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Abstract: This paper proposes and analyzes a secondary dengue viral infection model with two antibodies, namely heterologous

antibody and homologous antibody. The well-posedness of the model is established by showing that the solutions of the model are

nonnegative and bounded. We have shown that the model has four steady states, namely: infection-free steady state S0, infected steady

state with inactive antibody immune response S1, infected steady state with only active heterologous antibody S2, and infected steady

state with only active homologous antibody S3. We derive three bifurcation parameters: the basic infection reproduction number R0, the

heterologous antibody immune response activation number R1, and the homologous antibody immune response activation number R2.

These parameters define the existence and global stability of the steady states of the model. We prove the global asymptotic stability

of all steady states utilizing Lyapunov function and LaSalle’s invariance principle. We illustrate the theoretical results via numerical

simulations.
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1 Introduction

Dengue is one of the dangerous vector-borne diseases
caused by dengue virus (DENV). Throughout the world,
around 50-100 million peoples are infected by DENV and
approximately 12500 die annually. Southeast Asia and
Sub-Saharan Africa are the most affected regions [1].
Aedes aegypti and Aedes albopictus female mosquitoes
transmit DENV to humans. A healthy person gets
infected when he/she is bitten by DENV-infected
mosquitoes. The symptoms involve joint pains, headache,
high fever, vomiting, nausea, and pain behind the eyes
[2]. Four serologically distinct dengue viruses (DENV-1,
DENV-2, DENV-3 and DENV-4) can infect the human
body [3]. The target cells of the DENV include
monocytes, dendritic cells, macrophages and hepatocytes
[4]-[6]. When DENV enters the human body for the first
time, the immune response is enhanced [7]. Antibody and
Cytotoxic T Lymphocytes (CTLs) immune responses are
two arms of the adaptive immune response to fight
viruses. Antibodies are produced from the B cells to
attach virus antigens and remove it from the body. CTLs
kill the DENV-infected cells.

Recently, mathematical modeling of within-host
dengue viral infection has witnessed a significant
development. Mathematical models of primary
within-host dengue viral infection have been introduced
in some previous pieces of literature (see e.g. [8]-[16]).
These models have been constructed on the basis of the
basic viral infection model presented in [17]. It has been
reported [18] that when a human is infected by one
serotype, he/she will have lifelong immunity against that
serotype, but only temporary and partial cross-immunity
to the other three serotypes. Mathematical models of
within-host dengue dynamics pertaining to secondary
dengue infection with another serotype have been
proposed in [19]-[25]. We observe that the global stability
of the models presented in [19]-[25] is not extensively
investigated.

Stability analysis has become one of the most
important and fundamental approaches for understanding
the within-host virus dynamics. In the present paper, we
address the global stability analysis of a secondary
dengue viral infection model with two types of
antibodies. The well-posedness of the model is
investigated by establishing that the solutions of the
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model are nonnegative and bounded. We derive three
threshold parameters which define the existence and
stability of the four steady states. Global stability of all
steady states is proven by formulating Lyapunov
functions and utilizing LaSalle’s invariance principle. We
perform some numerical simulations to illustrate the
theoretical results.

2 Mathematical DENV dynamics model

We formulate a DENV dynamics model with secondary
infection and two types of antibodies. The model describes
the within-host dynamics of five compartments as:

ẋ = ϖ −φxv− ξ x, (1)

ẏ = φxv−ρy, (2)

v̇ = τy−ηv−ψ1vz−ψ2vw, (3)

ż = ρ1vz− µ1z, (4)

ẇ = ρ2vw− µ2w, (5)

where the variables x = x(t), y = y(t), v = v(t), z = z(t)
and w = w(t) are the concentrations of healthy cells,
infected cells, DENV particles, heterologous antibody
previously formed on primary infection and homologous
antibody against the new virus serotype of the secondary
infection at time t, respectively. The healthy cells are
created at rate ϖ , die at rate ξ x and become infected by
DENV at rate φxv. The DENV-infected cells die at rate
ρy and produce DENV particles at rate τy. The DENV
particles die at rate ηv. The terms ψ1vz and ψ2vw

represent the neutralization rates of the DENV by
heterologous and homologous antibodies, respectively.
The heterologous and homologous antibodies are
activated at rates ρ1vz and ρ2vw, respectively. The terms
µ1z and µ2w are the decay rates of the heterologous and
homologous antibodies, respectively.

3 Properties of solutions and steady states

Let κi > 0, i = 1,2,3,4, and define the compact set

∆ =
{

(x,y,v,z,w) ∈ R
5
≥0 : 0 ≤ x,y ≤ κ1,0 ≤ v ≤ κ2,

0 ≤ z ≤ κ3,0 ≤ w ≤ κ4

}

.

Theorem 3.1. The set ∆ is positively invariant with respect

to system (1)-(5).

Proof. We have

ẋ |x=0= ϖ > 0,

ẏ |y=0= φxv ≥ 0 for x,v ≥ 0,

v̇ |v=0= τy ≥ 0 for y ≥ 0,

ż |z=0= 0,

ẇ |w=0= 0.

Hence, all solutions of system (1)-(5) with initial
(x(0),y(0),v(0),z(0),w(0)) ∈R

5
≥0 are nonnegative. Let

T = x+ y+
ρ

2τ
v+

ρψ1

2τρ1
z+

ρψ2

2τρ2
w,

then

Ṫ = ϖ − ξ x−
ρ

2
y−

ρη

2τ
v−

ρψ1µ1

2τρ1
z−

ρψ2µ2

2τρ2
w

≤ ϖ −σ

(

x+ y+
ρ

2τ
v+

ρψ1

2τρ1
z+

ρψ2

2τρ2
w

)

= ϖ −σT,

where σ = min{ξ , 1
2
ρ ,η ,µ1,µ2}. Hence, T (t) ≤ κ1, if

T (0) ≤ κ1, where κ1 =
ϖ

σ
. The nonnegativity of the

variables implies 0 ≤ x(t),y(t) ≤ κ1, 0 ≤ v(t) ≤ κ2,
0 ≤ z(t) ≤ κ3 and 0 ≤ w(t) ≤ κ4 if
0 ≤ x(0) + y(0) + ρ

2τ v(0) + ρψ1
2τρ1

z(0) + ρψ2
2τρ2

w(0) ≤ κ1,

where κ2 =
2τ
ρ κ1, κ3 =

2τρ1
ρψ1

κ1 and κ4 =
2τρ2
ρψ2

κ1. �

Theorem 3.2. There exist three bifurcation parameters
R0, R1 and R2 with R0 > R1 and R0 > R2 such that

(i) if R0 ≤ 1, then the system has only one steady state
S0 ∈ ∆ ,

(ii) if R1 ≤ 1 < R0 and R2 ≤ 1 < R0, then the system

has only two steady states S0 ∈ ∆ and S1 ∈ ∆̊ , where ∆̊ is
the interior of ∆ ,

(iii) if R1 > 1,R2 < 1, then the system has three steady

states S0 ∈ ∆ , S1 ∈ ∆̊ and S2 ∈ ∆̊ .
(iv) if R2 > 1,R1 < 1, then the system has three steady

states S0 ∈ ∆ , S1 ∈ ∆̊ and S3 ∈ ∆̊ .
(v) if R2 > 1, R1 > 1, then the system has four steady

states S0 ∈ ∆ , S1 ∈ ∆̊ , S2 ∈ ∆̊ and S3 ∈ ∆̊ .

Proof. Let the R.H.S. of Eqs. (1)-(5) be zero

0 = ϖ −φxv− ξ x, (6)

0 = φxv−ρy, (7)

0 = τy−ηv−ψ1vz−ψ2vw, (8)

0 = ρ1vz− µ1z, (9)

0 = ρ2vw− µ2w. (10)

Then, solving the system of algebric equations (6)-(10) we
get four steady states, as the following:

(i) infection-free steady state S0(x0,0,0,0,0,0), where
x0 =

ϖ
ξ

,

(ii) infected steady state with inactive immune
antibody response S1(x1,y1,v1,0,0), where

x1 =
x0

R0
, y1 =

ηξ

τφ
(R0 − 1) , v1 =

ξ

φ
(R0 − 1) ,

(iii) infected steady state with only active heterologous
antibody S2(x2,y2,v2,z2,0), where

x2 =
ρ1ϖ

ξ ρ1 +φ µ1
, y2 =

φϖµ1

ρ(ξ ρ1 +φ µ1)
, v2 =

µ1

ρ1
,

z2 =
η

ψ1
(R1 − 1) ,
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(iv) infected steady state with only active homologous
antibody S3(x3,y3,v3,0,w3), where

x3 =
ρ2ϖ

ξ ρ2 +φ µ2
, y3 =

φϖµ2

ρ(ξ ρ2 +φ µ2)
, v3 =

µ2

ρ2
,

w3 =
η

ψ2
(R2 − 1) ,

where

R0 =
x0τφ

ρη
, R1 =

R0

1+ φ µ1

ξ ρ1

, R2 =
R0

1+ φ µ2

ξ ρ2

.

Clearly R0 > R1 and R0 > R2.
(v) It is clear from (iii) and (iv) that if R1 > 1 and

R2 > 1, S0, S1, S2 and S3 all exist.
Here, R0 represents the basic infection reproduction

number, R1 represents the heterologous antibody immune
response activation numbers and R2 is the homologous
antibody immune response activation number.

Now, we show that S0 ∈ ∆ and S1,S2,S3 ∈ ∆̊ . It is clear
that S0 ∈ ∆ . Let R0 > 1, then S1 exists and

ξ x1 +ρy1 = ϖ ·

It follows that

x1 <
ϖ

ξ
≤ κ1, y1 <

ϖ

ρ
<

ϖ
1
2 ρ

≤ κ1.

Moreover, we have, ηv1 = τy1, then

v1 =
τ

η
y1 <

2τ

ρ

ϖ

η
≤

2τ

ρ
κ1 = κ2.

We have z1 = w1 = 0 then, S1 ∈ ∆̊ .
It is clear that 0 < x2,y2 < κ1. Next, we show that 0 <

v2 < κ2 and 0 < z2 < κ3 when R1 > 1. From the steady
state conditions of S2, we have

ηv2 +ψ1v2z2 = τy2.

Then if R1 > 1 we get

ηv2 < τy2 ⇒ 0 < v2 <
2τ

ρ

ϖ

η
≤

2τ

ρ
κ1 = κ2.

Finally we have

z2 <
τy2

ψ1v2
<

2τρ1

ρψ1
κ1 = κ3

Then, S2 ∈ ∆̊ . Similarly, one can show that S3 ∈ ∆̊ . �

4 Global stability

This section is devoted to prove the global stability of the
four steady states by of system (1)-(5). The proofs are

based on the method of Lyapunov function presented
[26]-[32]. Define a function g(x) = x− 1− lnx.

Theorem 4.1. Suppose that R0 ≤ 1, then S0 is globally
asymptotically stable (G.A.S) in ∆ .

Proof. Define

W0(x,y,v,z,w) = x0g

(

x

x0

)

+ y+
ρ

τ
v+

ρψ1

τρ1
z+

ρψ2

τρ2
w.

(11)
Observe that W0(x,y,v,z,w)> 0 for all (x,y,v,z,w)> 0 and

W0(x0,0,0,0,0) = 0. Calculating
dW0
dt

along the solutions
of (1)-(5) as:

dW0

dt
=
(

1−
x0

x

)

(ϖ − ξ x− φxv)+φxv−ρy

+
ρ

τ
(τy−ηv−ψ1vz−ψ2vw)+

ρψ1

τρ1
(ρ1vz− µ1z)

+
ρψ2

τρ2
(ρ2vw− µ2w). (12)

Collecting terms of Eq. (12) we obtain

dW0

dt
=−

ξ (x−x0)

x

2

+
(

φx0 −
ρη

τ

)

v−
ρψ1µ1

τρ1
z−

ρψ2µ2

τρ2
w

=−
ξ (x−x0)

x

2

+
ρη

τ
(R0 −1)v−

ρψ1µ1

τρ1
z−

ρψ2µ2

τρ2
w.

Therefore, if R0 ≤ 1, then
dW0
dt

≤ 0 for x,v,z,w ∈ (0,∞).

Moreover,
dW0
dt

= 0 when x(t) = x0 and
v(t) = z(t) = w(t) = 0 for all t. Let

Γ =
{

(x,y,v,z,w) : dW0
dt

= 0
}

and Γ0 be the largest

invariant subset of Γ . We note that the solutions of system
(1)-(5) converge to Γ0 [33]. The set Γ0 is invariant and
contains elements which satisfy v(t) = z(t) = w(t) = 0. It
follows from Eq. (3) that

0 = v̇(t) = τy(t).

This yields y(t) = 0. Hence Γ0 is the singleton {S0}.
LaSalle’s invariance principle provides that S0 is G.A.S
[33]. �

Theorem 4.2. Suppose that R1 ≤ 1 < R0 and R2 ≤ 1,

then S1 is G.A.S in ∆̊ .

Proof. We define a function W1(x,y,v,z,w) as:

W1 = x1g

(

x

x1

)

+y1g

(

y

y1

)

+
ρ

τ
v1g

(

v

v1

)

+
ρψ1

τρ1
z+

ρψ2

τρ2
w.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


638 A. A. Raezah et al.: Global stability of a secondary dengue viral infection model

Calculating dW1
dt

along the trajectories of (1)-(5):

dW1

dt
=
(

1−
x1

x

)

(ϖ − ξ x− φxv)+

(

1−
y1

y

)

(

φxv

−ρy
)

+
ρ

τ

(

1−
v1

v

)

(τy−ηv−ψ1vz−ψ2vw)

+
ρψ1

τρ1
(ρ1vz− µ1z)+

ρψ2

τρ2
(ρ2vw− µ2w)

=
(

1−
x1

x

)

(ϖ − ξ x)+φx1v−
φxvy1

y
+ρy1

−
ρη

τ
v−ρ

v1y

v
+

ρη

τ
v1 +

ρψ1

τ
v1z+

ρψ2

τ
v1w

−
ρψ1µ1

τρ1
z−

ρψ2µ2

τρ2
w. (13)

Collecting terms of Eq. (13) and applying the steady state
conditions

ϖ = ξ x1 +φx1v1,

ρy1 = φx1v1,

τy1 = ηv1,

we get φx1v− ρη
τ v = 0 and

dW1

dt
=−

ξ (x− x1)
2

x
+ρy1

(

1−
x1

x

)

−ρy1
xvy1

x1v1y

+ 2ρy1−ρy1
v1y

vy1
+

ρψ1

τ

(

v1 −
µ1

ρ1

)

z

+
ρψ2

τ

(

v1 −
µ2

ρ2

)

w

=−
ξ (x− x1)

2

x
+ρy1

[

3−
x1

x
−

xvy1

x1v1y
−

v1y

vy1

]

+
ρψ1(ξ ρ1 +φ µ1)

τρ1φ
(R1 − 1)z

+
ρψ2(ξ ρ2 +φ µ2)

τρ2φ
(R2 − 1)w.

Since the the geometrical mean is less than or equal the
arithmetical mean, then

3 ≤
x1

x
+

xvy1

x1v1y
+

v1y

vy1
.

It follows that for all x,y,v,z,w > 0, we have dW1
dt

≤ 0 and
dW1
dt

= 0 when x = x1, y = y1, v = v1 and z = w = 0.
Therefore, the largest invariant subset of
{

(x,y,v,z,w) : dW1
dt

= 0
}

is the singleton {S1}. By

LaSalle’s invariance principle, S1 is G.A.S. �

Theorem 4.3. Let R1 > 1 and R2 ≤ R1, then S2 is G.A.S

in
◦
∆ .

Proof. Define a function W2(x,y,v,z,w) as:

W2 = x2g

(

x

x2

)

+ y2g

(

y

y2

)

+
ρ

τ
v2g

(

v

v2

)

+
ρψ1

τρ1
z2g

(

z

z2

)

+
ρψ2

τρ2
w.

Calculating dW2
dt

along the solutions of model (1)-( 5), we
get

dW2

dt
=
(

1−
x2

x

)

(ϖ − ξ x−φxv)+

(

1−
y2

y

)

(φxv−ρy)

+
ρ

τ

(

1−
v2

v

)

(τy−ηv−ψ1vz−ψ2vw)

+
ρψ1

τρ1

(

1−
z2

z

)

(ρ1vz− µ1z)+
ρψ2

τρ2
(ρ2vw− µ2w).

(14)

Collecting terms of Eq. (14), we get

dW2

dt
=
(

1−
x2

x

)

(ϖ − ξ x)+φx2v−
φxvy2

y
+ρy2−

ρη

τ
v

−ρ
v2y

v
+

ρη

τ
v2 +

ρψ1

τ
v2z+

ρψ2

τ
v2w−

ρψ1µ1

τρ1
z

−
ρψ1

τ
z2v+

ρψ1µ1

τρ1
z2 −

ρψ2µ2

τρ2
w

=
(

1−
x2

x

)

(ϖ − ξ x)+ (φ x2 −
ρη

τ
−

ρψ1

τ
z2)v

−
φxvy2

y
+ρy2−ρ

v2y

v
+

ρη

τ
v2 +

ρψ2

τ
v2w

+
ρψ1µ1

τρ1
z2 −

ρψ2µ2

τρ2
w.

Applying the steady state conditions:

ϖ = ξ x2 +φx2v2,

ρy2 = φx2v2,

τy2 = ηv2 +ψ1v2z2,

we get

dW2

dt
=−

ξ (x− x2)
2

x
+ρy2

(

1−
x2

x

)

−ρy2
xvy2

x2v2y
−ρy2

v2y

vy2
+ 2ρy2 +

ρψ2

τ
(v2 − v3)w

=−
ξ (x− x2)

2

x
+ρy2

[

3−
x2

x
−

xvy2

x2v2y
−

v2y

vy2

]

+
ρψ2(ξ ρ2 +φ µ2)

τφρ2R1
(R2 −R1)w.

The relation between the arithmetical and geometrical
means implies

3 ≤
x2

x
+

xvy2

x2v2y
+

v2y

vy2
.

Since R2 ≤ R1, then dW2
dt

≤ 0 for all (x,y,v,z,w) > 0. We

have dW2
dt

when x = x2, y = y2, v = v2 and w = 0. Let

Γ̂ =
{

(x,y,v,z,w) : dW2
dt

= 0
}

and Γ̂0 be the largest

invariant subset of Γ̂ . We note that, the solutions of
system (1)-(5) converge to Γ̂0. The set Γ̂0 is invariant and
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contains elements which satisfy y(t) = y2, v(t) = v2 and
w = 0. It follows from Eq. (3) that

0 = v̇ = τy2 −ηv2 −ψ1v2z,

which gives z(t) = z2. Hence, Γ̂0 is the singleton {S2}. By
LaSalle’s invariance principle, S2 is G.A.S. �

Theorem 4.4. Let R2 > 1 and R1 ≤ R2, then S3 is G.A.S

in
◦
∆ .

Proof. Define a function W3(x,y,v,z,w) as:

W3 = x3g

(

x

x3

)

+ y3g

(

y

y3

)

+
ρ

τ
v3g

(

v

v3

)

+
ρψ1

τρ1
z

+
ρψ2

τρ2
w2g

(

w

w2

)

.

Calculating dW3
dt

along the solutions of model (1)-(5), we
get

dW3

dt
=
(

1−
x3

x

)

(ϖ − ξ x− φxv)+

(

1−
y3

y

)

(φxv−ρy)

+
ρ

τ

(

1−
v3

v

)

(τy−ηv−ψ1vz−ψ2vw)

+
ρψ1

τρ1
(ρ1vz− µ1z)+

ρψ2

τρ2

(

1−
w3

w

)

(ρ2vw− µ2w).

Collecting terms of the aforementioned equation, we get

dW3

dt
=
(

1−
x3

x

)

(ϖ − ξ x)+φx3v−
φxvy3

y
+ρy3−

ρη

τ
v

−ρ
v3y

v
+

ρη

τ
v3 +

ρψ1

τ
v3z+

ρψ2

τ
v3w−

ρψ1µ1

τρ1
z

−
ρψ2µ2

τρ2
w−

ρψ2

τ
w3v+

ρψ2µ2

τρ2
w3.

Applying the steady state conditions:

ϖ = ξ x3 +φx3v3,

ρy3 = φx3v3,

τy3 = ηv3 +ψ2v3w3,

we get

dW3

dt
=−

ξ (x− x3)
2

x
+ρy3

(

1−
x3

x

)

−ρy3
xvy3

x3v3y

−ρy3
v3y

vy3
+ 2ρy3+

ρψ1

τ
(v3 − v2)z

=−
ξ (x− x3)

2

x
+ρy3

[

3−
x3

x
−

xvy3

x3v3y
−

v3y

vy3

]

+
ρψ1(ξ ρ2 +φ µ2)

τφρ2R1
(R1 −R2)z.

Clearly, dW3
dt

≤ 0 for all (x,y,v,z,w) > 0 and dW3
dt

= 0
when x = x3, y = y3, v = v3 and z = 0. Let

Γ̃ =
{

(x,y,v,z,w) : dW3
dt

= 0
}

and Γ̃0 be the largest

invariant subset of Γ̃ . We note that the solutions of system
(1)-(5) converge to Γ̃0. The set Γ̃0 is invariant and contains
elements which satisfy y(t) = y3, v(t) = v3 and w(t) = 0.
It follows that from Eq. (3) that

0 = v̇ = τy3 −ηv3 −ψ2v3w,

which gives w(t) = w3. Hence Γ̃0 is the singleton {S3}. By
LaSalle’s invariance principle S3 is G.A.S. �

5 Numerical simulations

We solve system (1)-(5) numerically with different initial
values:

IV1: (x(0),y(0),v(0),z(0),w(0)) = (700,5,4,3,2),
IV2: (x(0),y(0),v(0),z(0),w(0)) = (600,8,7,4,3),
IV3: (x(0),y(0),v(0),z(0),w(0)) = (450,12,10,5,4),
IV4: (x(0),y(0),v(0),z(0),w(0)) = (350,20,13,6,6),

and with parameters values given in Table 1. The
parameters φ , ρ1 and ρ2 will be selected in four cases:

Case (I): In this case, we choose φ = 0.00005,ρ1 =
0.0005 and ρ2 = 0.001 which give R0 = 0.2778< 1,R1 =
0.1389 < 1 and R2 = 0.1852. Theorems 3.2 and 4.1 state
that the system has a single steady state, S0 and it is G.A.S.
Figure 1 shows that the concentrations of infected cells,
DENV particles, heterologous antibody and homologous
antibody are decreasing w.r.t. time and finally tend to zero.
In the mean time, the concentration of the healthy cells is
increasing and tends to its healthy value x0 = 1000. In this
case, the DENV is cleared from the body.

Case (II): By taking φ = 0.0005,ρ1 = 0.0005 and
ρ2 = 0.001, we get R0 = 2.7778 > 1, R1 = 0.2525 < 1
and R2 = 0.4630 < 1. Consequently, based on Theorems
3.2 and 4.2, the antibody-inactive infection steady state S1

exists and it is G.A.S. Figure 2 displays the numerical
solutions of the system with IV1-IV4. The results
illustrate the theoretical results presented in Theorem 4.2.
It is noticeable that, the solutions of the system eventually
converge to the steady state
S1 = (360,21.3333,35.5556,0,0). In this case, the patient
has no antibody immune response to DENV infection.

Case (III): φ = 0.0005,ρ1 = 0.005 and ρ2 = 0.001.
Then, we calculate R0 = 2.7778 > 1 and
R1 = 1.3889 > 1 and R2 = 0.4630 < R1. Theorems 3.2
and 4.3 state that the infected steady state with only active
heterologous antibody S2 = (500,16.6667,20,3.8889,0)
exists and it is G.A.S. Figure 3 displays the numerical
solutions of the system with IV1-IV4. The results support
the theoretical results presented in Theorem 4.3. In this
case the patient has only active heterologous antibody
immune response to DENV infection.

Case (IV): φ = 0.0005,ρ1 = 0.01 and ρ2 = 0.02.
Then, we calculate R0 = 2.7778 > 1 and
R1 = 1.8519 > 1 and R2 = 2.2222 > R1. According to
Theorems 3.2 and 4.4, the infected steady state with only
active homologous antibody
S3 = (800,6.6667,5,0,36.6667) exists and it is G.A.S.
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Fig. 1: Solutions of system (1)-(5) with different initial conditions for Case (I).
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Fig. 2: Solutions of system (1)-(5) with different initial conditions for Case (II).

Figure 4 illustrates and supports the results of Theorem
4.4. In this case, the patient has only active homologous
antibody immune response to DENV infection.

Table 1: The values of the parameters of system (1)-(5).

Parameter Value Parameter Value Parameter Value

λ 10 τ 5 ρ1 Varied

ξ 0.01 η 3 µ1 0.1

φ Varied ψ1 0.3 ρ2 Varied

ρ 0.3 ψ2 0.1 µ2 0.1

Second, we calculate the Jacobian matrix
J = J(x,y,v,z,w) of system (1)-(5) as:

J =











−ξ −φv 0 −φx 0 0
φv −ρ φx 0 0
0 τ −η −ψ2w−ψ1z −ψ1v −ψ2v

0 0 ρ1z ρ1v− µ1 0
0 0 ρ2w 0 ρ2v− µ2











.

Then, we calculate the eigenvalues λi, i = 1,2, ...,6 of the
matrix J at each steady state. The examined steady will
be locally stable if all its eigenvalues satisfy the following
condition:

Re(λi)< 0, i = 1,2, ...,6
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Fig. 3: Solutions of system (1)-(5) with different initial conditions for Case (III).
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Fig. 4: Solutions of system (1)-(5) with different initial conditions for Case (IV).

We use the values of the parameters φ , ρ1 and ρ2 given
in Cases (I)-(IV) to compute all positive steady states and
the corresponding eigenvalues. In Table 2, we present the
positive steady states, and the real parts of the eigenvalues,
whether the steady state is locally stable or unstable for
Cases (I)-(IV).
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Table 2: Local stability of positive steady states for Cases (I)-(IV).

Case Steady states (Re(λi), i = 1,2, ...,5) Stability

(I) S0 = (1000,0,0,0,0) (−3.09,−0.210,−0.1,−0.1,−0.01) stable

(II)
S0 = (1000,0,0,0,0)
S1 = (360,21.333,35.556,0,0)

(−3.729,0.429,−0.1,−0.1,−0.017)
(−3.301,−0.082,−0.013,−0.013,−0.064)

unstable

stable

(III)

S0 = (1000,0,0,0,0)
S1 = (360,21.333,35.556,0,0)
S2 = (500,16.667,20,3.889,0)

(−3.729,0.429,−0.1,−0.1,−0.01)
(−3.301,0.078,−0.013,−0.013,−0.064)
(−4.443,−0.015,−0.015,−0.08,−0.015)

unstable

unstable

stable

(IV)

S0 = (1000,0,0,0,0)
S1 = (360,21.333,35.556,0,0)
S2 = (666.667,11.111,10,8.519,0)
S3 = (800,6.667,5,0,36.667)

(−3.729,0.429,−0.1,−0.1,−0.01)
(−3.301,0.611,0.256,−0.013,−0.013)
(−5.814,−0.021,−0.021,0.1,−0.013)
(−6.916,−0.026,−0.026,−0.05,−0.012)

unstable

unstable

unstable

stable
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