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1 Introduction

Convexity theory describes a broad spectrum of very
interesting developments involving a link among various
fields of mathematics, physics, economics and
engineering sciences. Its development is viewed as the
simultaneous pursuit of several research areas. Recently,
various extensions and generalizations of convex
functions as well as convex sets have been investigated
using innovative ideas and techniques. The concept of
exponentially convex(concave) functions was considered
by Bernstein [1]. Avriel [2,3] introduced the concept of
r-convex functions. For further properties of the r-convex
functions in mathematical programming and optimization
theory, see Antczak [4] and the references therein. For the
applications of exponentially convex functions in
information theory, big data analysis, machine learning
and statistic, see [1,2,3,4,5,6,7]. Dragomir and Gomm
[8] proved that if the function F is a convex function, then

eF(x) is exponentially convex functions and derived the
Hermite-Hadamard inequalities. For different types of
exponentially convex functions, see [9,10,11,12]. Noor
and Noor[13,14,15,16,17,18] addressed the fundamental
properties of the characterizations of various classes of
exponentially convex functions and their variant forms.

Motivated by the ongoing research in this interesting,
applicable and dynamic field, we again consider the

concept of general exponentially convex functions. We
discuss the basic properties of the general exponentially
convex functions. It is shown that the general
exponentially convex functions include the exponentially
convex functions as special case. We have proved that the
distinctive properties exponentially convex(concave)
functions. Several new concepts have been introduced and
investigated. We show that the local minimum of the
exponentially convex functions is the global minimum.
The difference (sum) of the exponentially convex
function and exponentially affine convex function is again
a exponentially convex function. The optimal conditions
of the differentiable exponentially convex functions can
be characterized by a class of variational inequalities,
which is itself an interesting outcome of our main results.
The ideas and techniques of this paper may inspire the
interested reader to explore the applications of the general
exponentially convex functions in different branches of
pure and applied sciences.

2 Formulations and basic facts

Let K be a nonempty closed set in a real Hilbert space H.
We denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm,
respectively. Let F : K → R be a continuous function.

Definition 1.[7].The set K in H is said to be convex set, if

u+ t(v− u)∈ K, ∀u,v ∈ K, t ∈ [0,1].
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Definition 2.A function F is said to be convex, if

F((1− t)u+ tv)≤ (1− t)F(u)+ tF(v),∀u,v ∈ K, t ∈ [0,1].

We now consider a new concept of the generalized
exponentially convex function, which is the main
motivation of this paper.

Definition 3.A positive function F is said to be generalized

exponentially convex function, if there exists s > 1, such

that

sF((1−t)u+tv) ≤ (1− t)sF(u)+ tsF(v)
,∀u,v ∈ K, t ∈ [0,1].

One can easily prove that if F is a convex function, then

sF(u) is a generalized exponentially convex function. In

particular, one can show that su2
is a generalized

exponentially convex function, but it is not a convex
function.
We note that if s = e, definition 3 reduces to the
exponentially convex function, which is mainly due to
Noor and Noor [13,14]:

Definition 4.[13,14] A positive function F is said to be

exponentially convex function, if

eF((1−t)u+tv) ≤ (1− t)eF(u)+ teF(v)
, ∀u,v ∈ K, t ∈ [0,1].

We remark that Definition 4 can be rewritten in the
following equivalent way, which is due to Avriel [2,3]
and Antczak [4].

Definition 5.A function F is said to be exponentially

convex function, if

F((1− t)a+ tb)≤ log[(1− t)eF(a)+ teF(b)],

∀a,b ∈ K, t ∈ [0,1].

A function F is called the exponentially concave function,
if −F is a exponentially convex function.
It is obvious that two concepts are equivalent. This
equivalent has been used to discuss various aspects of the
exponentially convex functions. One can also deduce the
concept of exponentially convex functions from r-convex
functions.
For the applications of the exponentially concave function
in the communication and information theory, we have
the following example.

Example 1.[5]The error function

er f (x) =
2√
π

∫ x

0
e−t2

dt,

becomes an exponentially concave function in the form
er f (

√
x), x ≥ 0, which describes the bit/symbol error

probability of communication systems depending on the
square root of the underlying signal-to-noise ratio. This
reveals that the exponentially concave functions play
important part in communication theory and information
theory.

Definition 6.The function F on the convex set K is said to

be generalized exponentially quasi convex, if, for s > 1,

sF(u+t(v−u)) ≤ max{sF(u)
,sF(v)}, ∀u,v ∈ K, t ∈ [0,1].

Definition 7.The function F on the convex set K is said to

be generalized exponentially log-convex, if, for s > 1,

sF(u+t(v−u)) ≤ (sF(u))1−t(sF(v))t
,

∀u,v ∈ K, t ∈ [0,1],

where F(·)> 0.

From the aforementioned definitions, we have

sF(u+t(v−u)) ≤ (sF(u))1−t(sF(v))t

≤ (1− t)sF(u)+ tsF(v))

≤ max{sF(u)
,sF(v)}.

This shows that every generalized exponentially
log-convex function is a generalized exponentially convex
function and generalized exponentially convex function is
a generalized exponentially quasi-convex function.
However, the converse is untrue.

Let K = I = [a,b] be the interval. We now define the
generalized exponentially convex functions on the
interval I = [a,b].

Definition 8.Let I = [a,b]. Then F is generalized

exponentially convex function, if and only if,
∣

∣

∣

∣

∣

∣

1 1 1
a x b

sF(a) sF(x) sF(b)

∣

∣

∣

∣

∣

∣

≥ 0; a ≤ x ≤ b, s > 1.

One can easily show that the followings are equivalent:

1.F is a generalized exponentially function.

2.sF(x) ≤ sF(a)+ sF(b)−eF(a)

b−a
(x− a).

3. sF(x)−sF(a)

x−a
≤ sF(b)−sF(a)

b−a
.

4.(b− x)sF(a)+(a− b)sF(x)+(x− a)sF(b))≥ 0.

5. sF(a)

(b−a)(a−x) +
sF(x)

(x−b)(a−x) +
sF(b

(b−a)(x−b) ≤ 0,

where x = (1− t)a+ tb∈ [0,1]. s > 1.

Definition 9.A positive function F is said to be generalized

exponentially affine convex function, if there exists s > 1,
such that

sF((1−t)u+tv) = (1− t)sF(u)+ tsF(v)
,∀u,v ∈ K, t ∈ [0,1].

One can show that the the product of two generalized
exponentially convex functions is again a generalized
exponentially convex function.
One can also prove that a function F is a generalized
exponentially convex function, if and only if, it satisfies
the inequality

sF( a+b
2 ) ≤ 1

(b− a) lns

∫ b

a
sF(x)dx

≤ 1

2
{sF(a)+ sF(b)}, a,b ∈ [a,b].

which is called the Hermite-Hadamard type inequality.
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3 Main results

In this section, we consider some basic properties of
generalized exponentially convex functions.

Theorem 1.Let F be a strictly generalized exponentially

convex function. Then any local minimum of F is a global

minimum.

Proof.Let the strictly generalized exponentially convex
function F have a local minimum at u ∈ K. Assume the
contrary, that is, sF(v) < sF(u) for some v ∈ K. Since F is
generalized exponentially convex,

sF(u+t(v−u))
< tsF(v)+(1− t)sF(u)

, for 0 < t < 1.

Thus

sF(u+t(v−u))− sF(u)
< t[sF(v)− sF(u)]< 0,

from which it follows that

sF(u+t(v−u))
< sF(u)

,

for arbitrary small t > 0, contradicting the local minimum.

Theorem 2.If the function F on the convex set K is

generalized exponentially convex, the level set

Lα = {u ∈ K : sF(u) ≤ α, α ∈ R} is a convex set.

Proof.Let u,v ∈ Lα . Then sF(u) ≤ α and sF(v) ≤ α. Now,
∀t ∈ (0,1), w = v+ t(u−v)∈ K, since K is a convex set.
Thus, by the generalized exponentially convexity of F, we
have

sF(v+t(u−v)) ≤ (1− t)sF(v)+ tsF(u) ≤ (1− t)α + tα = α,

from which it follows that v+ t(u− v) ∈ Lα Hence Lα is
convex set.

Theorem 3.A function F is a generalized exponentially

convex on the convex set K, if and only if

epi(F) = {(u,α) : u ∈ K : sF(u) ≤ α,α ∈ R}

is a convex set.

Proof.Assume thatF is a generalized exponentially convex
function. Let

(u,α), (v,β ) ∈ epi(F).

Then it follows that sF(u) ≤ α and sF(v) ≤ β . Thus, ∀t ∈
[0,1], u,v ∈ K, we have

sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(v) ≤ (1− t)α + tβ ,

which implies that

(u+ t(v− u),(1− t)α+ tβ ) ∈ epi(F).

Thus epi(F) is a convex set. Conversely, let epi(F) be a

convex set. Let u,v ∈ K. Then (u,sF(u)) ∈ epi(F) and

(v,sF(v)) ∈ epi(F). Since epi(F) is a convex set, we must
have

(u+ t(v− u),(1− t)sF(u)+ tsF(v)) ∈ epi(F),

which implies that

sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(u)
.

This shows that F is a generalized exponentially convex
function.

Theorem 4.The function F is a generalized exponentially

quasi convex, if and only if, the level set Lα = {u ∈ K,α ∈
R : sF(u) ≤ α} is a convex set.

Proof.Let u,v ∈ Lα . Then u,v ∈ K and max(sF(u),sF(v))≤
α. Now for t ∈ (0,1),w = u+ t(v− u) ∈ K, We have to
prove that u+ t(v− u) ∈ Lα . By the exponentially quasi
convexity of F, we have

sF(u+t(v−u)) ≤ max(sF(u)
,sF(v))≤ α,

which implies that u+ t(v− u) ∈ Lα , indicating that the
level set Lα is indeed a convex set.

Conversely, assume that Lα is a convex set. Then for
any
u,v ∈ Lα , t ∈ [0,1], u+ t(v− u)∈ Lα . Let u,v ∈ Lα for

α = max(sF(u)
,sF(v)) and sF(v) ≤ sF(u)

.

Then from the definition of the level set Lα , it follows that

sF(u+t (v,u)) ≤ max(sF(u)
,sF(v))≤ α.

Thus F is a generalized exponentially quasi convex
function. This completes the proof.

Theorem 5.Let F be a generalized exponentially convex

function.. Let µ = infu∈K F(u). Then the set E = {u ∈ K :

sF(u)= µ} is a convex set of K. If F is strictly exponentially

, then E is a singleton.

Proof.Let u,v ∈ E. For 0 < t < 1, let w = u+ t(v− u).
Since F is a generalized exponentially convex function,
then

F(w) = sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(v)

= tµ +(1− t)µ = µ ,

which implies that w ∈ E. Hence E is a convex set. For
the second part, assume that F(u) = F(v) = µ . Since K is
a convex set, then for 0 < t < 1,u + t(v − u) ∈ K.

Furthermore, since F is strictly exponentially convex,

sF(u+t(v−u))
< (1− t)sF(u)+ tsF(v)

= (1− t)µ + tµ = µ .

This contradicts the fact that µ = infu∈K F(u) and hence
the result follows.
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Theorem 6.If F is a generalized exponentially convex

function such that

sF(v) < sF(u),∀u,v ∈ K, then F is a strictly generalized

exponentially quasi convex function.

Proof.By the generalized exponentially convexity of the
function F,

∀u,v ∈ K, t ∈ [0,1], we have

sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(v)
< sF (u),

since sF(v) < sF(u), which shows that the function F is
strictly exponentially quasi convex.

The nest section addresses some properties of the
differentiable exponentially convex functions.

Theorem 7.Let F be a differentiable function on the

convex set K. Then the function F is generalized

exponentially convex function, if and only if,

sF(v)− sF(u)≥ 〈sF(u)F ′(u)ln lns,v− u〉, (1)

∀v,u ∈ K, s > 1.

Proof.Let F be a generalized exponentially convex
function. Then

sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(v)
, ∀u,v ∈ K,

which can be written as

sF(v)− sF(u) ≥ { sF(u+t(v−u))− sF(u)

t
}.

Taking the limit in the above-mentioned inequality as t →
0 , we have

sF(v)− sF(u) ≥ 〈sF(u)F ′(u) lns,v− u)〉,
which is (1), the required result.

Conversely, let (1) hold. Then ∀u,v ∈ K, t ∈ [0,1], vt =
u+ t(v− u)∈ K, we have

sF(v)− sF(vt ) ≥ 〈sF(vt )F ′(vt) ln s,v− vt)〉
= (1− t)〈sF(vt )F ′(vt) ln s,v− u〉. (2)

Similarly, we have

sF(u)− sF(vt ) ≥ 〈eF(vt )F ′(vt) ln s,u− vt)〉
= −t〈eF(vt )F ′(vt) ln s,v− u〉. (3)

Multiplying (2) by t and (3) by (1 − t) and adding the
resultant, we have

sF(u+t(v−u)) ≤ (1− t)sF(u)+ tsF(v)
,

showing that F is a generalized exponentially convex
function.

Remark.From (1), we have

sF(v)−F(u)− 1 ≥ 〈F ′(u) lns,v− u〉, ∀v,u ∈ K,

which can be written as

F(v)−F(u)≥ log{1+ 〈F ′(u) lns,v− u〉} ∀v,u ∈ K, (4)

Changing the role of u and v in (4), we also have

F(u)−F(v)≥ log{1+ 〈F ′(v) lns,u− v〉} ∀v,u ∈ K, (5)

Adding (4) and (5), we have

〈F ′(u) lns−F ′(v) lns,u− v〉
≥ (〈F ′(u) lns,u− v〉)(〈F ′(v) lns,u− v〉)

which express the monotonicity of the differential F ′(.) of
the generalized exponentially convex function.

Theorem 7 enables us to introduce the concept of the
generalized exponentially monotone operators, which
appears to be new ones.

Definition 10.The differential F ′(.) is said to be

generalized exponentially monotone, if

〈sF(u)F ′(u) lns− sF(v)F ′(v) lns,u− v〉 ≥ 0, ∀u,v ∈ H.

Definition 11.The differential F ′(.) is said to be

generalized exponentially pseudo-monotone, if

〈sF(u)F ′(u) lns,v− u〉 ≥ 0,

⇒ 〈sF(v)F ′(v) lns,v− u〉 ≥ 0, ∀u,v ∈ H.

From these definitions, it follows that generalized
exponentially monotonicity implies generalized
exponentially pseudo-monotonicity, but the converse is
untrue.

Theorem 8.Let F be differentiable on the convex set K.

Then (1) holds, if and only if, F ′ satisfies

〈sF(u)F ′(u) lns− sF(v)F ′(v) lns,u− v〉 ≥ 0, (6)

∀u,v ∈ K.

Proof.Let F be a generalized exponentially convex
function on the convex set K. Then, from Theorem 3.1,
we have

sF(v)− sF(u) ≥ 〈sF(u)F ′(u) lns,v− u〉, ∀u,v ∈ K. (7)

Changing the role of u and v in (7), we have

sF(u)− sF(v) ≥ 〈sF(v)F ′(v) ln s,u− v)〉, (8)

∀u,v ∈ K.

Adding (7) and (8), we have

〈sF(u)F ′(u) lns− sF(v)F ′(v) lns,u− v〉 ≥ 0,

which shows that F ′(.) is a generalized exponentially
monotone.
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Conversely, from (6), we have

〈sF(v)F ′(v) lns,u− v〉 ≤ 〈sF(u)F ′(u) lns,u− v)〉. (9)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1]
vt = u+ t(v− u)∈ K.

Taking v = vt in (9), we have

〈sF(vt )F ′(vt) lns,u− vt〉 ≤ 〈sF(u)F ′(u) lns,u− vt〉
= −t〈sF(u)F ′(u) lns,v− u〉,

which implies that

〈sF(vt )F ′(vt)s ln,v− u〉 ≥ 〈sF(u)F ′(u) lns,v− u〉. (10)

Consider the auxiliary function

ξ (t) = sF(u+t(v−u))
,

from which, we have

ξ (1) = sF(v)
, ξ (0) = sF(u)

.

Then, from (10), we have

ξ ′(t) = 〈sF(vt)F ′(vt) lns,v− u〉 (11)

≥ 〈eF(u)F ′(u) lns,v− u〉. (12)

Integrating (11) between 0 and 1, we have

ξ (1)− ξ (0) =

∫ 1

0
g′(t)dt

≥ 〈sF(u)F ′(u) lns,v− u〉.
Thus it follows that

sF(v)− eF(u) ≥ 〈sF(u)F ′(u) lns,v− u〉,
which is the required (1).

We now give a necessary condition for exponentially
pseudo-convex function.

Theorem 9.Let F ′ be generalized exponentially

pseudomonotone. Then F is a generalized exponentially

pseudo-convex function.

Proof.Let F ′ be an exponentially pseudomonotone. Then,

〈sF(u)F ′(u) lns,v− u〉 ≥ 0,∀u,v ∈ K.

implies that

〈sF(v)F ′(v) lns,v− u〉 ≥ 0. (13)

Since K is an convex set, ∀u,v ∈ K, t ∈ [0,1],
vt = u+ t(v− u)∈ K.

Taking v = vt in (13), we have

〈sF(vt )F ′(vt) lns,v− u〉 ≥ 0. (14)

Consider the auxiliary function

ξ (t) = sF(u+t(v−u)) = sF(vt), ∀u,v ∈ K, t ∈ [0,1],

which is differentiable, since F is differentiable function.
Then, using (14), we have

ξ ′(t) = 〈sF(vt)F ′(vt) lns,v− u)〉 ≥ 0.

Integrating the above-mentioned relation between 0 to 1,
we have

ξ (1)− ξ (0) =
∫ 1

0
g′(t)dt ≥ 0,

that is,

sF(v)− sF(u) ≥ 0,

showing that F is a generalized exponentially
pseudo-convex function.

Definition 12.The function F is said to be sharply

generalized exponentially pseudo convex, if

〈sF(u)F ′(u) lns,v− u〉 ≥ 0

⇒
F(v) ≥ sF(v+t(u−v))

, ∀u,v ∈ K, t ∈ [0,1].

Theorem 10.Let F be an sharply generalized

exponentially pseudo convex function on K. Then

〈sF(v)F ′(v) lns,v− u〉 ≥ 0, ∀u,v ∈ K.

Proof.Let F be a sharply generalized exponentially pseudo
convex function on K. Then

sF(v) ≥ sF(v+t(u−v))
, ∀u,v ∈ K, t ∈ [0,1].

from which we have

0 ≤ lim
t→0

{ sF(v+t(u−v))− sF(v)

t
}

= 〈sF(v)F ′(v) lns,v− u〉,
the required result.

Definition 13. A function F is said to be a pseudo convex

function, if there exists a strictly positive bifunction B(., .),
such that

sF(v)
< sF(u)

⇒
sF(u+t(v−u))

< sF(u)+ t(t − 1)B(v,u),∀u,v ∈ K, t ∈ [0,1].

Theorem 11. If the function F is exponentially convex

function such that sF(v) < sF(u), the function F is

exponentially pseudo convex.

Proof. Since sF(v) < sF(u) and F is exponentially convex
function, then ∀u,v ∈ K, t ∈ [0,1], we have

sF(u+t l(v,u)) ≤ sF(u)+ t(sF(v)− sF(u))

< sF(u)+ t(1− t)(sF(v)− sF(u))

= sF(u)+ t(t − 1)(sF(u)− sF(v)))

< sF(u)+ t(t − 1)B(u,v),

where B(u,v) = sF(u)− sF(v) > 0, the required result. This
shows that the function F is a generalized exponentially
convex function.
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Now, we show that the difference of exponentially
convex function and exponentially affine convex function
is again an exponentially convex function.

Theorem 12. Let f be a exponentially affine convex

function. Then F is a exponentially convex function, if and

only if, g = F − f is a exponentially convex function.

Proof. Let f be exponentially affine convex function.
Then

s f ((1−t)u+tv) = (1− t)s f (u)+ ts f (v)
,∀u,v ∈ K. (15)

From the exponentially convexity of F, we have

sF((1−t)u+tv) ≤ (1− t)sF(u)+ tsF(v)
,∀u,v ∈ K. (16)

From (15 ) and (16), we have

sF((1−t)u+tv)− s f ((1−t)u+tv) (17)

≤ (1− t)(sF(u)− s f (u))+ t(sF(v)− s f (v)), (18)

from which it follows that

sH((1−t)u+tv) = sF((1−t)u+tv)− s f ((1−t)u+tv)

≤ (1− t)(sF(u)− s f (u))+ t(sF(v)− s f (v)),

which show that H = F − f is an exponentially convex
function.
The inverse implication is obvious.

We now discuss the optimality condition for the
differentiable generalized exponentially convex functions,
which is the main motivation of our next result.

Theorem 13. Let F be a differentiable generalized

exponentially convex function. Then u ∈ K is the minimum

of the function F, if and only if, u ∈ K satisfies the

inequality

〈sF(u)F ′(u) lns,v− u〉 ≥ 0, ∀u,v ∈ K. (19)

Proof.Let u ∈ K be a minimum of the function F. Then

F(u)≤ F(v),∀v ∈ K.

from which, we have

sF(u) ≤ sF(v)
,∀v ∈ K. (20)

Since K is a convex set, ∀u,v ∈ K, t ∈ [0,1], vt = (1−
t)u+ tv ∈ K.

Taking v = vt in (20), we have

0 ≤ lim
t→0

{ sF(u+t(v−u))− sF(u)

t
}

= 〈sF(u)F ′(u) lns,v− u〉. (21)

Since F is differentiable generalized exponentially convex
function,

sF(u+t(v−u)) ≤ sF(u)+ t(eF(v)− eF(u)
, u,v ∈ K, t ∈ [0,1],

from which, using (21), we have

sF(v)− sF(u) ≥ lim
t→0

{ sF(u+t(v−u))− sF(u)

t
}

= 〈sF(u)F ′(u) lns,v− u〉 ≥ 0,

from which , we have

sF(v)− sF(u) ≥ 0,

which implies that

F(u)≤ F(v), ∀v ∈ K.

This shows that u∈ K is the minimum of the differentiable
exponentially convex function, the required result.

Remark.The problem of finding u ∈ Ksuch that

〈sF(u)F ′(u) lns,v− u〉 ≥ 0, ∀u,v ∈ K,

is called the exponentially variational inequality and
appears to be new one. For the applications, formulations,
numerical methods and other aspects of variational
inequalities, see Noor [19] and the references therein.

4 Conclusion

In this paper, we have introduced some new concepts of
the generalized exponentially convex functions. We
investigated several basic properties of the generalized
exponentially convex functions and discussed their
relations with convex functions. Optimality conditions are
characterized by a class of variational inequalities.
Several interesting results characterizing the generalized
exponentially convex functions were obtained. The results
represent a significant improvement of previously known
results We have studied the basic properties of these
functions. The interested readers may explore the
applications and other properties of the generalized
exponentially convex functions in various fields of pure
and applied sciences. This is an interesting direction of
future research.
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