
i=1(α

∗
i +αi)−∑m

i=1 yi(α
∗
i −αi)

subject to ∑m
i=1(α

∗
i +αi) = 0,

0 ≤ α
(∗)
i ≤C, i = 1, . . . ,m, (3)

On computing the dual problem, Equation (3), we now
obtain the solutions of problems, Equation (2) as

ω =
m

∑
i=1

(α∗
i −αi)xi, (4)

for this, select an element of α∗
i , α j ∈ (0,C) or α∗

i ∈ (0,C)
and subsequently solve for

b = yi −
m

∑
i=1

(α∗
i −αi)(xi · x j)+ ε, (5)

or

b = yr −
m

∑
i=1

(α∗
i −αi)(xi · xr)− ε. (6)

Therefore, a point x ∈ R has a corresponding y value
given by

y = (ω · x)+ b =
m

∑
i=1

(α∗
i −αi)(xi · x)+ b. (7)

Nonlinear problem

The linear optimization problem is now transformed into
a nonlinear problem by introduction of a kernel function,
κ. In this case, it is observed that the inner products are
present in the dual problem , Equation (3).Thus, the kernel
functions can be directly applied and the other components
are unchanged.

minimize
α(∗)∈R2m

1
2 ∑m

i=1 ∑m
j=1(α

∗
i −αi)(α

∗
j −α j)+κ(xi,x j)

+ ε ∑m
i=1(α

∗
i +αi)−∑m

i=1 yi(α
∗
i −αi),

subject to ∑m
i=1(α

∗
i +αi) = 0,

0 ≤ α
(∗)
i ≤C, i = 1, . . . ,m. (8)

The conclusions made here are the same as those for
the linear problem. Only that for the linear case the inner

product (x,x
′
) is considered in place of the kernel function

κ(x,x
′
).

5 Terms employed in the SVR framework

–Kernel: The function used to map a lower dimensional
data into a higher dimensional data.

–Hyper Plane: In SVM, it is the separation line
between the data classes. However, in the SVR
framework, it is the line that will assist in predicting
the continuous value or target value.

–Boundary line: In SVM there are two lines other than
Hyper Plane which creates a margin . The support
vectors can be on or outside the Boundary lines or
outside it. This boundary line separates the two
classes.

–Support vectors: These are the data points which are
nearer to the boundary. The distance of the points is
minimum or less.
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5.1 Estimation Intuition

We briefly discuss the intuitions underlying the
confidence of predictions from SVR. Consider a logistic
regression, where the probability p(y = 1/x;θ ) is
modeled by hθ (x) = g(θ T x). Then 1 can be predicted if
and only if hθ (x) ≥ 0.5 or equivalently, if and only if
θ T x ≥ 0. Again take a positive training example (y = 1).
The larger θ T x the larger is hθ (x) = p(y = 1/x;w,b), so
the higher our degree of confidence that the label is 1. In
this respect, we say informally that our prediction is a
confident one that y = 1 if θ T x >> 0. Furthermore, the
regression model would give a confident prediction for
y = 0 where if θ T x << 0. In another intuition, consider
Figure 1 in this, the x’s represent positive training
examples, and the o’s are the negative training
examples.A decision boundary (which is the line given by
θ T x = 0, and is called the separating hyperplane) is also
shown, and the three points have labeled A,B and C. For a
comprehensive discussion of Figure 1, see [22]

Fig. 1: SVR graph

In the SVR approach, the entire data set is split into
two: The training set on which the regression is performed
and the test set on which cross validation is done. In our
study, the same procedure adheres to using the default set
parameters.

6 Results

6.1 Beta model parameter optimization and

interpretation

We consider prediction of the South African presidential
elections, taking vote proportions (percentages) of the
incumbent party (ANC) as the dependent variables and
macroeconomic indicators, i.e. GDP, CPI, unemployment
rate and GNP as the predictor variables. A data set for the
relevant variables which spans the post apartheid era 1994
to 2017 is used.

Having used the betareg function in R, we had the
following model:

logit(yi) = βo +
n

∑
i=1

βixi,

where logit(yi) is the log-odds. Thus the beta
coefficients that betareg returns are the additional
increase (or decrease for negative beta) in the log-odds of
our response variable (Votes),
Given that we are interested in interpreting our betas on
the probability scale (i.e. on the interval (0,1)), and having
our beta coefficients all we require to do is to change the
response, as

logit(yi) = βo +
n

∑
i=1

βixi ⇒ yi =
eβ0+∑n

i=1 βixi

1+ eβ0+∑n
i=1 βixi

.

Table 1: Beta model results

coef.Estmates Std. Error z value Pr(> |z|)

Intercept 2.561 1.118 2.290 0.022

GDP -0.001 0.001 -2.685 0.007

CPI 0.067 0.070 0.963 0.335

UNEMPLOYEMENT RATE -0.055 0.051 -1.063 0.287

GNP -0.001 0.001 -0.481 0.630

The beta distribution was used to model incumbent
party vote proportions, and the estimated model is given
by

ˆVote = 2.561−0.001GDP+0.067CPI−0.055UNEMPLYT

−0.001GNP (9)

Model interpretation: We focus our interpretation of
the model estimates on the odds rather than the log odds
for simplicity. This is done by exponentiating the model
coefficients in Table 1 and interpreting the result (odds) in
percentage. The odds are given by probability of success
divided by the probability of failure = p

1−p
, where p is the

probability of success.
From Equation (9), for a unit change in the South African
real GDP, unemployment and GNP we expect to see a
0.1%, 5.5% and 0.1% decrease in the odds of the
incumbent party votes respectively. Again, for a unit
change in the CPI we expect to observe a 6.7% increase
in the odds of the incumbent party votes.

OR
For a unit increase in the South African GDP, we expect to
see 0.1% decrease in the odds of the incumbent party vote.
Note: if β < 0 , changes occur in odds ratio (OR)= (1−

eβ )×100, and if β > 0, change in odds ratio is (eβ −1)×
To fully examine the performance of the beta

distribution in predicting the incumbent presidential party
vote, more statistical measures were carried out, See
Table 2.
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Table 2: presidential vote predictions with the Beta model

Year Observed Vote % Predicted Vote % Prediction error

1994 62.25 62.85 0.60

1995 65.00 67.61 2.61

1996 64.00 62.37 -1.63

1997 62.00 61.69 -0.31

1998 54.00 61.39 7.39

1999 66.35 61.21 -5.14

2000 68.00 58.56 -9.44

2001 51.00 60.66 9.66

2002 56.00 58.26 2.26

2003 54.00 60.00 6.00

2004 69.69 59.05 -10.64

2005 64.67 56.52 -8.15

2006 58.00 54.28 -3.72

2007 59.80 52.70 -7.09

2008 45.00 55.93 10.93

2009 65.90 61.24 -4.66

2010 44.98 58.40 13.42

2011 55.00 57.23 2.23

2012 64.85 58.34 -6.50

2013 59.87 59.65 -0.22

2014 62.15 61.64 -0.51

2015 48.00 63.50 15.50

2016 75.65 68.37 -7.28

2017 77.57 71.57 -6.00

Table 2 indicates the observed and predicated vote
percentages of South African presidential elections. It
should be noted that when elections did not take place,
because they are not held annually, the percentages of
intention to vote the incumbent party were used. By
visual inspection, see Table 2, the predicted votes do not
appear good enough in some instances, though relatively
good for selected years. The prediction errors are also
shown, but are not good enough on the overall because
some years have big errors. However, from the model
output the mean square error (MSE) = 1.216 and Pseudo
R2 = 28.51%. At this point we excuse ourselves making
much sense of the pseudo R2 values because no perfect
model exists and the existence of measurement error
means that the maximum that a perfect model can
“explain” is not 100%.
We consider a data visualization of the scatter plot of the
predicted versus actual votes, Figure ??.

From the scatter plot, Figure ??, we can say
something about other issues related to the fitted model,
Equation (9). It is clear that the residuals are
heteroskedastic, implying that the variance of the error is
inconstant across various levels of the vote proportions.
Consequently the standard errors of the regression
coefficients in Table 1 are unreliable and may be
understated. Therefore, the statistical significance of the
considered macroeconomic indicators in Equation (9)
could have been overstated. They may not be statistically
significant due to the heteroskedastic issue, though we
may be unable to exactly ascertain this.

6.2 SVR model parameter optimization and

interpretation

Considering the training of the SVR models, one kernel
parameter γ , and two kernel-independent parameters
ε andC are required to be defined, Equation (2). The basis
for determining these parameters is to build a model that
best fits our data. However, in this research, values
recommended by [21] are considered because there are no
known standard approaches for dictating optimal SVR
model parameters [23]. Hence, it is more of an art

than a science to determine appropriate values for
these parameters. Reviewed literature on SVR indicates
that these parameters determined one at a time after
letting other parameters constant, and subsequently
allowing the parameter take on different values, then
identifying the value that seems to align with the best
model performance assessed by cross-validation [24].

In Table 3, we indicate the parameters (ε andC)
recommended by [21] and our optimized parameters
(ε ,C andγ) of the SVR model constructed for the
incumbent presidential party vote.

Table 3: SVR-Incumbent Vote (SVR-IV) model parameters

Model ε− recommended C− recommended C− optimized

SVR-IV-1 0.0475 10.34 1

SVR-IV-2 0.0152 10.00 1

The SVR-IV-1 and SVR-IV-2 models constructed for
the incumbent party vote demonstrated consistently good
performance for the esp-Radial models with MSE =
0.0072 and R2 = 23.54%, MSE = 0.0060 and
R2 = 21.48% respectively using the recommended
parameters as shown in Table 3.
We now compare the prediction capabilities of the two
models (beta and SVR) on the test data. Recall that model
validation for the SVR was performed on the test data and
the years randomly selected for the test data are
specifically extracted out for the beta model from Table 2.
Table 4 indicates the comparison of vote predictions using
both the SVR and beta regression models. The best model
for the South African presidential vote election
predictions has been built via SVR using the
recommended parameters as earlier mentioned.

Using the best model (SVR-radial), ascertained using
the MSE result, the forecast for the incumbent vote based
on quarterly macroeconomic indicators;
GDP = 3186.5, CPI = 112.9, UNEMPLYT = 24.7, GNP =
3096.7 is 60.32%. In other words, it is envisioned that the
ANC party will win the presidential forthcoming elections
with a percentage of 60.32%.
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Table 4: Comparison of vote predictions using SVR and the Beta

models

Year VOT E SPredicted Serror BPredicted Berror

1994 0.6225 0.6437 0.0212 0.6285 0.0060

2004 0.6969 0.5779 -0.1190 0.5905 -0.1064

2007 0.5980 0.5736 -0.0244 0.527 -0.0710

2010 0.4498 0.6136 0.1638 0.584 0.1342

2011 0.5500 0.6109 0.0609 0.5723 0.0223

2012 0.6485 0.6061 -0.0423 0.5834 -0.0651

2014 0.6215 0.5973 -0.0242 0.6164 -0.0051

2015 0.4800 0.5978 0.1178 0.635 0.1550

2016 0.7565 0.6002 -0.1564 0.6837 -0.0728

2017 0.7757 0.6022 -0.1735 0.7157 -0.0600

Note: S=SVR B=Beta

7 Conclusion

The macroeconomic indicators, i.e. gross national
product, consumer price index, unemployment rate and
gross national product, that could explain presidential
voting have been explored with a view of achieving a
prediction model for presidential elections. Two models
i.e. the support vector regression and the beta distribution
models. Based on the MSE = 0.006 and 1.216 for both
models respectively, the SVR turns out to be the best
model and predicts the incumbent party (ANC) vote with
a 60.32% majority win for the South African presidential
elections held on 8th March 2019. The predicted vote
percentage is compares with the actual (obtained)
percentage of 57.5%. Error in the predicted vote
percentage could be due to the fact that some important
macroeconomic indicators were not considered in this
study. However, predictions from the SVR have been
rather more accurate. Despite this admirable evidence,
one should not be unduly optimistic about SVR
performance because it relies on the past to predict the
future, patently a precarious business. In this research, the
past is the post apartheid period (1994-2017) which could
be considered ‘stable’ with relatively little political and
economic disturbances. However, the two approaches
provide a scientific basis for presidential vote prediction.
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