
Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) 679

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140416

An Automated Tool for Data Flow Testing of ASP.NET

Web Applications

Islam T. Elgendy1,∗, Moheb R. Girgis2 and Adel A. Sewisy1

1Department of Computer Science, Faculty of Computers and Information, Assiut University, Egypt
2Department of Computer Science, Faculty of Science, Minia University, Egypt

Received: 1 Apr. 2020, Revised: 2 May 2020, Accepted: 22 Jun. 2020

Published online: 1 Jul. 2020

Abstract: The structure of ASP.NET web applications is very different from traditional ones. This paper discusses the adaptation

of data flow testing techniques for such applications. In addition, it describes the data flow analysis of ASP.NET web applications,

presents a proposed model for data flow testing of these applications, and describes the structure of a supporting automated tool.

The tool generates the definition-use pairs for all variables in the application under test, then the application is executed with test

data to cover these pairs, if possible. At the end of each test run, the tool shows the covered and uncovered pairs. The tool’s report is

generated in a highly organized format to improve the readability of the test results, and to reduce the time needed to review them.

The paper also presents a case study to illustrate how the tool works. Finally, the paper presents the results of the experiments,

which have been conducted to evaluate the viability of the data flow testing approach with the presented extensions for ASP.NET

web applications, and the readability of the improved analysis and test report produced by the tool.

Keywords: Software testing, Data Flow Testing, Automated Testing Tool, Web Applications Testing

1 Introduction

Since the creation of the World Wide Web in the early
1990s [1], the use of Web applications (WebApps) has
increased tremendously in our daily lives. WebApps are
being used extensively in business, social,
organizational, and governmental functions. In fact, the
continual availability of WebApps has been one of the
main reasons for their rapid spread among users
without regard to their location or time limitations [2].
However, this demands high reliability of WebApps.
Since inadequate testing poses huge risks including
downtime and loss of users’ trust and convenience, it is
crucially important to ensure the quality, correctness,
and security of WebApps.
Software testing has been widely used in industry as a
quality assurance technique for the various software
development stages. Nevertheless, software testing is
very labor-intensive, time-consuming and expensive;
almost 50% of the cost and 40% of the time of a software
system development is spent on software testing [3,4,
5]. An automated testing approach makes the process of
testing much faster, less-expensive, more reliable, and

increases the quality of the software.
Random testing has shown its effectiveness in
generating test data and covering several structural
targets [6]. Still, through random testing, the chances of
executing test targets, such as all branches and all
variables definition-use associations, at random are
very low. Therefore, to achieve such test targets, more
intelligent techniques are required [7]. Another
important testing issue is to improve the readability of
the test results where testers spend a lot of time
reviewing them, but some important parts might be
missed because the final report involves much data. For
instance, they might consider a test run as a "fail" when
it is actually a "pass", or vice versa.
Meanwhile, webApps can be developed using various
technologies and platforms, such as ASP.NET, PHP, JSP,
etc. The study, presented in this paper, is concerned
with testing WebApps developed using ASP.NET. We
extend data flow testing techniques to WebApps, and
present an approach to ASP.NET WebApps data flow
testing. This study is an extension to the work done by
Girgis et al. [8], where an approach for the construction
of a WebApp data flow model to aid WebApp data flow

∗ Corresponding author e-mail: islam.elgendy@aun.edu.eg

© 2020 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/amis/140416

680 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

analysis was suggested. Our work considers the data
flow analysis of more ASP.NET server controls, and
addresses the issues not considered in [8], such as (i)
handling hyperlinks and the transfer between pages, (ii)
defining the definitions of the used server controls’
properties, (iii) handling the definitions of some of the
unique features in WebApps, like session objects and
query strings, and (iv) improving the readability of the
test results to reduce the reviewing time by ordering and
highlighting the key parts in the report.
The layout of the paper is, as follows: Section two
presents the related work in WebApp testing. Section
three, briefly, describes data flow analysis, and the
related data flow testing criteria. Section four describes
the suggested data flow model for WebApps. Section
five presents a description of the automated testing
tool. Section six presents a case study to illustrate the
application of the automated testing tool. Section seven
presents an empirical evaluation of the proposed data
flow testing approach with the presented extensions for
WebApps and the readability of the analysis and test
report produced by the tool. Finally, Section eight is
devoted for concluding remarks and future research.

2 Related Work

A comprehensive survey of Web testing advances was
presented by Li et al. [5], where they discussed their
goals, targets, techniques employed, inputs/outputs
and stopping criteria. They stated that there are
different testing goals, such as finding faults, ensuring
testing adequacy, etc., and for each goal a different
testing technique might be used to satisfy it. Lakshmi
and Mallika [9] presented a comparative study of some
of the prominent tools, techniques, and models for
WebApp testing. Their work highlights the current
research directions of some of the WebApp testing
techniques.
This section presents a review of the published research
work related to the data flow testing of WebApps.
Liu et al. [10] have presented a WebApps data-flow
testing approach, which are implemented in XML and
HTML languages, and include interpreted scripts and
other types of executable constructs (such as Java
beans, ActiveX controls, Java applets, etc.) at the client
side and the server side of the application. The
approach is based on a test model of WebApp, WATM,
which includes an Object model, in which components
are modeled as objects, and a Structural model that gets
the data flow information of methods inside or across
objects. In this approach, Liu et al. have derived test
cases from three different views: intra-object,
inter-object, and inter-client. They have defined 5
testing levels specifying different domains of the tests to
be run. These different levels are: Function, Function
Cluster, Object, Object Cluster, and Application level.
Ricca and Tonella [11,12] have presented an approach

for a static WebApps white-box testing based on two
test models: the Navigational model, which focuses on
HTML pages and hyper links of the application, and the
Control flow model, which represents the Web pages
internal structure in terms of the followed execution
flow. The Control flow model has been used to perform
structural testing, as well. A test case is a sequence of
pages to be visited, and the input values to be given to
pages that contain forms. Test cases are designed using
some control- and data-flow coverage criteria
applicable on the two models.
Mansour and Houri [13] have proposed white box
techniques for testing .NET WebApps. These techniques
focus on the WebApps distinguishing features,
including their multi-tier nature, hyper-linked
structure, and excessive use of events. First, they
extended previous WebApps models by improving
existing dependence graphs and presenting a
dependence graph model based on events. Second, they
applied data flow testing techniques to the dependence
graphs and proposed a testing technique based on
event flow. Third, they proposed some coverage testing
approaches. Finally, they introduced mutation testing
operators for evaluating WebApp tests adequacy.
Qi et al. [14] have proposed an agent-based approach to
conduct WebApps data flow testing. They conducted
the data flow testing by autonomous test agents at three
levels: method, object, and object cluster levels.
Liu [15] has proposed Java Server Pages (JSP) data flow
testing technique, which is an adaptation of
conventional ones. Liu presented a test model that
captures JSP pages data flow information considering
various JSP action tags and implicit objects. Based on
this test model, Liu presented an approach to obtain the
intra-procedural, inter-procedural, and sessional data
flow test paths for revealing the JSP pages data
anomalies.
Girgis et al. [8] have presented an approach to data flow
testing of WebApps. They presented an approach that
comprises the construction of a WebApp data flow
model to aid WebApps data flow analysis. In this
approach, testing is conducted in four different levels:
Function, Inter-procedural, Page, and Inter-Page levels.
In each level, the definition-use (def-use) pairs of the
variables are obtained. Then, the all-uses criterion can
be satisfied by generating test data that cover these
def-use pairs.

3 Data Flow Analysis

The most important task of the data flow testing is to
analyze the variables. Each variable must be tracked to
get its definitions (defs) and uses. The variable is said to
be defined if it is assigned a value, and is said to be used
if it is referenced in a statement. Two types of use exist:
The first type is c-use where the variable is used in a
computation. The second type is p-use where the

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 681

variable is used in a predicate.
Data flow techniques use a program control flow graph
representation to obtain the def-use pairs. A def-use
pair is a def-clear path between a variable def and its
use with no new definitions in the path. A test data
adequacy criterion is required to define the completion
of the testing process [16]. Rapps and Weyuker [17]
presented a family of data flow testing criteria. This
work is based on one of these criteria, which is the
all-uses criterion that requires a def-clear path from
each definition of a variable to each use of that variable
to be exercised.

4 Proposed Framework

This section presents the proposed data flow testing
framework of ASP.NET WebApps. In WebApps, each web
page is organized into two separate files. The first file
(.aspx) is the presentation file, which contains XHTML
tags and other server controls. The second file (.aspx.cs)
is the code-behind class, which contains the event
handlers, data items, and other functions required for
the class to do certain actions.

4.1 Data flow testing model

In order to capture the data flow information of the
WebApp under test, a data flow model of the WebApp
must be constructed. The model is organised into four
types of graphs: CFG (Control Flow Graph), ICFG
(Inter-procedural Control Flow Graph), PCFG (Page
Control Flow Graph), and CCFG (Composite Control

Flow Graph).
The CFG represents the data flow of a single function.
The ICFG represents the data flow of all functions and
calling statements. The ICFG merges the CFGs of the
calling and called functions into a single entry, single
exit CFG. The PCFG represents the data flow between
the presentation file and the code-behind file of a page.
The PCFG merges the CFG of the presentation file with
the ICFG of the code-behind file into a single entry,
single exit CFG. Finally, the CCFG represents the data
flow of all the web pages in the WebApp. The CCFG
merges the PCFGs of all web pages of the application
into a single entry, single exit CFG.

4.2 Data flow testing approach

Data flow analysis focuses on how data are used in a
program. In traditional programs, data are stored in
program variables. Whereas, in WebApps, data can be
stored in ASP.NET server controls and session/state
variables, as well as traditional program variables.
Therefore, data flow analysis techniques have to be

extended to consider the distinct ASP.NET pages data
elements.
In this subsection, the characterizing issues of ASP.NET
pages data flow analysis are described. To properly test
ASP.NET pages, the ASP.NET implicit objects, in
addition to the traditional variables of the ASP.NET
pages, need to be considered. Hence, in the proposed
data flow testing approach, we consider the definitions
and uses of five types of data objects found in WebApps
[8]:

–Traditional program variables and arrays.
–Instance variables of the code-behind class.
–Simple and complex ASP.NET server controls and

their properties.
–Implicit session/state objects, such as Query-string

parameters, ViewState property, Cookies, and
Session property.

–Objects of built-in classes, such as SQL server classes,
ADO.NET classes, and custom button controls.

In order to determine the set of paths that satisfy the
all-uses criterion, it is necessary to define the defs of
every variable in the program and the uses that might
be affected by these defs. The def-use pairs are
computed as described in [18].

In the ASPX file, the server controls are treated as
global variables, which can be defined or used in the
code-behind class. Therefore, to perform WebApps data
flow testing, it is essential to determine first when the
def and use actions can occur to different server
controls in the ASP.NET pages. Then, the def-use pairs
for them are computed to derive suitable test cases.
Table 1 shows the def and use actions for some ASP.NET
server controls. The def and use actions for the SQL
Server classes, and ADO.NET classes are defined in [8].
Table 1 is taken from [8] with some modifications to
address the following issues:

–Because server control properties are implicitly
referenced in the presentation file during page
rendering, we consider any server control property
defined in the code behind file to have a
corresponding use at the last line of the presentation
file. Also, because any used server control property
is implicitly defined in the page load event, we add a
def for it in the header of the page load event.

–The def of a query string is implicitly defined in the
page load event. Hence, we add a def for it in the
header of the page load event of the target page.

–The defs and uses of the navigation controls, such as
Hyperlink, <a> element , and their properties.

–After a data source has been defined and set for the
data control on the page, we must bind the data to
this data source using the Control.DataBind()
method. No data is rendered to the control until the
DataBind() method is explicitly called, so we
consider this call to be a def for the data control.

These modifications are shown in the shaded cells in
Table 1. As an example to illustrate the first issue,

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

682 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

Table 1: The def and use actions of some ASP.NET server controls.

ASP.NET Data Item Examples Action Statement Location

Simple server control

TextBox, Button,

Label, RadioButton,

CheckBox

def

Definition element: <

asp : Contr ol T ypeI D =

Contr ol Name >

ASPX file

use
header of an event handler for the

control

Code-behind

class

any statement refers to it.

Simple server control

properties
Text

def
the header of page load method

Code-behind

class
L.H.S. of an assignment statement

use

R.H.S of an assignment or

Conditional statement

The last line of the presentation

file, where the control is displayed
ASPX file

Navigation control
Hyperlink,

<a> element

def

Definition element: <

asp : H yper l i nkI D =

Contr ol Name >

ASPX file

use
The beginning of the class of the

target page

Code-behind

class

Navigation control

properties
href, NavigateUrl

def
the header of page load method

Code-behind

class
L.H.S. of an assignment statement

use

R.H.S of an assignment or

Conditional statement

The last line of the presentation

file, where the control is displayed
ASPX file

List control

ListBox,

DropDownList,

CheckBoxList,

RadioButtonList,

BulletedList

def

Definition element: < asp :

Li stT ypeI D = Li stName >

ASPX file

ListName.Items.Add();
Code-behind

class
use

header of an event handler for the

list control

any statement refers to it.

List control properties

SelectedValue,

SelectedItem,

SelectedIndex

def
the header of page load method

Code-behind

class
Statement that assign a value to

the List property

use

Statement that references the List

property

The last line of the presentation

file, where the control is displayed
ASPX file

Data control
DataGrid,

GridView

def

Definition element: < asp :

datagr i d I D = M yGr i d >

ASPX file

A call to DataBind method Code-behind

class
use

header of an event handler for the

data control

Data control

properties

Columns,

DataSource

def
MyGrid.Columns.Add(); Code-behind

classL.H.S. of an assignment statement

use
The last line of the presentation

file, where the control is displayed
ASPX file

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 683

Fig. 1: The structure of the analysis and instrumentation phases of ASPDFT.

assume that a Label control, named LabelTotalText, and
a Textbox control, named txtValue, are defined in the
presentation file of some web page as follows:
<asp:Label ID="LabelTotalText" runat="server"

Text="Order Total: "></asp:Label>
<asp:TextBox ID="txtValue" runat="server">
</asp:TextBox>

Then, assume that, in the related code-behind class, the
following code fragment is defined:
1. decimal cartTotal = int.Parse(txtValue.Text);
2. cartTotal = usersShoppingCart.GetTotal();

3. if (cartTotal > 0)
4. {
5. LabelTotalText.Text = String.Format("0:c",

cartTotal);
6. }

In line 1, the "txtValue" text property is used and it is
implicitly defined in the header of the page load, so a
def action is set to it there. And in line 5, the
"LabelTotalText" text property is defined and it is
implicitly used in the last line of the presentation file, so
a use action is set to it there.
Another example to illustrate the second issue, consider
the following sample of a code behind file of some web
page:
1. protected void Page_Load(object sender, EventArgs e)
2. {
3. string rawId = Request.QueryString["ProductID"];

In line 3, the "Request.QueryString["ProductID"]" is a
use to the QueryString object and it is implicitly defined

in the header of the page load (line 1), so a def action is
set to it there.
One more example to illustrate the third issue, assume
that a HyperLink control, named HomeHyperLink, is
defined in the presentation file of some web page as
follows:
<asp:HyperLink ID="HomeHyperLink" runat= "server"

NavigateUrl=" /WebForm1.aspx"> Home
</asp:HyperLink>
The "HomeHyperLink" is defined in this line, and it is
implicitly used in the beginning of the code-behind
class of the target page (WebForm1.aspx), so a use
action is set to it there.

5 Tool Description

This section presents a description of an automated
tool, named ASPDFT, for ASP.NET applications data
flow testing. This tool goes through several analysis
phases. First, it begins with an initial scan of the source
code and loads it in memory, and determines the type
of each statement.
Then, the tool reformats some statements in the source
code to a standard format to facilitate their
manipulation in the next analysis phase. The
reformatting process for the presentation file involves
getting rid of blank lines, combining tags written on
multiple lines in a single line, and splitting multiple tags
written on a single line such that each tag is on a
separate line. The reformatting process for the code

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

684 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

behind file involves getting rid of blank lines, inserting
opening and closing braces for control constructs (such
as if, for, while, etc) if they are not present in the original
code, placing each case of a switch block on a separate
line if there are many cases in one line, and organizing
the else-if block to be nested if blocks.
The next phase is the program instrumentation, in
which output statements, referred to as probes, are
inserted to track the line numbers of the executed path
during each test run. As mentioned before, there are
two files per web page, and both of these files are
instrumented, but with different probes. Figure 1
illustrates the structure of the analysis and
instrumentation phases of the proposed tool.
The goal of the proposed WebApps data flow testing
approach is to perform data flow analysis of the
WebApp to be tested, i.e. to capture its related data flow
information. To do this, the ASPDFT tool goes through
the following steps:

1.Static analysis.
2.Building control flow graph.
3.Constructing the def-use pairs.
4.Generating the static analysis report.
5.Dynamic analysis and generating the coverage

report.

5.1 Static analysis

The source code is analyzed to get information on the
statements, tags, blocks, and variables. The
presentation file is analyzed to build its list of tags.
Every line in the presentation file is read and parsed.
Parsing a tag means to read the tag line and define its
type, ID if any, the associated attributes and their
values, and any related tags. Next, the code behind file is
analyzed to build its list of statements. Every statement
in the code behind file is read and parsed. Parsing a
statement means reading the statement and
determining its type, as well as giving each statement a
line number, and a key code to represent its type. Then,
the tool determines the blocks of the application. A
block is any code structure that has an opening brace
and a corresponding closing brace.

5.2 Building control flow graph

In the next step, ASPDFT builds the CFG of the WebApp.
For each web page, there are two CFGs: One for the
presentation file, and the other for the code behind file.
These two graphs are then merged into one graph
connecting the two graphs together with edges on
certain nodes, as will be described later.
First, the CFG of the presentation file is constructed,
where every line is considered a node. Second, the CFG
of the code behind file is constructed, where every

statement is considered a node. However, the rules for
constructing the CFG of the code behind class are much
more complex than the presentation file [19]. Next, we
construct the interprocedural CFG (ICFG) of the code
behind file. An ICFG consists of the CFGs of calling and
called methods. Next, a page CFG (PCFG) is
constructed. A PCFG for a page consists of the CFG of
the ASPX file and ICFG of the related code-behind class.
Finally, a composite CFG (CCFG) is constructed to
connect the entire WebApp. The CCFG is obtained by
connecting the related PCFGs of the interacting Web
pages together.

5.3 Constructing the def-use (du) pairs

The def-clear paths required to fulfill the all-uses
criterion are called def-use pairs (du-paths). A list of
du-paths is constructed as described in [18]. In this list,
each du-path is represented by: a def-node, which
contains a def of a variable; a use-node, which contains
a use of that variable; and the set of nodes that must not
appear in that path (nodes that contain other defs of
that variable). These nodes are called killing nodes [18].
The construction of the def-use pairs can be done in
two levels. The first level is only for one web page
(presentation file and the related code-behind file). The
second level is for multiple web pages. The ASPDFT tool
provides both levels to the tester.

5.4 Generating the static analysis report

The static analysis report is organized into four main
sections. The first section presents the list of all
variables and their related information. The
information includes, for each variable: type, name,
scope, status, and a list of defs and uses. The variable
which has defs without uses is colored in red to indicate
an anomaly. The second section presents the def table
records. The table is organized into four columns: Def
number, Object, Variable, and Def node. The table is
ordered by the def number. The third section presents
the CCFG. The CCFG is organized into three columns:
Edge number, Start node, and End node. The edges are
ordered by the start node number. The important edges,
such as those connecting functions and pages, are
marked with different colors to facilitate their
recognition. The fourth and final section presents the
def-use table pairs. The table is organized into six
columns: Variable name, Def number, Use number,
Object, Function call node, and Killing nodes. In the
killing node column, the value -1 means "no killing
nodes" exist. In order to make the results more clear, the
table is ordered by the variable name, followed by def
number, and then by the use number.

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 685

Fig. 2: The selected web pages to be tested by ASPDFT.

Fig. 3: The original source code of the "ErrorPage" web page.

5.5 Dynamic analysis and generating the

coverage report

After constructing the du-paths list for the WebApp
under test, the tester executes the instrumented version
of that WebApp with some data. After the completion of
a test run, a check is made to see whether any of the
constructed du-paths are covered by the traversed path.
Finally, a report, showing the covered and uncovered
du-paths, is produced to the tester. If a path contains a
subpath that starts at the def-node of a du-path and
ends at its use-node without passing through any of its
killing nodes, then this path is said to cover that du-path

[18]. The tester then re-runs the application one or
more times with different test data until all the
remaining du-paths are covered. It should be noted
that, sometimes a full coverage cannot be reached
because of the existence of some infeasible paths that
cannot be traversed by any test data. The generated
coverage report is organised into three parts: First, the
number of the test run is displayed along with the
executed path. Then, the du-pairs fulfilled by the path
are displayed. Finally, the unfulfilled du-pairs are
displayed. In every successive run, the ASPDFT tool
checks only the unfulfilled pairs. The tool shows only

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

686 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

Fig. 4: The instrumented source code of the "ErrorPage" web page.

Fig. 5: Part of the Def-use pairs of the selected pages for WingtipToys webApp. (-1 means no killing nodes)

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 687

Fig. 6: Part of the static analysis report of the selected pages for WingtipToys webApp.

the newly fulfilled du-pairs and the remaining
unfulfilled du-pairs.

6 Case Study

In this section, the ASPDFT tool is applied to an
example WebApp, "WingtipToys" 1, to illustrate how it
works. This application is a simplified example of a
store front web site that sells items online. The
"WingtipToys" application consists of a Master page
and eight web pages. Five more web pages regarding
checking out are in the "Checkout" subdirectory of the
project. An admin web page to handle the requirements
of the web site administrator is in the "Admin"
subdirectory of the project. Also, 15 more web pages
handling registering and managing account are in the
"Account" subdirectory of the project. Additional
classes can be found in the "AppStart", "Logic" and
"Models" subdirectories of the project.
Figure 2 exhibits the interface of ASPDFT. The tool can
be applied to the entire application or a set of selected
web pages. Thus, the "Browse" button allows the tester
to select a single web page or multiple web pages to be
tested. After selecting the page(s), the tool analyses the
page(s) and generates the corresponding instrumented
version. Then, the tester can generate the du pairs of the
selected page(s) by pressing the "Generate DU table"
button. The tester is required to run the instrumented
version with selected test data. To run the instrument
version, a reconfiguration of the WebApp might be
needed. A traversed path file is generated from the run
in the same folder of the project. This file can be used to

1 https://code.msdn.microsoft.com/Getting-Started-with-

221c01f5

automatically check for the fulfilled def-use pairs, when
the tester presses the "Check for executed DU" button.
All the results are shown in the main form of the tool in
a rich text box. The tester can choose to save the results
in a rich text document (.rtf) for later inspection, by
pressing "Save log file" button. Figure 3 shows the
source code of one of the selected web pages
(ErrorPage.aspx.cs), and Figure 4 reveals its
instrumented version.
The "WingtipToys" has a total of 30 web pages. For
simplicity and in order to show the results, the nine
main web pages are selected for analysis, as shown in
Figure 2. Figure 5 shows part of the generated def-use
pairs table. A part of the static report is shown in Figure
6 and part of the CFG is shown in Figure 7 with edges
connecting the pages and functions are colored. The
edges of the CFG are colored in "Black", the edges of the
ICFG are colored in "Blue", the edges of the PCFG are
colored in "Green", and the edges of the CCFG are
colored in "Violet".
Then, the tester uploads the traversed path file,
generated by the probes during the run of the
instrumented version. Using this file, the ASPDFT
automatically checks for the fulfilled def-use pairs
covered by the path. A part of the coverage report is
shown in Figure 8. The tester can choose to run the
instrumented version with different test data to cover
the unfulfilled def-use pairs, if possible.

7 Empirical Evaluation

This section presents the results of two experiments,
which have been conducted to evaluate the viability of
the proposed data flow testing approach, with the
extensions presented in section 4.2, for ASP.NET web

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

688 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

Fig. 7: Part of the CFG of the selected pages for WingtipToys webApp.

Fig. 8: Part of the dynamic coverage report generated after a test run of the selected pages for WingtipToys webApp.

applications, and the readability of the analysis and test
report produced by the tool. In these experiments, the
ASPDFT tool has been applied to three different
ASP.NET web sites: The Wingtip toys, which is described
in the previous section, the to Do List 2, and a custom
site built by the authors. It consists of three web pages
containing the most common ASP controls and Sql

2 https://www.codeproject.com/Articles/1575/ASP-NET-

To-Do-List-Application

connection to database 3. In the first experiment, the
number of anomalies detected; and du- pairs generated
using Girgis et al. [8] approach and the proposed
approach, were compared. There are three types of
anomalies related to program variables: "D-D" means
Def followed by Def, "D-NoU" means Def without
corresponding use, and "NoD-U" means use without a
corresponding def. Table 2 shows for each web site the
number of dataflow anomalies, the number of correct

3 https://github.com/islamelgendy/webApplication

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 689

Table 2: A comparison between the number of anomalies detected, and du-pairs generated, by using the proposed
approach and Girgis et al. approach [8].

Application Modifications

Dataflow Anomalies # Correct du-pairs
Incorrect/missing

du-pairs

Type
Girgis et.

al. [8]

Proposed

approach

Girgis et.

al. [8]

Proposed

approach

Girgis et.

al. [8]

Proposed

approach

ToDo List

Add hyperlink uses

D-D 11 11

94 98 24 20D-NoU 20 16

NoD-U 5 5

Add Property uses &

defs

D-D 11 11

94 110 24 8D-NoU 20 19

NoD-U 5 2

Add DataBind

D-D 11 12

94 95 24 23D-NoU 20 20

NoD-U 5 5

Add Query String def

D-D 11 11

94 97 24 21D-NoU 20 20

NoD-U 5 3

Add All

D-D 11 12

94 118 24 0D-NoU 20 15

NoD-U 5 0

Custom

Add hyperlink uses

D-D 2 2

52 53 35 34D-NoU 40 39

NoD-U 18 18

Add Property uses &

defs

D-D 2 2

52 83 35 4D-NoU 40 36

NoD-U 18 1

Add DataBind

D-D 2 3

52 53 35 34D-NoU 40 40

NoD-U 18 18

Add Query String def

D-D 2 2

52 54 35 33D-NoU 40 40

NoD-U 18 17

Add All

D-D 2 3

52 87 35 0D-NoU 40 35

NoD-U 18 0

Wingtip

Add hyperlink uses

D-D 5 5

67 73 35 29D-NoU 88 82

NoD-U 6 6

Add Property uses &

defs

D-D 5 5

67 92 35 10D-NoU 88 74

NoD-U 6 4

Add DataBind

D-D 5 6

67 68 35 34D-NoU 88 88

NoD-U 6 6

Add Query String def

D-D 5 5

67 70 35 32D-NoU 88 88

NoD-U 6 4

Add All

D-D 5 6

67 102 35 0D-NoU 88 68

NoD-U 6 2

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

690 I. Elgendy, M. Girgis: An automated DFT tool for ASP.NET web applications

Table 3: A comparison between the time needed to review the reports (in min:sec) generated using the proposed
approach and Girgis et al. approach [8].

Application Inspection
Best time Average time Worst time

Girgis

et. al. [8]

(Uncolored)

Proposed

approach

(Colored)

Girgis

et. al. [8]

(Uncolored)

Proposed

approach

(Colored)

Girgis

et. al. [8]

(Uncolored)

Proposed

approach

(Colored)

ToDo List
Anomalies 1:51 0:30 2:31 0:36 3:40 0:43

CFG 16:52 4:36 21:59 5:43 26:40 6:44

Custom
Anomalies 2:13 0:25 2:38 0:34 3:01 0:45

CFG 5:34 1:52 6:40 2:06 7:55 2:23

Wingtip
Anomalies 2:57 1:02 3:36 1:33 4:10 2:02

CFG 21:00 6:43 26:37 7:30 34:28 8:30

du-pairs, and the number of incorrect and missing
du-pairs. The results have been recorded using Girgis et.
al. approach [8]. Then, the results were recorded after
adding each modification alone. Finally, the results were
recorded after adding all of the suggested modifications
at once. It is clear that the number of detected data-flow
anomalies and incorrect or missing du-pairs reduced,
and more correct du-pairs were generated.
The purpose of the second experiment was to evaluate
the readability of the report generated using the
proposed approach, after applying the suggested
ordering, coloring, and highlighting the key parts of the
report, compared to the one generated using Girgis et
al. approach [8]. In this experiment, two versions of the
report were generated, one using Girgis et al. approach,
and the other using the proposed approach. The reports
were given to a set of 21 software engineering students
who were asked to do two things: To record the
consumed time for reviewing the detected anomalies,
and to review correctness of the control flow graph with
an emphasis on the edges of the ICFG, PCFG, and
CCFG. Table 3 shows the best time, the average time,
and the worst time in "min:sec" needed to review the
results. It is clear that the suggested coloring and
highlighting improve readability of the report, so the
time and the effort of reviewing the results reduce.

8 Conclusion

In this paper, a tool for ASP.NET WebApps data flow
testing has been proposed. The tool goes through
several steps to analyse the WebApp. First, it starts by
building an instrumented version of the WebApp to be
used later in dynamic test runs. Second, it builds a data
flow model for the WebApp under test. This model
consists of four levels of control flow graphs, including
CFG, ICFG, PCFG, and CCFG. Third, the def-use pairs
are generated using the constructed data flow model.
Finally, a static analysis report is generated. This report
is organised in several sections; each section displays
some of the collected information about the application
under test in a highly readable format. For instance, the

important parts are highlighted to decrease their review
time. For each test run of the instrumented version with
manual test inputs, the tool checks and reports the
fulfilment of the def-use pairs by the traversed path.
Several runs can be done to cover all the def-use pairs,
where each run checks only for the remaining
unfulfilled def-use pairs. The paper also presented a
case study to illustrate how the proposed tool works.
Finally, an empirical evaluation was conducted on three
ASP.NET web sites to assesses the viability of the
suggested data flow testing approach and the
supporting tool. The results demonstrated that the
number of detected data-flow anomalies and incorrect
or missing du-pairs reduced, and more correct du-pairs
were generated. Moreover, the suggested ordering,
coloring, and highlighting improved readability of the
report, so the time and effort required to review the
results reduced.
Currently, we are working on evaluating the viability of
the proposed tool in discovering different types of
WebApp errors. Furthermore, we are working to modify
the tool to automatically generate test data to cover the
def-use pairs. This will automate the entire testing
process, save a lot of work, and improve its accuracy.

References

[1] T. Berners-Lee, "The world-wide web", Computer Networks

and ISDN Systems, 25, 454-459, (1992).

[2] N. Alshahwan, and M. Harman, "Automated web

application testing using search based software

engineering", in 26th IEEE/ACM International Conference

on Automated Software Engineering ASE, 3-12, (2011).

[3] B. Korel, "Automated software test data generation", IEEE

Transactions on Software Engineering, 16, 870-879, (1990).

[4] J. Edvardsson, "A survey on automatic test data generation",

In Proceedings of the 2nd Conference on Computer Science

and Engineering, 21-28, (1999).

[5] Y.F. Li, P.K. Das, and D.L. Dowe, "Two decades of Web

application testing - A survey of recent advances",

Information Systems, 43, 20-54, (2014).

© 2020 NSP

Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci. 14, No. 4, 679-691 (2020) / www.naturalspublishing.com/Journals.asp 691

[6] J.W. Duran and S.C. Ntafos. "An evaluation of random

testing", IEEE Transactions on Software Engineering, 10,

438-444, (1984).

[7] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and

J. Wegener, "Input domain reduction through irrelevant

variable removal and its effect on local, global, and

hybrid search-based structural test data generation,", IEEE

Transactions on Software Engineering, 38, 453-477, (2011).

[8] M.R. Girgis, A.I. El-Nashar, T.A. Abd El-Rahman, and

M.A. Mohammed. "An ASP.NET Web applications data

flow testing approach", International Journal of Computer

Applications, 153, 8887, (2016).

[9] D.R. Lakshmi, and S.S. Mallika. "A review on Web

application testing and its current research directions",

International Journal of Electrical and Computer

Engineering, 7, 2132-2141, (2017).

[10] C.H. Liu, D.C. Kung, P. Hsia, and C. Hsu, "Object-based data

flow testing of Web applications", In Proceedings of the First

Asia-Pacific Conference on Quality Software, 30-31, (2000).

[11] F. Ricca, and P. Tonella, "Analysis and testing of Web

applications", In Proceedings of the 23rd International

Conference on Software Engineering, 25–34, (2001).

[12] F. Ricca, and P. Tonella, "A 2-layer model for the white-

box testing of Web applications", In Proceedings of the Sixth

IEEE International Workshop on Web Site Evolution, 11–19,

(2004).

[13] N. Mansour, and M. Houri. "Testing Web applications",

Information and Software Technology, 48, 31-42, (2006).

[14] Y. Qi, D. Kung, and E. Wong. "An agent-based data-flow

testing approach for Web applications", Information and

Software Technology, 48, 1159-1171, (2006).

[15] C.H. Liu. "Data flow analysis and testing of JSP-based Web

applications", Information and Software Technology, 48,

1137-1147, (2006).

[16] P.G. Frankl, and S. Weiss. "An experimental comparison Of

The effectiveness of branch testing and data flow testing",

IEEE Transactions on Software Engineering, 19, 774-787,

(1993).

[17] S. Rapps, and E.J. Weyuker. "Selecting software test

data using data flow information", IEEE Transactions on

Software Engineering, 11, 367-375, (1985).

[18] M.R. Girgis. "Using symbolic execution and data flow

criteria to aid test data selection", Software Testing,

Verification and Reliability Journal, 3, 101-112, (1993).

[19] M.A. Mohamed, "A study of structural testing of Web

applications". M.A. thesis, Faculty of Science, Minia

University, Egypt, (2017).

Islam T. ELgendy

received the BSc degree
from Assiut University,
and the M.S degree in
Computer Science from the
University of Assiut, Egypt in
2013. His research interests
are in the areas of software
engineering including
Search-Based Testing and in

particular automated test data generation. He is
currently doing PhD in Computer Science from Assiut
University, Egypt.

Moheb R. Girgis
received the BSc degree from
Mansoura University, Egypt,
in 1974, the MSc degree
from Assuit University,
Egypt, in 1980, and the PhD
degree from the University
of Liverpool, England,
in 1986. He is a professor
of Computer Science, Minia

University, and the director of Minia University
Information Network. His research interests include
software engineering, information retrieval, genetic
algorithms, and networks. He is a member of the IEEE
Computer Society.

Adel A. Sewisy
received the BSc degree
in Mathematics from
Assiut University, Egypt,
in 1984, the MSc degree
in Mathematics from
Assuit University, Egypt,
in 1990, and the PhD degree
in Computer Science from
Assiut University, in 1997.

He is a professor at Assiut University, Egypt. His
research interests include artificial intelligence, image
processing, arithmetic algorithms, and software
engineering. He is a member of the Egyptian Computer
Society and a member of the International Society of
Applied Intelligence.

© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related Work
	Data Flow Analysis
	Proposed Framework
	Tool Description
	Case Study
	Empirical Evaluation
	Conclusion

