
Appl. Math. Inf. Sci. 14, No. 4, 617-626 (2020) 617

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/140410

Parameter Inference of a Stochastic SIS Model of

Transmission of HIV/AIDS With Immigration Effect

Youness El Ansari∗, Ali El Myr and Lahcen Omari

Department of Mathematics, Laboratory of Computer Sciences Modeling and systems, Faculty of Sciences Dhar-Mehraz, University

Sidi Mohamed Ben Abdellah, B.P. 1796-Atlas, Fez, Morocco

Received: 4 Feb. 2020, Revised: 10 May 2020, Accepted: 22 May 2020

Published online: 1 Jul. 2020
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1 Introduction

The parameter estimation has remained a great non-trivial
problem in stochastic differential equations (SDE). Due
to its importance in many areas of engineering and
sciences, especially in epidemiology, several methods and
techniques are described in the pieces of literature to
address the parameter estimation issue, see for
instance [1–4]. Most papers relative to this subject,
particularly in the continuous case, present several
methods of parameter estimation that we can only apply
in the case of some particular one-dimensional stochastic
models [5, 6], or for some particular two-dimensional
models with constant population sizes [7].

To study the effect of immigration of new infected
individuals, from the outside of a population, to the
dynamic of a communicable disease, such as bacterial
disease (e.g. meningitis and pneumococcus) or sexually
transmitted disease (e.g. HIV/AIDS), F. Brauer and P. van
den Driessche [8] have proposed the following
deterministic model:

{

S′t = (1− p)A−β StIt − µSt + γIt ,
I′t = pA+β StIt − (µ + γ +α)It .

(1)

In this model, St denotes the number of individuals
susceptible to have an infection at time t, and It denotes

the number of infected individuals at time t. The positive
parameters in the model are presented by giving the
following demographic and epidemiological assumptions:

1. There exists a constant flow A of new individuals into
the population in unit time, where a fraction p,0≤ p≤
1, of A is infective.

2. There is a constant per capita natural death rate µ > 0
in each class.

3. There exists a fraction γ ≥ 0 of infected individuals
who get recovered and a fraction α ≥ 0 of infected
individuals that die from the infection in unit time.

4. β is the contact rate. Each infected individual
produces β Nt contacts sufficient to transmit the
infection in unit time, where Nt = St + It .

El Ansari et al. [9] have considered the case where the
constant per capita natural death rate µ is subject to
environmental noise, by considering the following SIS

stochastic model:

{

dSt = ((1− p)A−β StIt − µSt + γIt)dt −σStdBt ,
dIt = (pA+β StIt − (µ + γ +α)It)dt −σ ItdBt .

(2)

The technique of parameter perturbation (see for instance:
Zhang et al. [10]) is used here to construct this model, the
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parameter µ in the two equations of (1) is replaced by
µ +σ Ḃt , where Bt is a one-dimensional Brownian motion
and σ is the intensity of the perturbation. The choice of
the white noise here is appropriate because it is a case of
environmental random variability in terrestrial systems
(see Steele [11] and Vasseur and Yodzis [12]).
AIDS incubation is the period between initial infection
with HIV/AIDS to development of its symptoms. This
period varies with the age at which infection occurs and
its median is estimated at ten years. However, some
studies (see for example, [13]) indicate that the life
expectancy of HIV-positive people after starting
combination antiretroviral therapy (cART) has improved
over time and currently can reach 43.3 years [95%
confidence interval (CI) 42.5-44.2 years]. Furthermore,
the vast majority of new HIV-positive people is from
adults. Due to these reasons and taking into consideration
the easy access to the cART, all over the world, we can
predict that the rate of infected people who die from the
infection tends to decline rapidly with time. Accordingly,
to model the spread of HIV/AIDS in a varying population
size and in presence of immigration effect, we suppose
the case where no death by the infection is registered
among infected individuals. That imposes to set a null
value to the parameter α in SDE (2). The SDE obtained
is:

{

dSt = ((1− p)A−β StIt − µSt + γIt)dt −σStdBt ,
dIt = (pA+β StIt − (µ + γ)It)dt −σ ItdBt ,

(3)

The equation of the total population size N(t) is obtained
by summing the two equations of model (3):

dNt = (A− µNt)dt −σNtdBt , (4)

with initial condition N0 = S0 + I0. One can see that this
model describes a special case of the mean reversion
process [14], with reversion rate µ , mean reversion level
A/µ , volatility σ , and a constant sensitivity of the
variance to the level of N(t) that equal 1. It should be
noted that there exist many other representations of the
mean reversion models, such as the Ornstein-Uhlenbeck
model, the CIR model proposed by Cox et al. [15] and the
CKLS model (see, Chan et al. [16]).

The present paper aims to use two techniques of
parameter estimation (which are based on the
Euler-maximum likelihood estimator) to estimate the
influential parameters µ ,σ and A of model (3), to
appreciate the credibility of these estimators by studying
their asymptotics (consistency and asymptotic
convergence), and to apply these results in a case study to
extract some information concerning the propagation of
HIV/AIDS in Morocco. The theory used to study the
asymptotics of the estimators has been derived from the
works of (Park and Phillips, [17]) and (Aı̈t-Sahalia and
Park, [18, 19]) .
The paper starts out with a reminder of some properties

concerning the dynamics of model (3) and some
preliminaries concerning the Euler-maximum likelihood
estimator and its convergence.
The next section details our main result. In the beginning,
we present the first parameter estimation procedure, in
which the explicit forms of the estimators of A,µ and σ
are presented. Next, in a new subsection, the results of the
second parameter estimation method are described. The
next subsection is devoted to investigate the consistency
and the asymptotic convergence of the previous
estimators. In the last subsection and adopting a case
study of HIV/AIDS prevalence in Morocco, we simulate
the different obtained results in order to extract some
information concerning the propagation of HIV/AIDS in
Morocco. Then, we compare the effectiveness of the two
techniques.
The last section is dedicated to conclusion and some
perspectives.

2 Preliminaries

2.1 Asymptotic convergence theorems of model

(3)

We present, first, some important theorems concerning the
asymptotic dynamics of model (3) (See: El Ansari et al.,
[9]).

Theorem 1. Suppose (S0, I0) ∈ R
2
+, then there exists a

unique positive solution to SDE (3) for t ≥ 0. This

solution remains in R
2
+ with probability 1.

Theorem 2. The solution of model (3) is stochastically

ultimate bounded and permanent for any initial value

(S0, I0) ∈R
2
+.

Theorem 3. For any positive initial value (S0, I0), the

variable It of model (3) is persistent in the mean a.s.,

more precisely,

liminf
t→+∞

1

t

∫ t

0
Isds ≥ pA

µ + γ
a.s.

Theorem 4. Let (St , It) be the solution of system (3). Then

for every t > 0, the distribution of (St , It) has a density

u(t,x,y) and there exists a unique density u∗(x,y) such

that:

lim
t→∞

∫∫

R2
|u(t,x,y)− u∗(x,y)|dxdy = 0.

2.2 Euler-maximum likelihood estimator

We give a description of the Euler-maximum likelihood
estimation method. Then, a theorem concerning the
consistency and asymptotic convergence of this estimator
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is presented.
Consider the time-homogeneous SDE:

dXt = a(Xt ,θ1)dt + b(Xt ,θ2)dBt , (5)

with initial condition X0 = x0. The function a is the drift
function and the function b, which is supposed not nil, is
the diffusion function. Let θ = (θ T

1 ,θ T
2 )T , we denote by

D = (x, x̄) the domain of the diffusion process Xt . The
Euler-Maruyama approximation of this SDE is:

Xi∆ −X(i−1)∆ ≃ a(X(i−1)∆ ,θ1)∆ + b(X(i−1)∆ ,θ2)

× (Bi∆ −B(i−1)∆)

with a step ∆ , the approximated transition density from x

to y is:

p(x,y,θ ) =
1√

2π∆b(x,θ2)
exp

[

− (y− x−∆a(x,θ1))
2

2∆b2(x,θ2)

]

.

Giving a sample of time span T and a step ∆ and n= T/∆ .
Let Θ be the parameter space, aθ represents the derivative
of the function a with respect to the parameter θ , the same

for bθ . The Euler-ML estimator θ̂ is obtained as:

θ̂ = argmax
θ∈Θ

L(θ ),

where L(θ ) is the log-likelihood function defined as:

L(θ ) =
n

∑
i=1

log p(x(i−1)∆ ,xi∆ ,θ ).

The following assumptions are given to show the
asymptotics of the Euler-ML estimator:

A.1: a(x,θ1) has its derivatives up to 6th order and b(x,θ2)
has its derivatives up to the 7th order, with respect to
x on D . a(x,θ1) and b(x,θ2) and their derivatives with
respect to x have their derivatives up to the 6th order,
with respect to θ on the interior of Θ .

A.2: Let f be the functions a or b or one of their derivatives
(with respect to x or ϑ ∈ (A,µ ,σ)) or b−1, f is locally
bounded on the domain D and there exists a positive
nondecreasing function κ f such that

1

κ f (T )
sup

t∈[0,T ]

| f (Xt)| →p 0 and T−pκ f (T )→ 0

as T → ∞ for some p > 0. κ f is called the asymptotic
function of f .

A.3: There exist positive nondecreasing functions ωθ1
and

ωθ2
such that

ω−2
θ1

(T )

∫ T

0

a2
θ1

b2
(Xt)dt and ω−2

θ2
(T )

∫ T

0

a2
θ2

b2
(Xt)dt

converge in distribution to some almost surely positive
definite random variables as T → ∞.

A.4: b2(x)> 0, for any x ∈ D .
A.5: Let κ1 and κ2 represent any combination of the

asymptotic functions in assumption A.2; they satisfy
as T → ∞ and ∆ → 0,

∆T → 0

∆ 1/4κ1(T κ2(T ))→ 0

A.6: Let κ represent one of the asymptotic functions in
(A.2), and κ̇ represent the corresponding asymptotic
function of the derivative of f with respect to the
parameter. For any ε > 0 we have

T−ε κ̇(T )

κ(T )
→ 0 as T → ∞

A.7: Let θ0 ∈ Θ and ω = Diag(ωθ1
(T ),∆−1/2ωθ2

(T )),
where ωθ1

and ωθ2
are the functions defined in

assumption (A.3). Let κ represent one of the
asymptotic functions in (A.2). Let Γ be the set of
functions of T and ∆ such that vω−1 → 0 as T → ∞.
We Define

NT,∆ =
{

θ :
∣

∣v′(θ −θ0)
∣

∣ ≤ 1,v ∈ Γ
}

.

We have

sup
θ∈NT,∆

∣

∣

∣

κ(T,θ0)

κ(T,θ )

∣

∣

∣
→ 1

as T → ∞ subject to (A.5).

In order to determine the asymptotic convergence of the
Euler-ML estimator, we give the following theorem (see,
[20, Theorem 1., pp. 17]). Hereafter, A ≈ B means A−B is
of smaller order than B.

Theorem 5. If the assumptions A.1 to A.7 hold, the

asymptotic first order terms of Euler-ML estimator are

given, as follows:

θ̂1 −θ1 ≈
(

∫ T

0

aθ1
aT

θ1

b2
(Xt)dt

)−1
∫ T

0

aθ1

b
(Xt)dBt

θ̂2 −θ2 ≈
√

∆

2

(

∫ T

0

bθ2
bT

θ2

b2
(Xt)dt

)−1
∫ T

0

bθ2

b
(Xt)dVt

as T → ∞ and ∆ → 0 under (A.5). Vt is a standard

Brownian motion independent of Bt .

3 Main results

The first method detailed in the following is a direct
application of the Euler-maximum likelihood estimation.
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3.1 First method: Direct Euler-maximum

likelihood estimator

The numerical approximation of system (4) by
Euler-Maruyama scheme is:

N(ti) = N(ti−1)+ (A− µN(ti−1))∆i +N(ti−1)ξti , 1 ≤ i ≤ K.

where (ti)1≤i≤K is a subdivision of [0,T ], Ni = N(ti),∆i =
ti − ti−1 and ξti ∼ N(0,σ2∆i). We suppose that the steps
are all constant and ∆i = ∆ , 1 ≤ i ≤ K, and we define the
new variable:

Yi =
Ni −Ni−1 − (A− µNi−1)∆

Ni−1

= ξi, 1 ≤ i ≤ K.

Note that the random variables Yi, i = 1,2, . . . ,K, are
independent and identically distributed (iid), and that all
follow the law N(0,σ2∆). Let θ = (A,µ ,σ)T , the density
function of Yi can be written as:

f (Yi,θ ) =
1

σ
√

2π∆

× exp

[

−1

2σ2∆

(

Ni −Ni−1 − (A− µNi−1))∆

Ni−1

)2
]

,

where 1 ≤ i ≤ K. Thus,

logL(θ ) =−K

2
log(2πσ2∆)

− 1

2σ2∆

K

∑
i=1

(

Ni −Ni−1 − (A− µNi−1)∆

Ni−1

)2

.

The corresponding partial derivatives with respect to A, µ
and σ2 are:

∂ logL(θ )

∂ µ
=− 1

σ2

K

∑
i=1

(

Ni −Ni−1 − (A− µNi−1)∆

Ni−1

)

∂ logL(θ )

∂A
=

1

σ2

K

∑
i=1

(

Ni −Ni−1 − (A− µNi−1)∆

N2
i−1

)

∂ logL(θ )

∂σ2
=− K

2σ2
+

1

2∆(σ2)2

×
K

∑
i=1

(

Ni −Ni−1 − (A− µNi−1)∆

Ni−1

)2

The estimator θ̂ of θ verifies θ̂ = argmax
θ

(log(L)), which

is equivalent to
∂ logL(θ ,ξi)

∂ µ
=

∂ logL(θ ,ξi)

∂A
=

∂ logL(θ ,ξi)

∂σ2
= 0,

∂ 2 logL(θ ,ξi)

∂ µ2
≤ 0,

∂ 2 logL(θ ,ξi)

∂A2
≤ 0

and
∂ 2 logL(θ ,ξi)

∂ (σ2)2
≤ 0.

Resolving this last problem, we found the estimators µ̂, Â

and σ̂2 of µ , A and σ2:

µ̂ =
−Y (Y −Z)+W(K −X)

∆ (WK −Y2)
(6)

Â =
KZ −YX

∆ (WK −Y 2)
(7)

σ̂2 =
1

∆K

K

∑
i=1

(

Ni −Ni−1 −
(

Â− µ̂Ni−1

)

∆

Ni−1

)2

(8)

where

X =
K

∑
i=1

Ni

Ni−1

, Y =
K

∑
i=1

1

Ni−1

, Z =
K

∑
i=1

Ni

N2
i−1

and W =
K

∑
i=1

1

N2
i−1

(9)

3.2 Second method: Indirect Euler-maximum

likelihood estimator

In this subsection, the Euler-maximum likelihood
estimation is used differently to establish explicit forms
for the estimators of the parameters A,µ and σ of model
(3).
Let r(t) = E(N(t)), t ≥ 0. From (4), we have:

N(t) = N(0)+

∫ t

0
(A− µN(s))ds−σ

∫ t

0
N(s)dBs.

Taking the expectation and using the Fubini theorem, we
get:

E(N(t)) = E(N(0))+
∫ t

0
(A− µE(N(s)))ds

−σE

(

∫ t

0
N(s)dBs

)

.

According to (Mao, [21]), we have

E

(

∫ t

0
N(s)dB(s)

)

= 0. Thus, we obtain the following

ordinary differential equation:

ṙ(t) = A− µr(t), (10)

which has the following solution:

r(t) = (r(0)− A

µ
)e−µt +

A

µ
.
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Substituting the value
A

µ
by r(t)+

ṙ(t)

µ
in (4), we get:

dN(t) = µ

(

r(t)+
ṙ(t)

µ
−N(t)

)

dt −σN(t)dBt . (11)

With a subdivision (ti)0≤i≤K of [0,T ] (with, t0 = 0), we
can get a discrete observation (Ni)i=0...K of N(t), where
Ni = N(ti). Let ri = r(ti) and ṙi = ṙ(ti), i = 0,1, ...,K. We
suppose that ∆i = ti − ti−1, i = 1, ...,K, are all constants
and equal ∆ . Considering the initial value N0 and applying
the Euler-Maruyama scheme to equation (11), we get:

Ni = Ni−1 +(µri−1 + ṙi−1 − µNi−1)∆ +Ni−1ξi,

i = 1, ...,K

where ξi =−σ(Bti −Bti−1
)∼ N(0,σ2∆). We have:

ξi =
Ni −Ni−1 − (µ(ri−1 −Ni−1)+ ṙi−1)∆

Ni−1

, i = 1, . . . ,K

and ξi, i = 1, . . . ,K, are iid random variables. Thus, the
normal density function for each ξi is given by:

f (ξi,θ ) =
1

σ
√

2π∆

× exp

[

−1

2σ2∆

(

Ni −Ni−1 − (µ(ri−1 −Ni−1)+ ṙi−1)∆

Ni−1

)2
]

,

where θ =





A

µ
σ



.

Since the variables ξi, i = 1,2, ...,K, are independents, the
joint density function is:

f (ξ1,ξ2, ...,ξK) =
K

∏
i=1

f (ξi,θ ).

Thus, the likelihood function is given as:

L(θ ,ξi) =

(

1

2πσ2∆

)K
2

× exp

[

−1

2σ2∆

K

∑
i=1

(

Ni −Ni−1 − (µ(ri−1 −Ni−1)+ ṙi−1)∆

Ni−1

)2
]

,

consequently,

logL(θ ,ξi) =
−K

2
log(2πσ2∆)

+

[

−1

2σ2∆

K

∑
i=1

(

Ni −Ni−1 − (µ(ri−1 −Ni−1)+ ṙi−1)∆

Ni−1

)2
]

.

The MLEs µ̂ and σ̂ for the parameters µ and σ verify:

µ̂ = argmax
µ

(logL(θ ,ξi)) and σ̂ = argmax
σ

(logL(θ ,ξi))

i.e.
∂ logL(θ ,ξi)

∂ µ
=

∂ logL(θ ,ξi)

∂σ
= 0,

∂ 2 logL(θ ,ξi)

∂ µ2
≤ 0

and
∂ 2 logL(θ ,ξi)

∂σ2
≤ 0. Resolving this problem, we found

the estimators µ̂ and σ̂ of µ and σ :

µ̂ =
∑K

i=1

(

(Ni −Ni−1 − ṙi−1∆) (ri−1 −Ni−1)/N2
i−1

)

∑K
i=1 [(ri−1 −Ni−1)/Ni−1]

2 ∆
(12)

and

σ̂ =

√

1

K∆

K

∑
i=1

(

Ni −Ni−1 − [µ̂ (ri−1 −Ni−1)+ ṙi−1]∆

Ni−1

)2

(13)

From equation (10), we have

A = ṙ(t)+ µr(t)

Thus, an estimator Â of A is given by:

Â =
1

K

K

∑
i=1

ṙi +
µ̂

K

K

∑
i=1

ri = ¯̇r+ µ̂ r̄. (14)

It remains to estimate (ri)i=1...K and (ṙi)i=1...K from the
observation N = (N0,N1, ...NK). For this purpose, we
refer to (Tifenbach, [22]). The expected value r(t) can be
approximated by taking a convolution of the sample path
N = (N0,N1, ...Nk) of the process N(t):

ri =
M

∑
j=−M

c jNi− j, i = 0, ...,K (15)

where c j( j = −M, . . . ,M) are the weights of the
convolution. Several convolutions exist: The moving
average denoted by c1 remains the most common, in
which all the weights are constants,

c j =
1

2M+ 1
, j =−M, . . . ,M

And, the convolution c2, where the weights are given by,

c j =
(2M− | j|)
M(3M+ 1)

, j =−M, . . . ,M.
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The simulation in Figure 1 with different values of
parameters and initial conditions shows the path of the
process N(t) compared with its expected value that uses
the moving average convolution c1, and the one that uses
the convolution c2.
A simple view of these simulations shows that, for all
t ≥ 0 these expected values are close to each others, but
we can observe that the expected value with the
convolution c2 may approximate r(t) = E(N(t)) more
precisely than the expected value with the moving
average c1.
To approximate the derivative ṙ(t) of r(t), we can use the
three points rule which is a numerical derivative
technique based on Taylor’s formula:

ṙi =
2ri+1 − 3ri + ri−1

∆
, for i = 1,2, ...,K − 1. (16)

For i = 0 or i = K, the derivate is given by:

ṙ0 =
r1 − r0

∆
, and ṙK =

rK − rK−1

∆
(17)

3.3 Convergence of estimators

The following theorem deals with the asymptotic
convergence of the estimators µ̂ , σ̂ and Â of the two
techniques.

Theorem 6. If the condition (24) holds, the estimators

µ̂ , σ̂ and Â, are consistent as T → ∞ and ∆ → 0.

Furthermore, we have:

√
T (µ̂ − µ)→d N(0,σ2) as T → ∞ (18)

√

T/∆ (σ̂ −σ)→d N(0,
σ2

2
) as T → ∞ (19)

√
T (Â−A)→d N(0,(r̄σ)2) as T → ∞ (20)

Proof. To ensure the asymtotics of the above Euler-ML

estimators θ̂ for each technique, we check first whether
the assumptions 1 to 7 are fulfilled:
The drift function and the diffusion function of SDE (4)
are a(x) = A− µx and b(x) = σx, respectively. The first
assumption (A.1) is clearly checked. The assumption
(A.4) is satisfied in D = (0,∞) since all the parameters
A,µ and σ are positive and N(t)> 0 for all t ≥ 0.

Let Xt = N−1
t , and applying Itô formula, we have,

dXt =
(

−AX2
t +(µ +σ2)Xt

)

dt +σXtdBt ,

So a−1(x) =−Ax2 +(µ +σ2)x.
Let f be the function a or one of its derivatives, with
respect to x or ϑ ∈ (A,µ ,σ), or b or one of its derivatives,
with respect to x or ϑ ∈ (A,µ ,σ), or a−1, J. Minsoo [20]
clarified that checking assumption (A.2) for the terms of

(a1): A = 2,µ = 1,σ = 0.4 and N0 = 1

(a2): A = 2.5,µ = 1.5,σ = 0.3 and N0 = 2

(a3): A = 3,µ = 0.7,σ = 0.1 and N0 = 4.

Fig. 1: The paths of N(t) and r(t), by two convolutions
c1 and c2, and for random sets of parameters and initial
conditions. In all simulations K = 1200.
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f is sufficient to conclude that assumption (A.2) is
verified for f . From [9], we have

lim
t→+∞

Nt

t
= 0, a.s.

Thus, we can easily see that

lim
T→+∞

supt∈[0,T ] |Nt |
T 2

= 0, a.s

which gives

sup
t∈[0,T ]

|Nt |= op(T
2), a.s. (21)

Thus, we can consider κ f (x) = x2.
In addition, Rudnicki [23] showed that lim

t→+∞
Xt = 0 a.s,

then lim
t→+∞

Xt

t
= 0 a.s, so

lim
T→+∞

supt∈[0,T ] |Xt |
T 2

= 0, a.s.

and

lim
T→+∞

supt∈[0,T ] |X2
t |

T 4
= 0, a.s.

Consequently,

sup
t∈[0,T ]

|Xt |= op(T
2), a.s. (22)

Thus, we can take κ f (x) = x2. And

sup
t∈[0,T ]

|X2
t |= op(T

4), a.s (23)

Hence, κ f (x) = x4.
For p > 0, the p-order derivatives (with respect to x or
ϑ ∈ (A,µ ,σ)) of a and b are equal to 0. Thus, from (21),
(22) and (23), we deduce that assumption (A.2) is verified
for a and all its derivatives, b and all its derivatives and
for a−1 in D = (0,∞).
The assumption (A.3) can be clearly verified by taking
ωA = ωµ = ωσ = T .
Let κ1 and κ2 be a combination of the asymptotics
function of (A.2). It is sufficient to verify assumption
(A.5) with the biggest order of k f , which is 4. Thus, (A.5)
is verified if

∆ 1/4T 4×5 = ∆ 1/4T 20 → 0, as T → ∞ and ∆ → 0. (24)

Practicaly, we can always make sure that this condition is
verified.
For assumption (A.6), we remark that for all asymptotic
function κ of (A.2), and for all parameter ϑ ∈ (A,µ ,σ)

the value
κϑ (T )

κ(T )
tends to 0 or 1 as T → ∞. Thus,

T−ε κϑ (T )

κ(T )
→ 0 for any ε > 0,

as T → ∞. Where κϑ is the derivative of κ with respect to
ϑ .
It remains to check the assumption (A.7). It is obvious to
see that for all θ ,θ0 ∈ R+, κ(T,θ ) and κ(T,θ0) have the
same order independently of the set
NT,∆ = {θ : |v′(θ −θ0)| ≤ 1} with v satisfying

vω−1 → 0 as T → ∞. Thus,

sup
θ∈NT,∆

∣

∣

∣

κ(T,θ0)

κ(T,θ )

∣

∣

∣
→ 1 as T → ∞.

All the assumptions 1 to 7 are checked for model (4), an
application of Theorem 5 gives:

µ̂ − µ ≈
∫ T

0
1
σ dBt

∫ T
0

1
σ 2 dt

≈
1
σ BT

1
σ 2 T

≈ σ
BT

T
, as T → ∞ (25)

We know that BT is normally distributed with mean zero
and variance T , so

√
T (µ̂ − µ)→d N(0,σ2), as T → ∞. (26)

We also have

σ̂ −σ ≈
√

∆

2

∫ T
0

Nt
σNt

dVt

∫ T
0

N2
t

σ 2N2
t

dt
≈
√

∆

2

σVT

T
, as T → ∞. (27)

VT is normally distributed with mean zero and variance T .
Thus,

√

T

∆
(σ̂ −σ)→d N(0,

σ2

2
), as T → ∞. (28)

From (14) we have

Â = ¯̇r+ µ̂ r̄,

so,

Â−A = ¯̇r+ µ̂ r̄− ṙ(t)− µr(t).

r(t) is continuous, according to the intermediate value
theorem, there exists τ ∈ (0,T ) such that r(τ) = r̄. We
can easily check that ṙ(τ) = ¯̇r thus,
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Â−A = ¯̇r− ṙ(τ)+ r̄(µ̂ − µ) = r̄(µ̂ − µ)

Hence,

Â−A = r̄(µ̂ − µ)≈ σ r̄
BT

T
, (29)

together with (25), we obtain:

√
T (Â−A)→d N(0,(r̄σ)2), as T → ∞ (30)

the equations (25), (27) and (29), together with

lim
t→∞

Bt

t
= 0 (see: strong law of large numbers (Mao, [21])

affirm the consistency of the estimators µ̂ , σ̂ and Â as
T → ∞.

Remark. We have from (26), (28) and (30), E(θ̂ ) → θ as

T → ∞. The estimators µ̂, σ̂ and Â are asymptotically
unbiased.

3.4 Case study: HIV/AIDS in Morocco

Table 1 presents the dynamics of HIV/AIDS in Morocco
between the years 1986 and 2014. This database is
obtained by aggregation of statistics and data from
Moroccan High Commission of Planning (HCP
(2018), [25]) and Ministry of Public Health with the
support of UNAIDS (Ministère de la santé du Maroc
(2014), [26]).
Based on this data and on the good reason that the
estimators are consistent and unbiaised for a large T , we
can simulate the two techniques above (see,
Subsection 3.1 and Subsection 3.2) to estimate the
parameters µ ,σ and A. We summarize the results in
Table 2. These results reveal that for the two techniques,
the values of the estimators of the three parameters are
close , but with a primary preference to the second
technique (for each parameter, the standard deviations
(SDs) of the estimators of the second technique, either for
the convolution c1 or for c2, are closer to zero than the
SDs of the estimators of the first technique).
For all the estimators, the estimated natural death rate µ̂ is
very close to the real rate µ = 0.0145 calculated by the
World Bank data (Maroc Data) [27]. Moreover, the
estimators of the annual flows of new individuals added to
the population are almost the same. A fraction p̂ of this
flow is infective. A simple view of the numbers of
infected individuals compared with susceptible
individuals can show that this fraction is very small (i.e.

p̂ << 1), however; we can not suppose that it is
inconsiderable. Consequently, the immigration of new
members infected by HIV/AIDS to Morocco slightly
affect the evolution of HIV/AIDS in the country.

Moreover, the intensity of perturbation of the parameter µ
does not exceed the value 0.127 in the two estimators.
This relatively small value explains how much the
randomness may affect the natural death rate in Morocco.
Stability of the disease is guaranteed by Theorem 4.

Table 1: Evolution of AIDS susceptible people and AIDS

infected people in sexually active population in the period from

1986 to 2014 in Morocco.

Year(t) S(t) I(t) N(t)
1986 10741840 145 10741985

1987 11031650 326 11031976

1988 11327176 551 11327727

1989 11629750 831 11630581

1990 11940106 1176 11941282

1991 12256252 1597 12257849

1992 12580404 2121 12582525

1993 12914674 2762 12917436

1994 13259076 3528 13262604

1995 13612534 4416 13616950

1996 13975394 5497 13980891

1997 14342946 6773 14349719

1998 14700834 8272 14709106

1999 15030004 10048 15040052

2000 15299530 12068 15311598

2001 15534066 14208 15548274

2002 15743746 16368 15760114

2003 15942988 18506 15961494

2004 16139624 20576 16160200

2005 16334864 22524 16357388

2006 16528246 24414 16552660

2007 16715348 26234 16741582

2008 16894294 28008 16922302

2009 17067916 29700 17097616

2010 17242432 31365 17273797

2011 17410406 32867 17443273

2012 17569800 34095 17603895

2013 17717800 35292 17753092

2014 17853318 36455 17889773

Table 2: Simulation of estimators for the first and second

techniques using Morocco’s HIV database in Table 1

.

Methods
Indirect E-ML estimator

Direct E-ML estimator
c1 c2

µ̂ 0.01514 0.01561 0.0162

SD 0.0243 0.0179 0.0243

σ̂ 0.1156912 0.123263 0.12626

SD 0.0231 0.0121 0.0254

Â 190387.94 192341.94 195643.94

SD 0.112 0.091 0.095
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4 Conclusion and perspectives

We have applied two techniques to estimate some
influential parameters of a stochastic model of
transmission of HIV/AIDS that supposes the arrival of
infective individuals from the outside. These estimators
are very credible because of their consistency and
asymptotic normality as shown Theorem 6.
The results are simulated in a case study of HIV/AIDS
spread in Morocco. The two estimators of each parameter
are close, but a comparison that depends on the standard
deviation (SD) gave a prior preference to the estimators of
the indirect Euler-maximum likelihood estimators. In
addition, we concluded some pieces of information
concerning the prevalence of HIV/AIDS in Morocco.
However, the estimation of the other parameters (study in
progress) is required to give more clarity about the spread
of HIV/AIDS in Morocco in the presence of infected
immigrants. Also, to answer some questions as: Does the
disease have a tendency to grow or to perish? Taking into
consideration the effect of immigration of infected
individuals, to what extent does the estimated contact rate
β̂ between susceptible and infected individuals affect the
evolution of HIV/AIDS in Morocco?.

Data Availability

The data has been obtained by aggregation of statistics
and data from Moroccan High Commission of Planing
(HCP (2018), [25]) and Ministry of Public Health with
the support of UNAIDS (Ministére de la santé du Maroc
(2014), [26]). The simulated data used to support the
findings of this study are provided by R software and are
included within the attached document.
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