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Abstract: This article presents a two-dimensional finite difference method (FDM) to solve the model of magnetohydrodynamics

(MHD) duct flow of an incompressible fluid in a rectangular duct under the action of an external uniform magnetic field applied

transverse to the flow direction has been investigated. All the sides of the duct are electrically insulated. The coupled momentum and

magnetic induction equations for velocity and induced magnetic field are first transformed into coupled non-dimensional equations by

introducing non-dimensional quantities.
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1 Introduction

Several researchers have recently investigated the
analytical and numerical solutions of some partial
differential equations that describe some physical,
engineering, and other phenomena [1–5]. A study of
Hartmann flow is fundamental to understand of the basic
physical processes that occur in devices, such as the
electromagnetic brake, the magnetohydrodynamic
generator, the electromagnetic pump and the plasma
accelerator [6, 7]. However, these solutions showed
considerable inaccuracies, particularly for large values of
the Hartmann number (applied magnetic field) [8]. The
Hartmann number is the ratio of magnetic to fluid
viscosity. If M = 0, the flow field is the classieal laminar
pipe flow but if M > 1, the flow field is defined primarily
by the E ∗A drift. Jones and Xenophontos [9] have further
revised the Kantorovich method and extended its
applicability by coupling the technique with the finite
element method. They have also explored MHD-duct
flow and the results showed a considerable improvement
in accuracy compared to the previous approaches. The
two-dimensional B-spline specific elements were also
applied within the B-spline specific elements method to
solve the MHD channel flow problem [10]. The suggested
problem was addressed in some papers [11, 12]. In this
work, the two-dimensional finite-difference
technique [13, 14] is proposed and implemented to solve

the MHD-duct flow problem. The results are compared
with the analytical solution of Shercliff [15] and the
numerical solutions of Alexander [8], Jones and
Xenophontos [9], L.R.T. Gardner and G.A. Gardner [10].
The present analysis is close to the analytical solution,
which are consistent with the previous numerical results.
The present paper aims are to use a new numerical
method to discuss the effect of the magnetic field on fluid
flow within a rectangular channel.
The present paper is prepared as: In Section Two, we
handle the analysis of the problem. The application of the
proposed method is presented in Section Three. Section
Four presents some numerical results and some figures. In
Section Five, we provide an explanation of the results.
Section Six, is devoted to conclusion.

2 MHD duct flow

The cross-section of an infinitely long rectangular duct is
oriented with its sides parallel to the x and yaxes and the
origin of coordinates at its center. The duct width is 2a

and the height is 2b, the sides of the duct have equations
x = ±a and y = ±b. A conducting fluid flows in the z

direction along the duct and is subjected to a constant
applied magnetic field M acting in a direction lying in the
xy-plane and making an angle φ with the y-axis. The
equations governing the flow may be expressed in the
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normalized form [9, 16].

∂P

∂ z
= µν∇2∇z +

A0x

µ0

∂Pz

∂x′
+

A0y

µ0

∂Pz

∂y′
, (1)

and the z-component of the curl of Ohm’s law,

∇2Az + ξ µ0(A0x

∂Uz

∂x′
+A0y

∂Uz

∂y′
) = 0, (2)

with the boundary conditions: U = A = 0 at
x′ =±α,y′ =±b,
where ν , µ and ξ are the kinematic viscosity, density and
electric conductivity of the fluid; µ0 is the magnetic
permeability in vacuum; dP/dz is the constant axial
pressure gradient; B0x and B0y are the x′ and y′

components of the applied magnetic field; and Uz and Az

are the z components of velocity and induced magnetic
field, respectively. Following the notation of P. C. Lu [16],
who solved this problem using the Kantorovieh method,
Eqs. (1) and (2) become in non-dimensionalized form,

(
∂ 2

∂x2
+

∂ 2

∂y2
)U +Mx

∂A

∂x
+My

∂A

∂y
=−1, (3)

and

(
∂ 2

∂x2
+

∂ 2

∂y2
)A+Mx

∂U

∂x
+My

∂U

∂y
=−1, (4)

with boundary conditions U = A = 0,x = ±α,y = ±1.
Distance has been scaled to the duct semi-height b, so
x = x′/b, y = y′/b, and α = a/b. The following
normalisations have also been used.

U =
Uz

−b2

νµ
dP
dz

,

A =
Az

−b2

νµ
dP
dz

µ0(νµξ )
1
2

,

Mx = A0x′b
( ξ

νµ

)
1
2 = Msin(φ),

My = A0y′b
( ξ

νµ

) 1
2 = Mcos(φ),

M = Hartmann no.=
(

M2
x +M2

y

)
1
2 = A0b

( ξ

νµ

)
1
2 .

(5)

The Hartmann number is the ratio of magnetic to fluid
viscosity. If M = 0, the flow field is the classieal laminar
pipe flow. If M ≥ 1, the flow field is defined primarily by
the E ×A drift. To uncouple (3) and (4), the functions

H1 =U +A, (6)

and

H2 =U −A, (7)

(
∂ 2

∂x2
+

∂ 2

∂y2
)H1 +Mx

∂H1

∂x
+My

∂H1

∂y
=−1, (8)

and

(
∂ 2

∂x2
+

∂ 2

∂y2
)H2 −Mx

∂H2

∂x
−My

∂H2

∂y
=−1, (9)

with boundary conditions H1 = H2 = 0,x =±α,y =±1.
Thus, if H1 is solved as H1(Mx,My) from (8), then

H2(Mx,My) = H1(−Mx,−My). (10)

Hence, the solution is completely determined when either
H1 or H2, is known. Having determined H1 the function H2

is found from (10) and so the velocity field U from

U =
1

2
(H1 +H2). (11)

3 The two-dimensional finite difference

method

In this section, we take approximations for spaces x and y

derivatives as:

Hx ≃
ci+1, j − ci−1, j

2h
,

Hxx ≃
ci−1, j + ci+1, j − 2ci, j

h2
,

Hy ≃
ci, j+1 − ci, j−1

2k
,

Hyy ≃
ci, j−1 + ci, j+1 − 2ci, j

k2
.

(12)

Now, we assume that H1 and H2 are the exact solution at
the grid point (xi,y j) and ci, j and δi, j are the numerical
solution at the same point. Substituting (12) into (8) and
(9) we get

ci−1, j + ci+1, j − 2ci, j

h2
+Mx

(

ci+1, j − ci−1, j

)

2h

+
ci, j−1 + ci, j+1 − 2ci, j

k2

+My

(

ci, j+1 − ci, j−1

)

2k
+ 1 = 0,

(13)

and

δi−1, j + δi+1, j − 2δi, j

h2
−Mx

(

δi+1, j − δi−1, j

)

2h

+
δi, j−1 + δi, j+1 − 2δi, j

k2

−My

(

δi, j+1 − δi, j−1

)

2k
+ 1 = 0.

(14)

Now, we can solve (13) and (14) using various methods.
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4 Numerical results

In this section, we introduce some numerical results for
the flow in a square duct with an applied magnetic field
parallel to the x−axis so My = 0. To compare with the
previous results [8–10, 15], we give to M the following
values Mx = 0,2,5 and 8. In Table 1 we record the values
of the velocity U at the duct centre with various
numerical algorithms.

Table 1: U at the centre of the duct

Mx Alexan-

der [8]

ones

and

Xenop-

hontos

[9]

Bi-

cubic

B-

spline

[10]

Finite

difference

method

Analytic

[15]

0 0.29824 0.29826 0.294685 0.294107 0.294686

2 0.26320 0.26319 0.258907 0.258625 0.258907

5 0.17430 0.17428 0.171602 0.171475 0.258907

8 0.12014 0.12013 0.118782 0.118652 0.118782

In Table 1, the results of the finite-difference method using a

mesh of 20 × 20 were compared with those of the numerical

Kantorovich technique [8], with those obtained by Jones and

Xenophontos [9] using a finite element iterative adaptation of

the Kantorovich technique, bi-cubic B-spline finite

elements [10] and with the analytical solution of Shercliff [15].

In Figure 1, we show the velocity along the x-axis of a square

duct with the magnetic field parallel to the x-axis, for Hartmann

numbers 0 (top curve), to 8 (bottom curve).

Fig. 1: Velocity profile along the x-axis of a square duct with

the magnetic field parallel to the x-axis, for Hartmann numbers 0

(top curve), to 8 (bottom curve).

In Table 2, some other results are presented where the

period from [-1, 1] to [-0.5, 0.5] changed with different mesh

points. We also compare these results with the analytical

solution of the research [15].

Table 2: U at the centre of the duct. Finite difference and

analytic simulations are compared.

Mx Finite differenc

method using a

mesh of 20×20

Finite

differenc

method using

a mesh of

50×50

Analytic [15]

0 0.073526 0.073648 0.0736711

2 0.071009 0.071109 0.071128

5 0.060795 0.060838 0.060846

8 0.049334 0.049359 0.0493638

In Figure 2, we show the velocity along the x-axis of a square

duct with the magnetic field parallel to the x-axis, for Hartmann

numbers 0 (top curve), to 8 (bottom curve).

Fig. 2: Velocity profile along the x-axis of a square duct with

the magnetic field parallel to the x-axis, for Hartmann numbers 0

(top curve), to 8 (bottom curve).

In Figures 1,2 and 3, the velocity U profiles along the x-

and y-axes of the duct cross-section are given. Results obtained

with the finite difference method are shown as a continuous curve

and compared with the analytic solution [15] shown as dots. The

agreement is very good for all values of the Hartmann number

from 0 to 8. These graphs reveal considerable improvement in

accuracy compared to those reported by Jones and Xenophontos

[9].

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


696 K. R. Raslan, Khalid K. Ali: Numerical study of MHD-duct flow using...

Fig. 3: Velocity profile along the y-axis of a square duct with the

magnetic field parallel to the x-axis, for Hartmann numbers 0 to

8.

5 Physical explanations for the results

For various values of the Hartmann number, the solution for the

velocity profile along the x and y axes is shown in figures 1, 2

and 3. As expected, increasing the magnetic field (increasing the

Hartmann number) has an effect on the velocity of the fluid

where the velocity decreases near the center of the channel. This

apparent effect of the magnetic field intensity is already known.

Accordingly, the results are compatible with the physical

meaning of the effect of the magnetic field

6 Conclusion

We have investigated MHD-duct flow in a rectangular duct

using a two-dimensional finite-difference approach. The

numerical solution obtained for the MHD problem, in terms of

to four decimal places with the analytic solution at a mesh of

50 × 50, exhibits higher accuracy than the other numerical

methods at a mesh of 20×20 in [8, 9]. Our results are consistent

with the results in [10]. It is a very useful addition to the

numerical methods available for the solution of the steady-state

MHD-duct flow equation and other similar equations.
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