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Abstract: In this paper, we investigate the structure of a fuzzy soft inner product on fuzzy soft linear spaces and invoke a definition in
terms of fuzzy soft points. We examine some properties and examples of fuzzy soft inner product spaces as well as fuzzy soft Cauchy-
Schwartz inequality. It is shown that fuzzy soft orthogonality and fuzzy soft Hilbert spaces can be used as new tools to understand the

most complex problems.
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1 Introduction

In real world, complexity generally arises from
uncertainty represented the form of ambiguity. Thus, we
always have various complicated problems in areas, such
as economics, engineering, medical science,
environmental science, sociology, business management
and many other fields. We cannot successfully use
classical mathematical methods to overcome difficulties
of uncertainties in those problems. In 1965, Zadeh [1]
extended the set theory when introducing the theory of
fuzzy sets to deal with uncertainty. Just as a crisp set on a
universal set X is defined by its characteristic function
from X to {0,1}, a fuzzy set on a domain X is defined by
its membership (characteristic) function from X to [0, 1].
In 1999, Molodtsov [2] introduced an extension of the
set theory namely soft set theory to overcome
uncertainties and solve complicated problems which
cannot be handled using classical methods in many areas
such as Riemann integration, environmental science,
decision making, physics, engineering, computer science,
medicine, economics and many other fields. The soft set
is a mathematical tool for modeling uncertainty by
associating a set with a set of parameters, i.e. it is a
parameterized family of subsets of the universal set. After
that, several authors introduced new extended concepts
based on soft sets, gave examples for them and
investigated their properties, including soft point [3], soft
metric spaces [4], soft normed spaces [5], soft inner
product spaces [6] and soft Hilbert spaces [7], etc.

Despite this progress in real life problems and situations,
we still have inexact information on our considered
objects. Hence, to improve those two concepts; fuzzy set
and soft set, Maji et al. [§] combined them together in one
concept denoted as fuzzy soft set. This new concept
widened the soft sets approach from crisp (ordinary)
cases to fuzzy cases which are more general than the
others. In recent years, numerous authors applied this
notion and gave some concepts such as fuzzy soft point
[9], fuzzy soft real number [10], fuzzy soft metric spaces
[11] and fuzzy soft normed spaces [12].

In this paper, we surpass these previous studies by
introducing the fuzzy soft inner product on fuzzy soft
vector spaces, studying its properties and giving fuzzy
soft Hilbert space definition. The rest of the paper is
organized as follows: Section(2) introduces the basic
concepts and definitions for fuzzy set, soft set and fuzzy
soft set. In addition, it presents fuzzy soft metric space,
fuzzy soft normed space and their properties. Section(3)
covers the fuzzy soft inner product spaces and some
related  properties. Furthermore, fuzzy soft
Cauchy-Schwartz inequality, fuzzy soft orthogonality and
fuzzy soft Hilbert space are investigated. Section(4) is
devoted to conclusion and further research.

2 Definitions and Preliminaries

This section lists some notations, definitions and
preliminaries of fuzzy set, soft set and fuzzy soft set
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which shall be needed in the following discussion. In
addition, it presents the fuzzy soft point definition
including our present modification. Furthermore, it
introduces the definitions of fuzzy soft metric space and
fuzzy soft normed space as well as their properties which
have been studied before and can be used in the new
results.

Definition 2.1.(Fuzzy set)[1] Let U be a universal set
(space of points or objects). A fuzzy set (class) X over U
is a set characterized by a function fx : U — [0, 1]. fx is
called the membership, characteristic or indicator
function of the fuzzy set X and the value fx (u) is called
the grade of membership of u € U in X.

Definition 2.2.(Soft set)([2],[13]) Let U be a universal
set, E be a set of parameters and A C E. The power set of
U is defined by P(U) = 2Y. A pair (F,A) is called a soft
set over U and is defined as a set of ordered pairs
Fy = {(e,Fale)) : e € E,Fp(e) € P(U)}, where F is a
mapping given by F : A — P(U). A is called the support
of F4 and we have Fy(e) # ¢ forall e € A and Fy(e) = ¢
for all e ¢ A. In other words, a soft set (F,A) over U is a
parameterized family of the set U, denoted by U. Clearly,
a soft set is not a set.

Definition 2.3.(Fuzzy soft set)[8] Let U be a universal set,
E be a set of parameters and A C E. A pair (G,A) is called
a fuzzy soft set over U, where G is a mapping given by
G:A— Z(U), Z(U) is the family of all fuzzy subsets of
U (the power set of fuzzy sets on U) and the fuzzy subset
of U is defined as a map f from U to [0, 1].

Definition 2.4.(Absolute or complete fuzzy soft set)[8]
A fuzzy soft set (G,A) over a universal set U is said to be
an absolute (or complete) fuzzy soft set, denoted by Cy, if
JGua) = 1foralla €A

Definition 2.5.(Null fuzzy soft set)[8] A fuzzy soft set
(G,A) over a universal set U is said to be a null fuzzy soft

set, denoted by @, if for all a € A, we have JGua) =0.

Definition 2.6.(Fuzzy soft containment)[8] Let (G,A)
and (H,B) be two fuzzy soft sets over a common
universal set U. (G,A) is said to be a fuzzy soft subset of
(H,B) if AC B, and G(a) C H(a) for all a € A. We write

(G,A)C(H,B). In this case, (H,B) is said to be a fuzzy
soft superset of (G,A), denoted by (H,B)2(G,A).

Definition 2.7.(Equality of two fuzzy soft sets)[8] Two
fuzzy soft sets (G,A) and (H,B) over a common universal
set U are said to be fuzzy soft equal, denoted by
(G,A)=(H,B), if they are fuzzy soft subsets of each
other, i.e. (G,A) is a fuzzy soft subset of (H,B) and
(H,B) is a fuzzy soft subset of (G,A).

Definition 2.8.(The complement of a fuzzy soft set)[§]
The complement of a fuzzy soft set (G,A) is defined by
(G,A)¢ = (G°,A), where G© : A — Z(U) is a mapping
given by ch(a) =1—fg() foralla € A.

It should be noted that 1 — fg(,) denotes the fuzzy
complement of fg ).

Definition 2.9.(Union of two fuzzy soft sets)[8] The
union of two fuzzy soft sets (G,A) and (H,B) over a
common universal set U is a fuzzy soft set (S,C), written
as (S,C) = (G,A)U(H,B), where C = AUB and for all
ceC,

fG(C)(u), ifceA—-ByueU
fsiy(w) = fue)), if cEB—Auel
max[fge) (), fr(e) (W), if c€EANB,ueU.
Definition 2.10.(Intersection of two fuzzy soft sets)[8]
The intersection of two fuzzy soft sets (G,A) and (H,B)
over a common universal set U is a fuzzy soft set (S,C),
written as (S,C) = (G,A)N(H,B), where C = AUB and
forallc € C,

feo)(u), if cEA—BueclU
fr@e)(u), if ce B—=AucU
min[fg() (), fre) ()], if cEANBu € U.

To discuss efficiently, we consider only all fuzzy soft

sets (G,A) over a universal set U in which all the
parameter sets A are the same. The family of all these
fuzzy soft sets is denoted by FSS(U)s = FSS(U). The
following definition and its consequent related definitions
take their present formula according to our modification
as follows:
Definition 2.11.(Fuzzy soft point)([9],[11]) The fuzzy
soft set (G,A) € FSS(U) is called a fuzzy soft point over
U, denoted by (u fote) ,A) (briefly denoted by & fore)» if for
the element e € A and u € U,

fsey(u) =

(u) = a,ifu=uycUande=ey €A,
Jote)(u) = 0,ifueU—{uptorecA—{ey}’

where a € (0, 1] is the value of the characteristic function
(membership degree). The fuzzy soft point can be
considered the quadruple (ug, o, G, @).

Definition 2.12.(The complement of a fuzzy soft
point)[14] The fuzzy soft point i feCie) is called the fuzzy

soft complement of a fuzzy soft point i o) denoted by
(fg )€, if for the element e € A and u € U,

_ 17fG(e)(u)7 ifu=uycUande=ey €A,
fGC(e)(”)* 0,ifueU—{up}orecA—{ep}.

Definition 2.13.[9] The fuzzy soft point ﬁf(;(g) is said to
be in the fuzzy soft set (H,A) (belongs to it), denoted by
iifq E(H,A), if for the element e € A, we have G(e) C
H(e).

Definition 2.14.(Equal fuzzy soft points)([11],[15]) Two

fuzzy soft points (uj, ~ ,A) and (uj, ,A) over a
Gley) Glez)

common universal set U are said to be equal fuzzy soft

points if u' =u?, e; = e, and f1=fa.

Definition 2.15.(Different fuzzy soft points)([11],[15])

Two fuzzy soft points (uy  ,A) and (u7, ,A) overa
'Ger) %Gle)
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common universal set U are said to be different fuzzy soft
points if u' # u?, e; # e> or fi # f>.

The collection of all fuzzy soft points over U is
denoted by FSP(U)4 = FSP(U).
Proposition 2.1.[11] Let (G,A) be a fuzzy soft set over a
universal set U. Then (G, A) can be expressed as a union of
all its fuzzy soft points (belonging to it). Conversely, any
set of fuzzy soft points can be considered as a fuzzy soft
set, 1.e., G4 = i U ) ﬂfG(a)'

0 EFSP(O0)

Definition 2.16.(Fuzzy soft real set)([10],[15]) Let R be
the set of all real numbers, E be a set of parameters,
A CE and .ZB®) be the collection of all non-empty
fuzzy bounded subsets of R. A pair (R,A) is called a
fuzzy soft real set over R and is defined as a set of
ordered pairs 94 = {(e,R4(e)) : e € A, My (e) € FER)},
where 9% is a mapping given by % : A — ZBR) A is
called the support of $Ry.
Definition 2.17.(Fuzzy soft real number)([10],[15]) The
fuzzy soft real set (|R,A) is called a fuzzy soft real
number in R, denoted by (r,A) (briefly denoted by 7), if it
is a singleton fuzzy soft real set. R(A) denotes the set of
all fuzzy soft real numbers and R™(A) denotes the set of
all non-negative fuzzy soft real numbers.

Definition 2.18.(Fuzzy soft complex set)[16] Let C be
the set of all complex numbers, E be a set of parameters,
A CE and .ZB© be the collection of all non-empty
fuzzy bounded subsets of C. A pair (€,A) is called a
fuzzy soft complex set over C and is defined as a set of
ordered pairs €4 = {(e,Ca(e)) : e € A,Cx(e) € FEO},
where € is a mapping givenby € : A — FBO)_ Ais called
the support of €4.

Definition 2.19.(Fuzzy soft complex number)[16] The
fuzzy soft complex set (€,A) is called a fuzzy soft
complex number in C, denoted by (c¢,A) (briefly denoted
by &), if it is a singleton fuzzy soft complex set. C(A)
denotes the set of all fuzzy soft complex numbers.

Definition 2.20. (Fuzzy soft metric space)[l 1] A fuzzy
soft metric space (U,d) is a fuzzy soft set U with a fuzzy

Let U be a vector space over a field K (K = R) and the
parameter set E be the set of all real numbers R and A C E.
Definition 2.21.(Fuzzy soft vector)([12],[17]) The fuzzy
soft set (G,A) € FSS(U) is called a fuzzy soft vector over
U, denoted by (v fote) ,A) (briefly denoted by v fo(e)» if there
is exactly one e € A such that f(,)(v) = o for some v € U
and fg(1y(v) =0forall ¢’ € A—{e} (a € (0, 1] is the value
of the membership degree).

The set of all fuzzy soft vectors over U is denoted by
FSV(U)s =FSV(0).

Proposition 2.2.([12],[17]) The set FSV (U ) is a fuzzy soft
vector (fuzzy soft linear) space according to the following
two operations:

1.9} + 2 = m ' - , for all
NG(ey) P26(ey) (~ )(flG(el)+sz(ez))
vl vk EFSV(D).

flG(e ) sz(e )
1 2
2.5 Vfg = (W) 5> for all vy, EFSV(U 7) and for all

Definition 2.22.(Fuzzy soft normed space)([12],[17]) Let
F SV( 7) be a fuzzy soft vector space. Then, a mapping

|| II: FSV( )H]R*( ) is said to be a fuzzy soft norm on

FSV(U)if H || satisfies the following conditions:

e~

(FSN/]-)H\_EJ(G@ |50, for all Vot EFSV(U), and
”ﬁfG(e) |I=0 < ﬁfk;(e)ie.

(FSND)|[7- 9y, (=795, I, for all bp, EFSV(U) and
for all fuzzy soft scalar 7.

(FSN3)| |}
~1 ~2 7
Ve ,V GFSV U).
flG(el) sz(e2) ( )

—~

<yl
IS

—~—

: +vf2 I+ ||\7j2[ 2)H, for all

The fuzzy soft vector space FSV(U) with a fuzzy soft
norm || -|| is said to be a fuzzy soft normed linear space
and is denoted by (U, || - ||).

Definition 2.23.(Fuzzy soft convergence)[15] A
sequence of fuzzy soft vectors {¥} } in a fuzzy soft
nG(en)

soft real-valued function d : FSP(U) x FSP(U) — R+(A) ~ nhormed space (U, - |I) is said to be fuzzy soft convergent
satisfying the fuzzy soft metric conditions as the and converges to \75} , if lim || " — || =0,
following: %6(ey) n—eo /_’E(; 06(eq)
(FSMl)J(ﬁ}. f% )30, for all e V&30, 3ng € N such that ||\7” ) fUG( ) |I<é&,
16(e))” 126(ey)” Glen 0 '
~1 > 7 Vn > ng. It is denoted by hmv 7170 , or, briefly,
uflc(el) ’Mf2o(e2) EFSPU). > I1G(en fOG(t’o)
70l 72 =0 « il =2 Vv i .
and d(ii; o ),ufzaq) )=0 uf‘c(m fusz(Lz) rGleny n—so0 F0G(¢,)
(FSM2)d (it} ) )=d(i2 1 ), for all Definition 2.24.(Fuzzy soft Cauchy sequence)[15] A
gy Pt 260 gy sequence of fuzzy soft vectors {#;  } in a fuzzy soft
iy iz, EFSP(D). o Glen)
oley TGl) o ~3 normed space (U, || -||) is said to be a fuzzy soft Cauchy
(FSMS)d(Mflael) U » )Sd(uflcm) Bty + sequence, if VE>0,3ng €
d(i’ 2 ), N such that |7 -V <& Vn,m > no,n > m,
Bgey)” P2g(ep) "Glen)  I"G(em)
for all ! ~2 7 EFSP(U i P —
uflG(e] usz(ez) Mf3c<e3) (U) that is to say that ||V on e, ||nﬁ>m0
®© 2020 NSP
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Proposition 2.3.[15] Every fuzzy soft convergent
sequence is a fuzzy soft Cauchy sequence.

Definition 2.25.(Fuzzy soft completeness)[15] A fuzzy

soft normed space (U, ||-||) is called fuzzy soft complete
if every fuzzy soft Cauchy sequence is fuzzy soft
convergent sequence in it.

Definition 2.26.(Fuzzy soft Banach space)[15] Every
fuzzy soft complete fuzzy soft normed linear space is
called a fuzzy soft Banach space.

Theorem 2.1.[15] Every fuzzy soft normed linear space
is a fuzzy soft metric space with the fuzzy soft metric

Il, for all

. R =||pL —2
(flc< Page >) | NGy 6y

=1 b %
vf]G(e vsz( , EFSV(U).

3 Main Results

This section introduces the concept of fuzzy soft inner
product on fuzzy soft linear spaces as well as some
properties and examples of fuzzy soft inner product
spaces. In addition, fuzzy soft Cauchy-Schwartz
inequality and more results are established. Moreover,
fuzzy soft polarization identity, fuzzy soft parallelogram
law and fuzzy soft continuity property are investigated.
Furthermore, fuzzy soft orthogonality is defined. Finally,
fuzzy soft Hilbert space is introduced.

Definition 3.1.(Fuzzy soft inner product space) Let
FSV(U) be a fuzzy soft vector space. Then, the mapping

< > : FSV(O) x FSV(U) — C(A) is said to be a
(complex) fuzzy soft inner product on FSV (0) if < -,- >
satisfies the following axioms:

(FSI)< vfGe Vg >20, for all vy, EFSV(U), and
<VfG()7VfG() >= 0<ﬁ>vfG =0.

/—\_/ —

~_ 2 51
(FSI2)< vflc(] Vf2G >=< vfzc(ez)’vflc(e]) >, for all

~1 ~2 o
v ,V EFSV U), where bar denotes the
fig(e))” F2g(ey) ©)

complex conjugate of the fuzzy soft complex number.

—~

(FSI3)< ¢ - v V2 > = &< i V2 >, for
Ngep Poiey) ~ S Mgy Py
all ﬁfl v; EFSV(U) and for all fuzzy soft
Gle Glep)
scalar €.
(FSI4)
~1 ~_ ol =3
<V + 72 ,V >=V ,V > +
flG(e sz(e f3G(€3) flG ey f3G e
=2 3
<v ,V >,
Patey " oty . i
for all vL 7 v EFSV(U).
T6te))” P26(ey)” Figter) @

The fuzzy soft vector space FSV(U) with a fuzzy soft

inner product < -,- > is said to be a complex fuzzy soft
inner product space (shortly, fuzzy soft inner product

space) and is denoted by (U, < -, >).

Remark 3.1. From the above Definition (3), we have the
following:

1.Using the condition (FS12), we get

< Vo) Vo) > =< Vo) Vg - That is to say that

< ﬁfb(e)’ﬁfo(e) > e R(A).
2.Using the two conditions (FSI2) and (FSI3), we have

o1 ) =% 5l 2
<V CcV >=c<V A% >,
NGy 260y NGe)” P26(ey)

3.We have <7y,
V0 EFSV(O).

.6 >=0 and < é,ﬁfG(e) >=0 for all

Theorem 3.1. In fuzzy soft inner product spaces, we have
the following:

e~ e~

) ~_ &l )
1<V f Vf2Ge +vf36(e >—<vflG e )> +
/\g
<l v >,
Jig ) fsc(m
=1 2 -3 > 2
for all vflG(e V. ,vﬁG(e})EFSV(U).
2.<v 4+ b+ >
Bt oy )y
~ _ =l 3 1 4
=<V v >4+ <V v >
Nigle)" Bey) Ngey) Py
+ <3 i >+ < 72 D >
f2G(62)’ f3G<e3 f2G ’ f4G<e4)
for all 7! Y W v4 EFSV(D).
N6 e, ]‘3G<3 fagiey) ) )
3.For fuzzy soft complex scalars @&, i : 1,...,n and ﬁj,
jil,...om,
Bji]
i:zl ¢i) Z ! f]G(L
nom — ——
= api< . i >
; ; i Jigrey” Jiste;)
41f  for  fixed ¥, EFSV(U), we have

—~

<V ﬁgG<a)~>£(~) for all g, EFSV(0).
Then, 17]('(;(6)59.

Proof.

1.Let vf'o \7?26 v%c EFSV(U). Then, using the

axioms (FSIZ) and (FSI4) in Definition (3), we get:

—~

V2 +73 >

v
NGy’ fzc 2 P

=<2 +i3 \7'. >

sz(e ) f3c(e fIG(el)

— —

=<2 Ve >4 <3 ,Ve >

]‘ZG((,2 flG((,l f%G f|G<el)
=<yl V2 >.

>+ <yl .
Ngey)” 260y Ni6er)” Baey)
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2For v, % 5 ¥ EFSV(0), and <A¥3 b > 4+ <Av A >30
i(er)” 2610y Patez)” Tratey) @ Pogiey)” Tiarey) , o) o) T
using the previous item (1) as well as the axiom Therefore, using 1tem (3) in Theorem (3), we get
(FSI4) in Definition (3), we have: < ‘7} ,‘7} N )L< Vf v}z( >
P lG(el/_\_lg(el) 1G(ey) /_\2_%2
1 ) 53 4 5 1 -~
<V +v v v > A< 2 VA > A< 2 2 >>0.
figer) ~ Foey)” Potey)  Tiatey) PGy’ ig + Py Prge) T
| R Hence, the following inequality is obtalned
=<y VY b >
1G(e) 73G(e3) 4Gey)
t<2 B 4w > <pl b s—A<d 2 >
D610)” Boey)  F6ie) N6t Neey) N66e)” T26(ey)
a0 3 g T 2’2 | =2 24
=<7 7 >+ <7y v > — A< 2 Vg >+ AF< P4 b >>0.
Figer)” Sate) Tier)” Ttatey) P26y ey A P26y T21ey)
+ < 92 % >+<i? >,
fag 62)’ fsc(m sz<L2 f4G<L4
3.This is the general case and is obtained using the Then, Take
previous item (2), for arbitrary n and m.
4.Since for fixed §f6(6)~éFSV(U), Vg0 g >= =0 <R >
for all i, EFSV(U). If we take in partlcular 1= : G(L/l'\-EG ) ~12‘2G 26, )
= — T =0 <V v >
Vioe = Ugo) then < Vot Vst >=(. Hence sz<L2 sz )
ﬁf’G(e)ie.

Definition 3.2.(Real fuzzy soft inner product space) If
the mapping </\/> in the above Definition (3) is
replaced by < -,- > : FSV(U) x FSV(U) — R(A), then it
is called a real fuzzy soft inner product space and its
conditions (axioms (FSI1),(FSI3),

(FSI4)) are the same, but the condition (FSI2) is replaced
by

e~

(FSI2(1)):< vf1 ﬁ}z
1 ~2 SG(EE)(j)
v Y eF V(0).
N P26ey)

e~

~_ ~1
>=V v >, for all
P6ey)” 1606y

Theorem 3.2. (Fuzzy soft Cauchy-Schwartz inequality)

Let (U, <> >) be a fuzzy soft inner product space, then
— 2
< V% >
| h Gley sz(L,z) |
<<vb b o ><i? 9
= Jigen” ey 26(e)" 26(ey)
for all v, v EFSV(D).
Tigier)” 26(e)
Proof. If 17]2( =0, we have
26(62
2 - —=
0=[<v, ,6>|<<v, .7 >< 0,0 >=0.
16(ey) fige f 16(ey)
Let 72 70  and let EC(A). We have
P26(ey)
<} iv} gL =4 S>30, Then,
16(ep) %G(ey) " M1Gley) 2G(e)

using item (2) in Theorem (3), we have

e~

~] ~]
<V v >
NGy N6te)

Substituting from (2) in (1), we have

e~ —

< 2 ><pl 02 >
v > — jIG(eI) sz(Q) j]G(L’]) sz(ez)
: s V£ —
NGy Tgeey) R
%G(ez) %6(ey)
< 2 ><pl 2 -
Ngte)) 260, )/va(el) R26(ey)
W2 2 >
sz(fz) szz(fz)
<7} 7 >|
+ ];IG(e]/)\f;G(ez) é()
<y RY >
26(e)) " 6ey) 2
—~ \<\7}-I ,\7}2 >
Then, <l L > _ A6l G n
’ Sigen” fig 2 2 N
, P26tey) ate)
|<vl 2 >|
j]G(gl/)_\jiG(e2) 20
V2 R >
/26(62) /26(62) 2
— |<v}, 2 >|
1 h e
Therefo1re,<\7j‘,l ,\7}1 > Gley) ~ZG(ez) 0.
Gley) Gleq) <vf26(62) ,vaG(ez) >
2
|<7! 2 >| o
Hence Dot Dot <l 7l >
Lt B > T e
, 2G6(ey) %6(en)
That is to say that
/—\_/ 2
| < ¥l V2 > |
N6e)” T26(ey) )

A}

1 ") 2
< Vv >V Vv >.
N6 ey P60)” F26(ey)
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Corollary 3.1. If \7} and ﬁj% are fuzzy soft linearly
1G(ey) 26(ey)

dependent, then

e~ 2

~2
<yl ,V >
| flG f2G(e2) |

—_~— —_—

~_ ol 1 ") 2
=<V v >V \% >
NG ) P20y P60y T

0% EFSV(D).

for all L. v
Sige ) sz(e2)

Proof. Since \7} and vf are fuzzy soft linearly
lG(e|) G(e
dependent, then 17]1(- =av ~; . Thus, using this, we
1G(ey) %Gley)
have:
) :
<V ' >
| Tig(er)” P26(ey) |
T 2
=l <ai? b > |
sz( ) sz(t’z)
= o T = 2
=<V v >
| f2G(e ’ f2G(e2) |
PR T, e S 2
=7 |<V % >
el L |
A2 2 )
=|0|"<V v >V v >
@ Pog(ep)” P2a1ey) Pog(ep)” P2a1ey)
- o T = o T o
= v av >y v >
sz(ez)’ sz(ez) sz(ez)’ f2G<e )
i > T 2
=<V v >V VL >
fIG(el) ’ fIG(el) sz(e2) ’ sz(e2)

Theorem 3.3. A fuzzy soft inner product space

U ,</,\/>) can be considered as a fuzzy soft normed
space with the fuzzy soft norm

HﬁfG(e) =4/ < ﬁfG(e)’ﬁfG(e) >, for all ﬁfG(e)éFSV(U).

Proof. We have to prove the conditions of the fuzzy soft
normed space stated in the Definition (2) as follows:
(FSN1) and (FSN2) are trivial.

(FSN3)For all ﬁ}lc vj2£2G EFSV(U), we get:

— 2
~1 =2
Jr
||VflG(el) Vf2G<e2) I

e~

~ ~1 ~]
—<vf]G(e +v vfIG(e +v >

fzc sz

(e2)

e~ o~

~1
Ve >4 < 7l
flG(L f]G(L,l
—
Ve >+ < 72
PGy N6t

=<yl . >
flG(Ll sz(e2)

e~

+ < 2 >

P2ey)” P2g(ey)

~iel o 2

=||v | +<7v v >
N6y N6e))” T26(ey)

— 2

>+ |92
+ IIVfZG(Q) |

—_~—

———

+< L V2
fIG(el)’ sz(e2)

/—\_/ 2

I,

—~

+2Re(< v, iR
” ( flG(eI) fag

;T/

=V

”fl (e)
/-\_/2

> 7 )
1%,

e~

=Mvh,,, || FAST T

e~

Then, using Theorem (3) (fuzzy soft Cauchy-Schwartz
inequality), we obtain:

— 2~ 2
vaIG( +sz6 | SHV}IG(I)H +2||Vfl HHVf2 ||
— 2
+va26(e2)H
el 2 2
(valc(e])H+va26(ez)H) :

Then ||l +7 7 + _
I%he + T, IEIT5 I3, |

Remark 3.2. The fuzzy soft Cauchy-Schwartz inequality
(3) can be rewritten using the above Theorem (3) as

follows | < L 92 > <9 v .
<P B, >R,
Proof. Using Theorem (3), we have.
. 2
< VflG<el) 7VflG< 7||Vf1 H )
and
L, 2
<Vf2G<e2)’Vf2G ||Vf2 )H ’ ©)

Then, substituting from (4) and (5) in (3), we obtain
2 2
Il . This
)

< B >R

h Gley sz(ez)
completes the proof.

|| 1%,

Remark 3.3. Since any fuzzy soft inner product space is a
fuzzy soft normed space from Theorem (3) and any fuzzy
soft normed space is fuzzy soft metric space from Theorem
(2), then any fuzzy soft inner product space is a fuzzy soft

© 2020 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 4, 709-720 (2020) / www.naturalspublishing.com/Journals.asp

metric space with

d(vt w2 = -
( NGy’ sz(ez)) I flG(e]) sz(ez)”
- B
=,/ <V v >
\/ flG(L’]), sz(t’z) ’
for all ! v EFSV(0).
NG P26ey) )

Example 3.1. The following spaces are examples of fuzzy
soft inner product spaces:

1.C"(A): the fuzzy soft complex Euclidean space (the
space of all fuzzy soft n—dimensional complex
numbers) is a complex fuzzy soft inner product space
with the complex fuzzy soft inner product defined as

follows < ¥yl >=Xib ﬂﬁc( )ut » , for all
ﬁfG(e)7ﬁgG(a) eCr(A).

2.R"(A): the fuzzy soft real Euclidean space (the space
of all fuzzy soft n—dimensional real numbers) is a
real fuzzy soft inner product space with the real fuzzy

soft  inner product deﬁned as  follows
<V Ugga) = =Y f’G( for all

g'G(ai)
Ve U6 ER"(A).

3.65(A): the space of all fuzzy soft square-summable
sequences is a complex fuzzy soft inner product space
with the complex fuzzy soft inner product defined as
follows

s T vy s m
< Vg0 U260 >=3y Vfic( )ugiG(ai) , for all

ﬁfb(e)”’zgc(a) El(A).
4.6 1) (A): the space of all fuzzy soft complex-valued

continuous functions on [0, T] is a complex fuzzy soft
inner product space with the complex fuzzy soft inner
product defined as follows

& £ ~ ol i NEi o g
< nfb(e)végc;(a) >=[_5 77};6(@.) (x)éf’l"c(a.) (%)dx, for all
ﬁfG(e) ) égG(a) € (@ﬂ[(),l] (A).

Proof. For (1), (3) and (4), the proof is straightforward
by applying the conditions of the complex fuzzy soft inner
product space stated in Definition (3). For (2), the proof
is straightforward by applying the conditions of the real
fuzzy soft inner product space stated in Definition (3).

Theorem 3.4. Let (U, < -,- >
product space and let

~1 &2 > g

VflG(€|) ,vf2G<62) EFSV(U). Then,

>) be a real fuzzy soft inner

<ok R >
vf]G(tl sz(tz)
S L, ®
=~ _(|lsL _ Il 2
a_(”vj, ( +Vf2 H ij,G sz( 1),
I ) > 4
for all vflc(q) ,vsz(ez) EFSV(U)

Proof. Using Theorem (3) and applying the properties
stated in Theorem (3), we obtain:

— 2

o1 )
+
va‘cm) Faster) |

e~

~_ =l Sl
=<7V, + 72 Ve + 2 >
fIG(e sz(e f|G<e sz ()

e~ e~

= ﬁ},lc(el) ’ﬁ}"cm) >+ < ﬁ}"cwl)’ Patey) >
+< vfzcu 17Jl"lcm sts vf 2G(ey) ?2602) g
= ﬁ},lc(el) ’ﬁ}"ae.) >+ < ﬁ}.lc(e ,sz%) >
+ <! /\17/2 >+ <7 /\3 =

N6 P26(ey) F26(ey) V1 2G(ey)

Since (U, < -,- >) is a real fuzzy soft inner product space,
then (FSI2(i)) in Definition (3) is satisfied, i.e.

for all

SR
<V v
N6te)” T26(ey)
\7}16 ),\7]2[26 EFSV(U). Using this condition, we have:
1

~ ~1 ~
=<7 7
flG(e ) sz(e

— 2

~1 ~
v, +v%
Nige)) — P26(ey)
=_ol Sl 5 )
=<V v >42< vl > (7
flG(L’l) ’ flG(e| flG(Ll) sz(tz)
+ < 2 2 >
T, ) f2G(62) )

and similarly, we get:

— 2

Hﬁ]lc]G(m o 17%26@2) I

=< vflG(L] ‘7;'26@2) ) 7’.6(6” - ‘7?26(32) >

=< ‘7]1‘16@ ~]1‘16(” >t< vf'G ) ~;ZG(L2) - 8)
<= sz(L ﬁ}‘ce s szu 7 ~%26<L2> ~

=< ﬁfl‘lcw ’ﬁ}‘cw 2 ﬁfl“cxe.)’ Pogteyy

+ < 2 e \7]%2%2) >.

Subtracting (8) from (7), we have:
1 2 : T 2 :
[ o A e e
f]G(fl) sz ) fIG(0|) sz(t’z) )
=4< ! —2 >.
figen)” 2610y

Dividing both sides of Equation (9) by 4 gives us

~1 =2 52
Ve Pty >21(117 heen T gty ||
— 2

”‘711‘1 — vj%2 H ), which is the required formula (6).
Gley)
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Theorem 3.5.(Fuzzy soft polarization identity) Let

0, < >) be a complex fuzzy soft inner product space.

Then, we can write the fuzzy soft polarization identity in

the following formula, forall 7, 7% EFSV(D):
Gley) Glez)

1 >

< >

Vflc(el Vf2G( )

7 - - 2
L N T

4 flG< f2< ) flG< ) f2

~ — 2 — 2
+ 17, Jrlvf2 || —il|v}, )fzﬁfz )

Proof. Using the conditions of Definition (3) (fuzzy soft
inner product space), applying the properties which are
stated in Theorem (3) and with the help of Theorem (3),
we obtain:

— 2

51 52
valG(el) +Vf2 )”

~ _ =l ) )
=<V +v v +v >
f16<el) f20(62)7 f16<el) f2G(e2) (11
~_ 4 /\j o /\5
=< vf|G fIG >+<vf|G sz ) >
+<92 L >4+ <V 2 >
Pogey)” M1y Gle)” T26tey)
and
| /—\_/2 2
L
| figey) P60y |
o1 o T )
=<V -V v fv >
Sig( P6y)” ey f2
e e e T (12)
i<\7} ,\7} >7<\7} ,\7]% >
1G(e, 1G(e)) 1Gle)) " 726(ep)
] —
— <V Ve > +< 72 Ve >.
f26<62) "N sz sz<ez)
In addition, we have:
1 2
|7t + 2 I
fIG<el) fz Gley)
=< I ﬁ}. + v >
16(e)) 2G(ey 16( 2G(ey)
/\ﬁ —
=<l . >4 <7l A >
f]G(Ll f]G(fl f]G(tl sz(ez)
+ < i2 % 17}.] >+ < 2\7}2 R ?.2 >
e T ol ey
~_ 5l s1 75l 2
=<V v >4 i< v %
fle)’ flG(L, Jig el), sz<L, )
+i< V2 ! >+ <2 V2 >
P2ge)” N6y P2gey)" 2600y
=< \7} ,\7} >—i< \7} ,\7]2( >
1G(ey) " 71G(ey) (1) 72Gler)
+i<V vl >+ <2 V2 >
sz(fz) , flG(fl) sz(fz) , sz(fz) ’

(14)

where i = —1.
Subtracting (12) from (11), we get:

—~— 2
S
(15)

e~

5_ 2 =l
>+2<vf26(e vflc >.

2 — 2
1 29 ~1 ™)
Jr — —
||VflG(e Y | valG(el) Wf2G<e2) |
> +2i< V2, —vl >.
sz(fz)’ f]G(fl)

(16)

= _Ji< L —2
’ sz(fz)

Then, multiplying both sides of Equation (16) by 7, we get:

P 2 —— 2
%51 7 )
vy, g, || =9y, |
Ni6e)) 126(ey) N6ey) L2610y (17
=3< ! —2 >—2< 2 — >.
f]G(Ll sz(ez) sz(tz) f]G(fl )

Therefore, adding (15) and (17), we obtain:

—~ /—\_/ 2
~1 ~2
HVf]G(e])"'sz< )H _H j,G sz< )”

2
7 ,..] <, 7 ,.,l ':',.,2
+lefIG o +iv f H 7l||vflG(el) flvf2G<e2)|| (18)

=4< ! v >.
N6 T26
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Hence, dividing both sides of Equation (18) by 4 we have:

T — 2 —_— 2
~ ~1 ~2 =1 =2
==([|v + Vi — Vs
7l Tt Fooen | ~ i = Tige, |
— — 2
':',..2 ':',.,2
+il[vy  +ivy leflG(e]) — 1, Il ),

which is the required formula (10).

Theorem 3.6.(Fuzzy soft parallelogram law) Let

(U < >) be a fuzzy soft inner product space and let
f'G v?zc o EFSV(U). Then, the fuzzy soft
parallelogram law holds as follows:
L T — 2
||Vfl ) JrVf2 H Jr||Vfl ) 7Vf2c(e2)H
. . (19)
=2(|Iv}, H +15% )

Proof. Using Theorem (3) and applying the properties
stated in Theorem (3), we obtain:

2
vaIG sz 2)H
~ =1 /\j
=< vfIG(e —l—vsz vfle +77 sz ) >
- 4
=<V, . >4 <7l 3 >
S’ f|G<e|) f]Gm sz(L,z) 20)
+ < 2 v >+ < 2 P >
sz< ) flG<L,]) T, ) f2G(e2)
e S g 2
S N Y N -
flG(el) fzc(ez) f|G( 1)’ sz<e2)
<V ]‘26(‘Z f]G(EI) )
and
1 /\/2 :
Ve %
¥ =P
~_ sl _» T )
oy " oty ey oy
o /\j —
=<V, Ve >—<< vl >
S’ flG f]GL ’ szL
v e @1
—<vz v >+ < >

sz(tz f]G(tl sz (e2) ’ sz(ez)

— 2

B ~1
=5 I T, I <

e~

—~— —~—

~2
v >
) f26<e2)

~1
—< 72 ,V >.
sz (e3) f16<el)

Then, adding (20) and (21), we get:

— 2
~1 =2 ~1 =2
valc<e1>+vf2< >” +”vflc " hot ”
/—\_/ 2

|| +7E ),
Glep)

which is the requlred formula (19).

—_—

ii(HV}1

Example 3.2. As a special case of the above-mentioned
Theorem 3) (Fuzzy soft parallelogram law), if we take

”Vfl H = vazG(ez) =1, then we have
+ 77 +9, =7 =4.
”VflG Vf2G(€2) H valc(q) szc(@ H

Theorem 3.7.(Fuzzy soft continuity property) Let

(U, < >) be a fuzzy soft inner product space. Suppose

that llmv =p0 and lim i” =0 . Then
n—so0 f"G(en) fOG(e N—so0 g"G(a,,) gOG(aO)

e~
—~—

lim < ¥ i >=< i i
oo InGen) 81G(an) Jo6e0) " 8%1(ay)

say that the fuzzy soft inner product is a fuzzy soft
continuous function from FSV(U) x FSV(U) to C(A).

Proof. We have V&3>0, Ing € N such that Yn > ny,

—~—

>. That is to

<7 fnc( ’ﬁg"cmn) = ~(;"Gw ﬁgOGWo) >l
=l<v fno</3g’c<a,l> o ?"G(L ﬁg"G<“'l>
+< \75)[06(%),/\1/%,6(“") T ﬁ?‘%@/)’\ﬁ/g’“aao) >
<I< ﬁ;l‘nc;’\ﬁ/g”cmn) s ﬁ%’aﬁ’%") g
+|<va0< ’ug"a SR ‘7(}"6(60)’ #0G(ag) >l
=|< anG - \7%)6(%) ’ﬁg’"aan)

+I< ﬁ%’G(eo) ’ﬁg"man) B ﬁg"G(ao) >l

Then, using Theorem (3) (fuzzy soft Cauchy-Schwartz
inequality), we obtain:

—_—

< i — <9 i >
| Tngen)’ g"G(a) Fo600) " 806 (ag) |
éll% fvfo HH B | (22)
10 . 70

||vaG<e)|\|\ugnG<a) . N

We have hmHu" H = H || from the given that

lim &" £~0 and s1nce
n—so0 81G(ap) gOG(aO)

convergent sequence is

every fuzzy soft
fuzzy soft bounded, then

|| || is fuzzy soft bounded, i.e.
""G(an)

H <ki. (23)
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Since lim 7" , then V&, 30, 3n; € N such that

=V
n—oo f"G(en) fOG(eO)

/-\_/

[ vf H<81, Vi > i, (24)
Glen)
and since hm i =9 , then V&, 30, 3n, € N such
81G(an)  89G(aq)
that
|| g”G gOG H<82, Vn > np. (25)

Take ny = max(n ,nz), and

70 =k,. 26
va"c(eo)H 2 (26)

Therefore, substituting from (23),(24),(25) and (26) in
(22), we get:

—~

~0 70
—<V N7)
fog( gO(,(

—~

<V i >|<8 k) + ko By =8
| Froteny Bergian |<& k1 + k&

That is to say that, V&3>0, 3ng = max(n;,n,) € N such that

—~—
—~—

<V i — < il >|<8, Vn > no.
| f"G(en) ’ g"G(an) fOG(LO) ’ gOG(a()) |
Hence,
lim < /7 >=< i i0 >,
n—oo  InGey) "8G an) fogee o) 8%iag)

Deﬁnltlon
(U ST
%
vf 16(ey) vsz<
2

soft orthogonal to V% , written 17]1(- J_”; if
2G(ey) 16ey) 26ler)”

3.3.(Fuzzy soft orthogonality) Let

>) be a fuzzy soft 1nner product space and

EFSV(U). Then, v Vfl is said to be fuzzy
Gley)

~1 2 ~ A
<V v >=(.
flG(el) ’ f2G(e2)

Remark 3.4.

1.1t is clear that if 7L I , then 72 I
f sz( F2g o)

Gley) NG

2.We have ﬁfo@lé» for all ﬁfG(e)éFSV(U), since

6 >=0.
3.Since < ﬁfo:)’\/

< ﬁfG(e)’
Vfy >=0if and only if ¥y, =6, then

6 is the only fuzzy soft element (point) fuzzy soft
orthogonal to itself.

Theorem 3.8. Let (U,<-,- >
product space and let B
v, EFSV(U).Ifw)  Iv%  then

) be a fuzzy soft inner

f]G(Ll fZG(Lz Y Gleq) f G(ep)
2 s S

||Vflo<e JrVf2 H :”Vflo(el) I+ ”Vf2o<e2) . @7

Proof. Since 17}- J.ﬁ; , then \7} lﬁ} .
1G(ey) 2G(ey) 2G(ey) 16(ep)

Therefore o

~1 ) ~_ 2 ~1 ~ :
<V v >=V v >=0. Usin

N66e)” T26(ey) P26y NG g

Theorem (3) and applying the properties stated in
Theorem (3), we get:

— 2

..,1 ~
Ve V%
I foen T ooy I
1 T )
=<V + 72 Ve +v >
flG(L sz<L fig sz(Lz)
Mt s
=<7 Ve >+ < vy Ve >
Figiey)” igter) Tiger)” T2a1ey)
+ < 2 vl >4 < 2 V2 >
fog 02)7 flG(e|) sz(tz ’ sz(tz)
—el o
=||V, + VL .
I I+ 15
Hence the Equation (27) holds.
Corollary 3.2. If v} L ? and
—_—~— /—\_/ 2G 2)
pl =||372 =1, then — 72 =V3.
17 0% LN
) 2o T/ ?
Proof. ||V 1% =||V + ||V
1% T, | =0 I,

=1+1=2.
Deﬁnition 3.4.(Fuzzy soft orthogonal complement) Let
0, < >) be a fuzzy soft inner product space. Let @ be

anon- empty fuzzy soft subset of FSV(U). The fuzzy soft
set of all fuzzy soft elements (fuzzy soft points) 7 Fig of

Gler)
FSV(U) which are fuzzy soft orthogonal to @ is denoted
by @, and is called the fuzzy soft orthogonal complement
of @. That is to say that

~1~ el = 7y sl T2 2 = ~
@ 7{vflc(e1)€FSV(U) : vflc(el 1y ,vazG(ez)Ea)}.

Theorem 3.9. For fuzzy soft orthogonal complement, we
have the following properties:

1{6}"=0 and G- ={6}.
2.0N®-={6}.

3w“~(b

41f @ C @, then @5-C @

Proof.
1.Clear from the above Definition (3). i
2. Let 17}- E®N®™, then ‘7}1 ea) and vf Ed*.
(

Gleq) LG(ey)
Therefore, from the above Deﬁmtlon (3), we have

—~—

< \7}1 ,\7%2 >=0 va €@. Since 17}1 Ea,
Gley) G(ep)

26G(ey) Gleq)
then
~1 ~1 =0 ~1 ~0 :
<V v >=(0. Hence 7V} =06. This
figrep)” ey Nge))
completes the proof.
~1 ~~11
3. Vr, ED =
]G(L]
<! v >=0, Vv col o v, &0
flG< fog ) 26(ey) 16(e;)
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4.Let @ C@,. Then, we get:

o1 =1 4 2
g, E@2 & <

v >=0, Vi
e1) ) 260y '

3 =0
sz(t’z) @2

~ ~ ) ~ ~
<:><ij1 ,vj% >=0,7v;, €@y

Definition 3.5. Let (U,<-,->) be a fuzzy soft inner

product space. Let @; and @, be two non-empty fuzzy

soft subsets of FSV(U). We say that @, and @ are fuzzy

soft orthogonal, written @;_L@,, if every \7}16< )é(bl and
€l

every 7 €@, are fuzzy soft orthogonal.
f2G(02)

It should be noted that if @ L, then @ L @;.

Definition 3.6.(Fuzzy soft Hilbert space) Let
(U,< -,->) be a fuzzy soft inner product space. Then,
this space, which is fuzzy soft complete in the induced
fuzzy soft norm stated in Theorem (3), is called a fuzzy

soft Hilbert space, denoted by (H,< -,- >) (shortly H). It
is clear that every fuzzy soft Hilbert space is a fuzzy soft
Banach space.

4 Conclusion and Further Research

Introducing the fuzzy version or the soft version of topics
like metric spaces, normed spaces, Banach spaces,
operators, dual spaces, functionals, inner product spaces,
Hilbert spaces, operators on Hilbert spaces and many
other topics has been investigated by several
mathematicians. On the other hand, combining fuzzy and
soft sets together is not only more general than using only
one of them but also gives us more extended and accurate
results. Few researchers have explored some of those
general extensions concepts such as fuzzy soft normed
spaces and fuzzy soft metric spaces. Continuing their
work, we have defined fuzzy soft inner product on fuzzy
soft linear spaces using the concept of fuzzy soft point.
Moreover, some related properties of fuzzy soft inner
product spaces have been introduced. Furthermore, some
examples of fuzzy soft inner product spaces have been
investigated. To make the picture complete, we have
established fuzzy soft Cauchy-Schwartz inequality and
many more related results. Moreover, fuzzy soft
polarization identity, fuzzy soft parallelogram law and
fuzzy soft continuity property have been investigated. In
addition, we have introduced fuzzy soft orthogonality in
fuzzy soft inner product spaces. Finally, fuzzy soft Hilbert
space has been defined. Our work can be considered a
generalization for the well-known (crisp) inner product
spaces. This type of investigations fills some gaps in the
literature. The authors can introduce new results using
similar techniques in this paper. Some properties in fuzzy
soft Hilbert spaces will be addressed in further

investigations depending on the definition of fuzzy soft
Hilbert space given in this paper. Finally, further topics
need to be covered by applying fuzzy soft notion on them.
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