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Abstract: The Lomax distribution has had wide application in a variety of fields. It has been used in the analysis of income data,

business failure data, and atmospheric data. In this article, we propose new approaches for the confidence intervals of the shape

parameter of the Lomax distribution based on the maximum likelihood (ML) approach, bootstrap (BS) approach, Bayesian approach

using Jeffreyss Prior (BJ) and Conjugate Prior (BC), and generalized probability weighted moment (GPWM). The performance of each

method is assessed by simulation in terms of the coverage probabilities and average widths by the Monte Carlo simulation. An extensive

simulation study indicates that the ML approach performs better than other approaches because it provides coverage probability close

to the nominal confidence level, and the average widths are narrow. Moreover, the GPWM approach is regarded as a recommended

method when the parameters α and β are high. We also illustrate our confidence intervals using a real world example in the area of

meteorology.
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1 Introduction

The Lomax distribution (i.e. also known as the Pareto of
the second type) was first introduced by K. S. Lomax in
1954 [1]. It is one of the well-known distributions that
benefit in various fields, such as actuarial science,
economics, engineering, reliability, as well as medical
and biological sciences. It provides a very good
alternative to common lifetime distributions when the
population may have a heavy-tailed distribution [2]. The
applications of the Lomax distribution in data modeling
of income and wealth were investigated by Harris [3] and
Atkinson and Harrison [4]. The model of size spectra data
in aquatic ecology was investigated by Vidondo et al. [5].
Hassan and Al-Ghamdi [6] used the Lomax distribution
in reliability and life-testing problems to define the
optimal times of changing stress level. Moreover, the
Lomax distribution is considered an important model of
lifetime models, because it belongs to the family of
decreasing failure rate [7]. Some details about the Lomax
distribution are given by Arnold [8] and Johnson et al. [9]
and some properties for the Lomax distribution have been

discussed by Ahsanullah [10], Amin [14], Balakrishnan
[12] and Lee et al. [13]. Let X = (X1,X2, . . . ,Xn) be a
random sample from a Lomax distribution, denoted as
L OM (α,β ). The distribution function of this
distribution is given by

F(x;α,β ) = 1−
(

1+
x

β

)−α

, x > 0, (α,β > 0) (1)

where α is a shape parameter and β is a scale parameter.
Therefore, the probability density function (p.d.f.) is given
by

f (x;α,β ) =
α

β

(

1+
x

β

)−(α+1)

, x > 0, (α,β > 0).

(2)
The survival function or reliability function of the Lomax
distribution is given by

R(x;α,β ) = 1−F(x) =

(

1+
x

β

)−α

(3)
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and the hazard function is given by

h(x;α,β ) =
f (x)

R(x)
=

α

β + x
. (4)

Then the mean and variance of the delta-lognormal
distribution are

E(X) =







β
α−1

; for α ≥ 1

undefined ; Otherwise

(5)

and

V (X) =











αβ 2

(α−1)2(α−2)
; for α ≥ 1

∞ ; for 1 < α ≤ 2.

(6)

The probability density function of the Lomax
distribution is a heavy-tailed distribution to the right.
Nevertheless, the asymmetry of the distribution decreases
with β . The Lomax density for some values α with β = 1
is shown in Fig. 1.

Many authors have investigated inferential issues for
the parameters of the Lomax distribution. In the literature,
some properties and moments for the Lomax distribution
are available. The record values were discussed by Lee
and Lim in 2009 [13] and Amin in 2011 [14],
respectively. In 2012, Moghadam et al. [15] derived the
moments and inference for the order statistics and
generalized order statistics. The estimation of the
parameters of the Lomax distribution based on a
generalized probability weighted moment was derived by
Abdullah and Abdullah [16]. Several authors studied
parameter estimation of the Lomax distribution. For
example, Abd-Ellah [17] and Nasiri and Hosseini [18]
compared the performance of Bayesian and non-Bayesian
estimation from the Lomax distribution based on record
values. Furthermore, Ahmad et al. [19] estimated the
parameters of the Lomax distribution using Jefferys and
an extension of Jefferys prior under different loss
functions. Ahmad et al. [20] derived Bayes estimators
using extension of Jeffreys prior, Gamma prior under the
Entropy loss function and Precautionary loss function.
More recently, Venegas et al. [21] derived various
structural properties including expressions for the
moments, skewness and kurtosis coefficients of the
Lomax-Rayleigh model and estimated model parameters
using the moment and maximum likelihood methods.
Under the topic of interval estimation for the future
observation, Al-Hussaini et al. [22] proposed interval
estimations based on the Bayesian analysis for future
observations based on a type I censored sample from a
non-homogeneous population. Abd-Ellah [23] studied the
problem of Bayesian prediction bounds for certain order
statistics for samples from the Lomax distribution. No
work has been done on confidence intervals for the
parameters of the Lomax distribution that have been
wildly reported in many applications.
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Fig. 1: Comparison of the Lomax density with different values

of α and β .

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 4, 605-616 (2020) / www.naturalspublishing.com/Journals.asp 607

Therefore, we are interested in estimating the
confidence interval for the shape parameter for the Lomax
distribution. In this article, we propose five methods of
interval estimation for the shape parameter of the Lomax
distribution. The first method is a confidence interval
construction based on the maximum likelihood (ML)
approach. The second method is a confidence interval
construction based on the bootstrap (BS) approach. The
third and fourth methods are confidence interval
constructions based on the Bayesian approach using
Jeffreyss Prior and Conjugate Prior. The last method is a
confidence interval construction based on the generalized
probability weighted moment (GPWM). The performance
of all these methods are examined using Monte Carlo
simulations by evaluating coverage probabilities and
average lengths of each confidence interval.

The rest of this paper is organized as follows. In the
first Section, we briefly describe the properties of the
Lomax distribution. The details of the interval estimation
for the shape parameter of the Lomax distribution are
presented in Section 2. A simulation study and results
discussion are provided in Section 3.1 and Section 3.2. In
Section 3.3, we illustrate these methods with several
examples. Finally, summary and concluding Remarks are
given in Section 3.4.

2 Materials and Methods

Let X = (X1,X2, . . . ,Xn) be a random sample from a
Lomax distribution, denoted as L OM (α,β ). The
concepts of the following methods are used to obtain
confidence intervals for α . Now, we describe all five
methods in more detail.

2.1 Confidence Intervals Based on Maximum

Likelihood (ML) Approach

The log-likelihood function is given by

lnL(α,β ) = n lnα − n lnβ − (α + 1)
n

∑
i=1

ln

(

1+
xi

β

)

.

The maximum likelihood estimator (MLE) of θ , denoted
as θ̂ML, is obtained by solving the equation

∂ lnL(θ )

∂θ
= 0.

Then
n

α
−

n

∑
i=1

ln

(

1+
xi

β

)

= 0

and

− n

β
+

(α + 1)∑n
i=1 xi

β 2
(

1+
∑n

i=1 xi

nβ

) = 0.

The estimators of θ can then be obtained as

θ̂ =

[

α̂

β̂

]

=





n

∑n
i=1 ln

(

1+ x
β

)

α ∑n
i=1 xi

n



 . (7)

Therefore, the Fisher information matrix can be written, as
follows

I(θ ) =−E
[

∂ 2

∂ 2θ
lnL(θ |data)

]

=

[

− ∂ 2 lnL
∂α2 − ∂ 2 lnL

∂α∂β

− ∂ 2 lnL
∂α∂β − ∂ 2 lnL

∂β 2

]

=

[

1
α2 − 1

β (α+1)

− 1
β (α+1)

α
β 2(α+2)

]

. (8)

The MLE of α can then be obtained as

α̂ML =
n

∑n
i=1 ln

(

1+ xi

β

) . (9)

The asymptotic Fisher information matrix is obtained by
taking the expected value of the second and mixed partial
derivatives of lnL(α,β ) with respect to α and β .
Furthermore, the inverse of the Fisher information matrix
is an estimator of the asymptotic variance-covariance
matrix:

Var(θ̂ML) =
[

I(θ̂ML)
]−1

.

Thus, the variance of the ML estimator for α can be
denoted as

Var(α̂ML) =
α2

n
. (10)

The standard errors are the square roots of the diagonal
elements of the variance-covariance matrix. For the
asymptotic distribution of a maximum likelihood estimate
of α , we write

α̂ML ∼ N

(

α,
α2

n

)

. (11)

The estimated standard error of the maximum likelihood
estimates is given by:

SE(α̂ML) =
α√

n
. (12)

The (1−ν)100% two-sided confidence intervals for α
based on the maximum likelihood approach are, as
follows:

CI(α)ML = [αL,αU ] =

[

α̂ML −Z(ν/2)
α√

n
, α̂ML +Z(ν/2)

α√
n

]

(13)

where ν is the significance level, and Zν/2 is the upper

100(1−ν/2)th percentile of N (0,1).
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2.2 Confidence Interval Based on the Bootstrap

(BS) Approach

In the proposed approach, we construct the bootstrap
confidence interval based on bootstrap percentiles, which
performs well in terms of coverage probability and
average length for various sample sizes [24]. We have
considered bias-correcting the estimators using a
parametric bootstrap. Let x = (x1,x2, . . . ,xn)

T be a
random sample of size n, where each element is a random
drawn from the random variable X from a Lomax
distribution, as well as L OM (α,β ) and ᾰ be an
estimator of α based on x; this can be written as ᾰ = s(x).
Afterwards, let B be bootstrap samples (x∗1,x∗2, . . . ,x∗B)
that are generated independently from the original sample
x. These bootstrap-bias-corrected estimators are
calculated by [25]

ᾰ = 2α̂ − 1/B
B

∑
j=1

α̂( j). (14)

where α̂( j) is the MLE of α obtained from the jth of the
B bootstrap samples and j = 1,2, . . . ,B. Suppose we want
to use the B bootstrap samples to form a 95% confidence
interval. We need to calculate the ᾰ number of B values
to an ordered value in the list of B standardized bootstrap
estimates of α . The respective bootstrap replications are
denoted as (ᾰ1, ᾰ2, . . . , ᾰB), where ᾰ j = s(x j). Therefore,
the percentile (1−ν)100% bootstrap confidence interval
for α is given by

CI(α)BS = [αL,αU ] =
[

ᾰ(ν/2), ᾰ(1−ν/2)

]

,

where ᾰ(ν/2) is the B(ν/2)th ordered value in the list of B

standardized bootstrap estimates of α .

2.3 Bayesian Confidence Intervals

Here, we introduce our Bayesian confidence intervals for
α of the Lomax distribution. The likelihood function of
the Lomax distribution can be presented as follows

L(θ |data) ∝

(

α

β

)n n

∏
i=1

(

1+
x

β

)−(α+1)

, (15)

where θ = [α,β ]′ .
In statistical inference, any Bayesian Confidence

interval is based on the posterior pdf. The posterior
distribution of the parameter α is obtained using different
non-informative and informative prior distributions of the
parameter α and the likelihood function of the above
density. In this research, the Bayesian procedures for
different choices of prior distributions for θ were
explored and used to compare performance of each
method by conducting a simulation study.

2.3.1 Jeffreys’s Prior

Since θ is unknown, the prior distribution of α is given by

g(θ ) ∝
√

I(θ ).

Therefore, the Jeffreys’ prior distribution of α can be
written as [19]

g(α) ∝
1

α
. (16)

The likelihood used to form the posterior density is also
considered a function of parameter α . The posterior
distribution of α is given by

π(α|x) ∝ L(x|α)g(α).

By combining the likelihood function (15) and the prior
density function (16), the joint posterior density function
can be written as

π(α|x)1 ∝

(

α

β

)n n

∏
i=1

(

1+
xi

β

)−(α+1)
1

α

or

π(α|x)1 ∝
αn−1

β n
exp

(

−(α + 1)
n

∑
i=1

ln

(

1+
xi

β

)

)

.

The posterior distribution of α was shown by Ahmad et al.
[19] as follows

π(α|x)1 =

[

∑n
i=1 ln

(

1+ xi

β

)]n

Γ (n)
αn−1 exp(−α

n

∑
i=1

ln(1+
xi

β
))

(17)

where

[

∑n
i=1 ln

(

1+
xi
β

)]n

Γ (n) is independence of α and

Γ (n) =
∫ ∞

0 αn−1 exp(−α)dα. The posterior distribution
of α is obtained as

π(α|x)1 = αn−1

[

(∑n
i=1 ln(1+ xi

β
))n

Γ (n)

]

exp(−α
n

∑
i=1

ln(1+
xi

β
))

(18)

or
π(α|x)1 = αn−1AB (19)

where

A =

(

∑n
i=1 ln

(

1+ xi

β

))n

Γ (n)
(20)

and

B = exp

(

−α
n

∑
i=1

ln

(

1+
xi

β

)

)

. (21)

Therefore, the (1− ν)100% Bayesian confidence interval
under Jeffreys’s prior for α is given by

CI(α)BJ =
[

α∗
BJ(L),α

∗
BJ(U)

]

(22)
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where α∗
BJ(L) is the α∗

BJ(ν/2)th ordered value in the list of

estimate of α and α∗
BJ(U) is the α∗(1 − ν/2)th ordered

value in the list of α∗
BJ estimates of α. Thus the coverage

probability of the Bayesian confidence interval under
Jeffreys’s prior can be computed using the Algorithm 1.

Algorithm 1. For a given α,β , and n, the Bayesian
confidence interval under Jeffreys’s prior can be
computed by the following steps.

1.Generate set x1,x2, . . . ,xn from L OM (α,β ).
2.Compute Γ (n).
3.Compute A and B following equation (20) and (21).
4.Compute αBJ from their posterior distribution by

substituting A and B in equation (19).
5.Repeat Steps 2-4 a total of 10,000 times and create an

ordered array of αBJ .
6.Compute the posterior density intervals for α from

equation (22). If α∗
BJ(L) ≤ α ≤ α∗

BJ(U), then set

cp = 1; otherwise, set cp = 0.
7.Repeat Steps 1-6 a total of 10,000 times and compute

the coverage probability and the average width.

2.3.2 Conjugate Prior

The conjugate prior of α is determined based on a gamma
distribution. This prior was first used by Papadopoulos
[26]. Ahmad et al. [20] presented the conjugate prior
distribution of α as

g(α) ∝
ab

Γ (b)
exp(−aα)αb−1,a > 0,b > 0 and α > 0,

(23)
where a and b are hyper parameters. Combining the
likelihood function (15) and the prior density function
(23), the posterior density of α is given by

π(α|x)2 ∝

(

α

β

)n n

∏
i=1

(

1+
xi

β

)−(α+1)
ab

Γ (b)
exp(−aα)αb−1

or

π(α|x)2 ∝
αn

β n

ab

Γ (b)
exp(−aα)αb−1

·exp(−(α + 1)
n

∑
i=1

ln(1+
xi

β
)).

The posterior distribution of α is given by

π(α|x)2 =

[(

a+∑n
i=1 ln

(

1+
xi
β

))]n+b

Γ (n+b) αn+b−1

·exp(−α(a+
n

∑
i=1

(1+
xi

β
))) (24)

where

[(

a+∑n
i=1 ln

(

1+
xi
β

))]n+b

Γ (n+b)
is independent of α and

Γ (n + b) =
∫ ∞

0 α(n+b−1) exp(−α)dα. Therefore, the
posterior distribution of α can be written as

π(α|x)2 = α(n+b−1)

(

a+∑n
i=1 ln

(

1+
xi
β

))n+b

Γ (n+b)

·exp(−α(a+
n

∑
i=1

ln(1+
x

β
))). (25)

Subsequently, the posterior distribution is given by

π(α|x)2 = α(n+b−1)CD (26)

where

C =

[(

a+∑n
i=1 ln

(

1+ xi

β

))]n+b

Γ (n+ b)
(27)

and

D = exp

(

−α

(

a+
n

∑
i=1

ln

(

1+
x

β

)

))

. (28)

Therefore, the (1− ν)100% Bayesian confidence interval
under conjugate prior for α is given by

CI(α)BC =
[

α∗
BC(L),α

∗
BC(U)

]

(29)

where α∗
BC(L) is the α∗

BC(ν/2)th ordered value in the list

of estimate of α∗ and α∗
U is the α∗

BC(1− ν/2)th ordered
value in the list of α∗

BC estimate of α. Thus, the coverage
probability of the Bayesian confidence interval under the
Conjugate prior can be computed using Algorithm 2.

Algorithm 2. For a given α,β , and n, the Bayesian
confidence interval under the conjugate prior can be
computed by the following steps.

1.Generate set x1,x2, . . . ,xn from L OM (α,β ).
2.Compute hyper parameters where a = 0.5 and b = 0.1.
3.Compute Γ (n+ b).
4.Compute C and D following equation (27) and (28).
5.Compute αBC from their posterior distribution by

substituting C and D in equation (26).
6.Repeat Steps 2-5 a total of 10,000 times and create an

ordered array of αBC.
7.Compute the posterior density intervals for α from

equation (29). If α∗
BC(L) ≤ α ≤ α∗

BC(U), then set

cp = 1; otherwise, set cp = 0.
8.Repeat Steps 1-7 a total of 10,000 times and compute

the coverage probability and the average width.

2.4 Confidence Interval Based on the

Generalized Probability Weighted Moment

(GPWM)

Finally, we consider the generalized probability weighted
moment (GPWM) approach for constructing a confidence
interval for the shape parameter of the Lomax
distribution. The generalized probability weighted
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moments (GPWM) method was introduced by Rasmussen
[27]. It is an alternate method to the classical moments,
and is more efficient at producing robust parameter
estimates, especially in the cases of small samples. The
idea of the GPWM for order p = 1 and ν = 0 is given by

M1,u,0 = E (X (F (X))u)
=
∫ ∞

0 xF (X)u
f (x)dx

=

∫ 1

0
x(F)FudF, (30)

where X is a continuous variable, F is the cumulative
distribution function of X , and u is neither a small nor
nonnegative integer. Abd-Elfattah and Alharbey [28]
applied the GPWM method to estimate the parameters of
the Lomax distribution. They used the GPWM of the
form M1,u,0 because it has a simpler analytical structure
than M1,u,v. The procedure of the GPWM estimation for
the construction of confidence intervals for the shape
parameter of the Lomax distribution is summarized in the
following steps.

Step 1. Obtain the inverse cumulative distribution
function x(F) of the Lomax distribution which is given by

xF (X) = β
(

(1−F)
−1
α − 1

)

, x > 0, (α,β > 0). (31)

Step 2. Calculate the theoretical GPWM from M1,u,0

where u takes values 1,2, . . . depending on the number of
the unknown parameters. Since the Lomax distribution
has two parameters, the formula M1,u,0 takes the
following forms

M1,u,0 =

∫ 1

0
β
(

(1−F)
−1
α − 1

)

FudF

= β

[

B(u+ 1,1− 1

α
)− 1

u+ 1

]

, (32)

where B(m,n) is the beta function. Let u = u1,u2, the
formula of M1,u1,0 and M1,u2,0 be written as

M1,u1,0 = β

[

B(u1 + 1,1− 1

α
)− 1

u1 + 1

]

, (33)

and

M1,u2,0 = β

[

B(u2 + 1,1− 1

α
)− 1

u2 + 1

]

. (34)

Step 3. Obtain the parameter to construct the
confidence interval for the shape parameter of the Lomax
distribution. We focus on the parameter α and obtain the
parameter α in the term of M1,u1,0 and M1,u2,0. From
equation (33) and (34), we have

β =
M1,u1,0

[

B(u1 + 1,1− 1
α )− 1

u1+1

] (35)

and

β =
M1,u2,0

[

B(u2 + 1,1− 1
α )− 1

u2+1

] . (36)

Substituting equation (35) into equation (36) yields

M1,u1,0
[

B(u1 + 1,1− 1
α )− 1

u1+1

] =
M1,u2,0

[

B(u2 + 1,1− 1
α )− 1

u2+1

]

or

M1,u1,0

[B(u1 + 1,1− 1
α )− 1

u1+1
]
− M1,u2,0

[B(u2 + 1,1− 1
α )− 1

u2+1
]
= 0.

(37)

Step 4. Calculate the sample estimators of M1,u1,0 and

M1,u2,0 using the idea of Hosking [29]. The formula M̂1,u,v

is based on the order of the complete sample x1 < x2 <
· · ·< xn of size n. The sample estimators of M1,u,v are given
by

M̂1,u,v =
n

∑
i=1

x(i)p
u
i (1− pi)

v (38)

where pi =
i−0.35

n
and x(i) is the ith observation in the

ordered sample. Since v = 0, the sample estimators of
M1,u,0 can be written as

M̂1,u1,0 =
1

n

n

∑
i=1

xi

(

i− 0.35

n

)u1

(39)

and

M̂1,u2,0 =
1

n

n

∑
i=1

xi

(

i− 0.35

n

)u2

. (40)

Step 5. Solve for the shape parameter estimator α of
GPWM by substituting equation (39) and (40) into
equation (37) as

M̂1,u1,0

[B(u1 + 1,1− 1
α )− 1

u1+1
]
− M̂1,u2,0

[B(u2 + 1,1− 1
α )− 1

u2+1
]
= 0.

(41)
The shape parameter estimator of GPWM or α̂GPW M will
be solved from equation (41). Since no closed forms of
the solution exist, an iterative numerical search can be
used to obtain the shape parameter estimator of GPWM
or α̂GPW M.

Step 6. Calculate the variance of the shape parameter
estimator of GPWM or Var (α̂GPW M) . The asymptotic
variance of the GPWM estimator was reported by
Hosking [29] using the asymptotic variance covariance of
the PWM estimators M̂1,u1,0 and M̂1,u2,0 to approximate
the asymptotic variance of α. We have

α̂GPW M =ϒ (M̂1,u1,0,M̂1,u2,0) (42)

and

β̂GPW M = Φ(M̂1,u1,0,M̂1,u2,0) (43)
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then the vector (M̂1,u1,0,M̂1,u2,0) has a Gaussian limiting
distribution with mean vector (M1,u1,0,M1,u2,0) and
covariance matrix

Cov =
1

n
(Au1,u2

) (44)

where Au1,u2
= Iu1,u2

+ Iu2,u1
and Iu1,u2

is the variance of
PWM which is

Iu1,u2
=
∫ ∞

0

∫ y

0
[F(x)]u1+1[F(y)]u2 [1−F(y)]dxdy (45)

and

Iu2,u1
=

∫ ∞

0

∫ y

0
[F(x)]u2+1[F(y)]u1 [1−F(y)]dxdy. (46)

The first-order approximations of the variances and

covariance of α̂GPW M and β̂GPW M can be computed using
the variances and covariance of the GPWM estimators of
M1,u1,0 and M1,u2,0 by calculating these functions,

W1 =









Var (α̂GPW M)

Var
(

β̂GPW M

)

Cov
(

α̂GPW M, β̂GPWM

)









W2 =





M2
11 M2

12 2M11M12

M2
21 M2

22 2M21M22

M11M21 M12M22 M11M22 +M21M12





−1

W3 =





Var
(

M̂1,u1,0

)

Var
(

M̂1,u2,0

)

Cov
(

M̂1,u1,0,M̂1,u2,0

)





and

W1 =W2 ·W3 (47)

where Var
(

M̂1,u1,0

)

,Var
(

M̂1,u2,0

)

, and

Cov
(

M̂1,u1,0,M̂1,u2,0

)

are given in equation (44). The
values of Mi j can be explicitly obtained from equation
(33) and (34), as follows:

M11 =
∂M1,u1,0

∂α

=
β

α2Γ (u2 + 2+ 1
α )

·
[

Γ ′(1−α−1)[Γ (u1 + 1)−Γ ′(u1 + 1)Γ (1−α−1)
]

(48)

M12 =
∂M1,u1,0

∂β
= B(u2 + 1,1− 1

α
)− 1

u2 + 1
(49)

where Γ ′(z) = Γ (z)Ψ0(z) is the derivatives of the gamma
function, which is described in terms of the polygamma
function. Furthermore, M11 and M22 are obtained from
M1,u1,0 and M1,u2,0 by replacing u1 by u1.

Step 7. Calculate the (1−ν)100% two-sided
confidence intervals for α based on the generalized
probability weighted moment (GPWM) as

CI(α)GPW M =
[

αGPW M(L),αGPW M(U)

]

(50)

where αGPW M(L) = α̂GPW M − Z(ν/2)

√

Var (α̂GPW M) and

αGPW M(U) = α̂GPW M +Z(ν/2)

√

Var (α̂GPWM).

3 Results and Discussion

3.1 Simulation technique

A Monte Carlo simulation was conducted using the R

statistical software [30] to evaluate the performance of the
proposed confidence intervals for the shape parameter of
the Lomax distribution. The simulation studies were
carried out to evaluate the coverage probabilities (CP) and
average widths (AW) of each confidence interval. The
important factor in judging the effectiveness of
confidence intervals is the performance of coverage
probabilities. Normally, a preferable confidence interval
should have a coverage probability close to the nominal
confidence level. Moreover, the average width has also
been a short length interval. The nominal values of 0.90
and 0.95 are calculated based on 10,000 replications and
for the bootstrap computations, 10,000 bootstrapped data
sets are used. The estimated coverage probability and the
average width are given by

CP =
∑

10,000
i=1 Ii (L ≤ α ≤U)

10,000

and

AW =
∑

10,000
i=1 (Ui −Li)

10,000

where ∑
10,000
i=1 Ii (L ≤ α ≤U) denotes the number of

simulation runs for which the shape parameter (α) lies
within the confidence interval.

All data sets were generated from a Lomax
distribution, L OM (α,β ). For these simulations, we
used 80 unique sets of parameter values. These include
situations of varying n,α, and β , using
n = 25,50,100,500,1000;α = 0.5,1.0,1.5,2.0 and
β = 1.0,2.0,4.0,6.0. A simulation study in each design is
used to calculate the coverage probabilities and the
average length of the confidence interval. The results of
95% and 99% confidence intervals for α are shown in
Tables 1-10. In the following, the notation “a” is used
when the coverage probability of the confidence interval
is reported and “b” is used for the average width of the
confidence interval.
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Table 1: Coverage probabilities and average widths of α for n = 25 at the 0.95 nominal level
α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9466 0.7167 0.9484 0.8452 0.9337 3.6568 0.9406 3.6594 0.9361 1.2027

2.0 0.9346 0.7166 0.9469 0.8470 0.9340 3.6565 0.9334 3.6509 0.9543 1.2026

4.0 0.9474 0.7170 0.9511 0.8482 0.9349 3.6569 0.9461 3.6511 0.9481 1.2030

6.0 0.9485 0.7169 0.9500 0.8455 0.9423 3.6569 0.9536 3.6510 0.9516 1.2029

1.0 1.0 0.9482 1.4341 0.9764 1.6922 0.9392 1.8285 0.9447 1.8930 0.9282 1.5281

2.0 0.9455 1.4335 0.9434 1.6939 0.9343 1.8283 0.9311 1.8312 0.9475 1.5275

4.0 0.9531 1.4344 0.9516 1.6922 0.9333 1.8283 0.9320 1.8193 0.9446 1.5284

6.0 0.9588 1.4333 0.9494 1.6929 0.9442 1.8283 0.9399 1.8144 0.9482 1.5273

1.5 1.0 0.9582 2.1506 0.9526 2.5415 0.9238 1.2190 0.9276 1.2103 0.9534 1.8526

2.0 0.9666 2.1498 0.9496 2.5412 0.9228 1.2189 0.9238 1.2041 0.9662 1.8519

4.0 0.9561 2.1493 0.9501 2.5354 0.9242 1.2189 0.9236 1.2007 0.9612 1.8513

6.0 0.9580 2.1503 0.9564 2.5433 0.9251 1.2189 0.9202 1.2002 0.9441 1.8524

2.0 1.0 0.9490 2.8671 0.9465 3.3860 0.9190 0.9142 0.9285 0.9069 0.9168 2.1771

2.0 0.9544 2.8680 0.9510 3.3778 0.9185 0.9141 0.9210 0.9070 0.9424 2.1780

4.0 0.9629 2.8670 0.9525 3.3834 0.9171 0.9142 0.9248 0.9048 0.9698 2.1770

6.0 0.9599 2.8685 0.9468 3.3771 0.9194 0.9142 0.9206 0.9027 0.9506 2.1785

Table 2: Coverage probabilities and average widths of α for n = 50 at the 0.95 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9540 0.6487 0.9543 0.5753 0.9372 5.1762 0.9401 3.9717 0.9476 1.2495

2.0 0.9475 0.6489 0.9481 0.5769 0.9371 5.1760 0.9439 3.9477 0.9502 1.2497

4.0 0.9493 0.6487 0.9476 0.5768 0.9496 5.1764 0.9428 3.9468 0.9491 1.2495

6.0 0.9501 0.6487 0.9493 0.5762 0.9464 5.1761 0.9446 3.9742 0.9508 1.2496

1.0 1.0 0.9594 1.2979 0.9589 1.1540 0.9354 2.5882 0.9421 1.9084 0.9365 1.6215

2.0 0.9434 1.2974 0.9522 1.1514 0.9408 2.5881 0.9416 1.9085 0.9538 1.6210

4.0 0.9524 1.2979 0.9475 1.1532 0.9431 2.5881 0.9407 1.9082 0.9525 1.6215

6.0 0.9519 1.2974 0.9498 1.1515 0.9439 2.5878 0.9393 1.9086 0.9490 1.6210

1.5 1.0 0.9405 1.9461 0.9472 1.7312 0.9419 1.7253 0.9403 1.3754 0.9397 1.9926

2.0 0.9450 1.9467 0.9527 1.7290 0.9439 1.7255 0.9426 1.3732 0.9369 1.9931

4.0 0.9474 1.9466 0.9463 1.7291 0.9418 1.7254 0.9404 1.3472 0.9568 1.9931

6.0 0.9471 1.9475 0.9507 1.7287 0.9432 1.7255 0.9403 1.3247 0.9541 1.9940

2.0 1.0 0.9746 2.5953 0.9602 2.3021 0.9383 1.2941 0.9365 0.9935 0.9411 2.3646

2.0 0.9675 2.5944 0.9532 2.3072 0.9366 1.2940 0.9459 0.9935 0.9311 2.3637

4.0 0.9610 2.5952 0.9517 2.3033 0.9368 1.2941 0.9420 0.9543 0.9496 2.3644

6.0 0.9542 2.5954 0.9497 2.3036 0.9311 1.2939 0.9421 0.9542 0.9528 2.3647

Table 3: Coverage probabilities and average widths of α for n = 100 at the 0.95 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9485 0.6029 0.9526 0.3995 0.9455 7.3235 0.9410 5.9714 0.9464 1.2849

2.0 0.9487 0.6031 0.9499 0.3998 0.9419 7.3241 0.9366 5.6971 0.9496 1.2851

4.0 0.9509 0.6029 0.9499 0.4010 0.9438 7.3238 0.9449 5.6274 0.9504 1.2849

6.0 0.9513 0.6030 0.9498 0.3989 0.9419 7.3238 0.9447 5.6291 0.9502 1.2850

1.0 1.0 0.9657 1.2062 0.9516 0.6677 0.9371 3.6620 0.9308 2.8149 0.9499 1.6923

2.0 0.9459 1.2062 0.9493 0.6721 0.9408 3.6618 0.9333 2.8149 0.9510 1.6922

4.0 0.9488 1.2061 0.9490 0.6686 0.9495 3.6619 0.9456 2.8144 0.9511 1.6921

6.0 0.9497 1.2060 0.9508 0.6710 0.9420 3.6615 0.9422 2.8149 0.9512 1.6920

1.5 1.0 0.9514 1.8095 0.9428 0.9399 0.9387 2.4412 0.9418 1.8966 0.9488 2.0995

2.0 0.9447 1.8092 0.9480 0.9419 0.9363 2.4411 0.9393 1.8766 0.9402 2.0992

4.0 0.9459 1.8095 0.9501 0.9359 0.9334 2.4414 0.9301 1.8657 0.9488 2.0995

6.0 0.9518 1.8086 0.9489 0.9442 0.9364 2.4412 0.9349 1.8568 0.9496 2.0986

2.0 1.0 0.9567 2.4121 0.9507 1.2135 0.9391 1.8310 0.9366 1.4743 0.9534 2.5061

2.0 0.9482 2.4127 0.9441 1.2002 0.9407 1.8309 0.9348 1.4427 0.9511 2.5067

4.0 0.9505 2.4116 0.9511 1.2097 0.9262 1.8310 0.9200 1.4074 0.9533 2.5056

6.0 0.9523 2.4124 0.9510 1.2031 0.9219 1.8308 0.9296 1.4043 0.9516 2.5064

3.2 Results discussion

Several interesting features appear in Tables 1-10. First,
the bootstrap intervals have smaller limits than the
normal-based intervals, especially in small sample size
cases. The comparison of the two bootstrap confidence
intervals shows that the coverage probabilities of the BJ
and BC approaches are almost similar, and the average
widths of both methods get narrow when the parameter α

increases. The average width of the BC method is slightly
better than that of the BJ approach. The results in terms of
the coverage probabilities of all five approaches show that
the ML approach outperforms other methods. We
conclude that the average widths of the ML approach is
the shortest if n is small. Performance of the ML and BS
approaches is almost identical for large sample sizes.
However, the BS approach takes much longer to execute
than the ML approach. For increasing the parameters α
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Table 4: Coverage probabilities and average widths of α for n = 500 at the 0.95 nominal level
α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9506 0.5449 0.9494 0.2699 0.9445 8.2245 0.9431 7.9826 0.9500 1.3352

2.0 0.9495 0.5448 0.9501 0.2702 0.9462 8.2240 0.9442 7.9683 0.9502 1.3352

4.0 0.9504 0.5448 0.9499 0.2714 0.9448 8.2238 0.9445 7.8251 0.9502 1.3351

6.0 0.9500 0.5449 0.9500 0.2693 0.9453 4.5622 0.9448 7.6826 0.9500 1.3353

1.0 1.0 0.9484 1.0896 0.9493 0.5381 0.9377 4.5619 0.9408 3.9841 0.9500 1.7923

2.0 0.9514 1.0897 0.9505 0.5425 0.9475 4.5621 0.9460 3.9425 0.9505 1.7924

4.0 0.9509 1.0896 0.9500 0.5390 0.9451 4.5615 0.9463 3.8413 0.9499 1.7923

6.0 0.9497 1.0897 0.9498 0.5414 0.9456 3.3412 0.9446 3.4125 0.9502 1.7924

1.5 1.0 0.9522 1.6346 0.9492 0.8103 0.9451 3.3411 0.9407 2.6609 0.9500 2.2496

2.0 0.9501 1.6345 0.9499 0.8123 0.9493 3.3415 0.9481 2.6584 0.9498 2.2496

4.0 0.9493 1.6348 0.9498 0.8063 0.9431 3.3413 0.9443 2.6561 0.9505 2.2499

6.0 0.9494 1.6342 0.9497 0.8146 0.9436 2.7312 0.9448 2.6087 0.9503 2.2493

2.0 1.0 0.9514 2.1794 0.9494 1.0839 0.9428 2.7310 0.9276 1.9206 0.9465 2.7068

2.0 0.9467 2.1796 0.9500 1.0706 0.9423 2.7311 0.9484 1.9064 0.9486 2.7070

4.0 0.9485 2.1792 0.9502 1.0801 0.9453 2.7309 0.9462 1.8921 0.9501 2.7066

6.0 0.9510 2.1791 0.9502 1.0735 0.9442 2.7276 0.9448 1.8206 0.9500 2.7065

Table 5: Coverage probabilities and average widths of α for n = 1000 at the 0.95 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9491 0.5315 0.9504 0.1761 0.9428 8.9772 0.9438 8.6447 0.9495 1.3475

2.0 0.9501 0.5315 0.9498 0.1763 0.9448 8.9762 0.9460 8.6442 0.9502 1.3475

4.0 0.9510 0.5315 0.9453 0.1761 0.9450 8.9766 0.9454 8.6405 0.9469 1.3475

6.0 0.9501 0.5314 0.9470 0.1763 0.9450 8.9762 0.9453 8.6375 0.9485 1.3475

1.0 1.0 0.9503 1.0631 0.9502 0.3528 0.9456 6.3885 0.9465 6.3253 0.9495 1.8172

2.0 0.9499 1.0630 0.9497 0.3527 0.9434 6.3882 0.9438 6.3223 0.9498 1.8170

4.0 0.9503 1.0630 0.9500 0.3522 0.9448 6.3884 0.9441 6.3204 0.9501 1.8170

6.0 0.9499 1.0630 0.9492 0.3542 0.9447 6.3878 0.9448 6.3167 0.9479 1.8170

1.5 1.0 0.9524 1.5943 0.9497 0.6650 0.9476 5.5787 0.9465 5.2902 0.9503 2.2864

2.0 0.9505 1.5945 0.9502 0.6608 0.9440 5.5255 0.9442 5.2497 0.9502 2.2865

4.0 0.9499 1.5944 0.9498 0.6669 0.9439 5.5552 0.9451 5.2147 0.9501 2.2864

6.0 0.9499 1.5943 0.9499 0.6582 0.9456 5.5295 0.9457 5.2145 0.9498 2.2863

2.0 1.0 0.9553 2.1261 0.9496 0.9622 0.9522 5.0941 0.9423 4.1665 0.9502 2.7562

2.0 0.9514 2.1260 0.9496 0.9807 0.9476 5.0448 0.9418 4.1612 0.9499 2.7561

4.0 0.9498 2.1258 0.9501 0.9673 0.9456 5.0418 0.9449 4.1611 0.9499 2.7559

6.0 0.9497 2.1262 0.9500 0.9743 0.9452 5.0080 0.9450 4.1513 0.9500 2.7563

Table 6: Coverage probabilities and average widths of α for n = 25 at the 0.99 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9894 0.7214 0.9614 0.8786 0.9702 3.6938 0.9726 3.6809 0.9699 1.2216

2.0 0.9851 0.7234 0.9682 0.8711 0.9643 3.6692 0.9764 3.6595 0.9801 1.2140

4.0 0.9916 0.7254 0.9853 0.8525 0.9695 3.6622 0.9611 3.6554 0.9824 1.2046

6.0 0.9868 0.7236 0.9839 0.8514 0.9808 3.6611 0.9869 3.6591 0.9866 1.2071

1.0 1.0 0.9959 1.4753 0.9763 1.7167 0.9692 1.8686 0.9646 1.9810 0.9630 1.5420

2.0 0.9903 1.4837 0.9746 1.7626 0.9444 1.8613 0.9665 1.8816 0.9738 1.5614

4.0 0.9851 1.4667 0.9709 1.7129 0.9785 1.8415 0.9709 1.8251 0.9827 1.5399

6.0 0.9870 1.4357 0.9869 1.6959 0.9832 1.8385 0.9751 1.8343 0.9801 1.5348

1.5 1.0 0.9945 2.1978 0.9772 2.6062 0.9720 1.2464 0.9732 1.3162 0.9781 1.9894

2.0 0.9917 2.1667 0.9755 2.5423 0.9700 1.2609 0.9711 1.2071 0.9833 1.8927

4.0 0.9887 2.1827 0.9875 2.5381 0.9608 1.2364 0.9637 1.2029 0.9813 1.8640

6.0 0.9849 2.1527 0.9896 2.5602 0.9608 1.2368 0.9465 1.2153 0.9988 1.8615

2.0 1.0 0.9873 2.8771 0.9706 3.4569 0.9613 1.1505 0.9140 1.0640 0.9855 2.4016

2.0 0.9879 2.9450 0.9816 3.4474 0.9777 0.9216 0.9735 0.9573 0.9835 2.1875

4.0 0.9910 2.8794 0.9750 3.4124 0.9366 0.9658 0.9696 0.9307 0.9814 2.1956

6.0 0.9917 2.8999 0.9725 3.3983 0.9531 0.9317 0.9626 0.9083 0.9799 2.1884

and β , the coverage probabilities for GPWM approach
get closer to the nominal confidence level in all cases. The
GPWM approach performs quite well even when the
sample sizes are small.

3.3 Illustrative Examples

To illustrate the computation of confidence intervals
proposed in this article, we use the data of observations

for precipitation in Florida meteorological study by
Simpson [31]. We consider a sample of computer file
sizes (in bytes) for all 269 files with the *.ini extension on
a Windows-based personal computer. The website of
http://web.uvic.ca/∼dgiles/downloads/data can be used to
download these data. The data showed appropriateness
for the Lomax distribution by Ferreira et al. [32]. The
95% confidence intervals for α are listed in Table 3 which
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Table 7: Coverage probabilities and average widths of α for n = 50 at the 0.99 nominal level
α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9954 0.6509 0.9883 0.5793 0.9653 5.1786 0.9707 3.9771 0.9862 1.2497

2.0 0.9835 0.6492 0.9818 0.5831 0.9703 5.1835 0.9783 3.9571 0.9846 1.2523

4.0 0.9867 0.6492 0.9864 0.5782 0.9846 5.1824 0.9801 3.9489 0.9847 1.2505

6.0 0.9834 0.6495 0.9864 0.5767 0.9843 5.1773 0.9823 3.9756 0.9869 1.2522

1.0 1.0 0.9908 1.3408 0.9820 1.1867 0.9844 2.6200 0.9853 1.9204 0.9788 1.6698

2.0 0.9962 1.3158 0.9806 1.1697 0.9802 2.5971 0.9804 1.9088 0.9854 1.6245

4.0 0.9838 1.3064 0.9880 1.1620 0.9757 2.5928 0.9757 1.9088 0.9843 1.6298

6.0 0.9841 1.3002 0.9810 1.1533 0.9786 2.5880 0.9718 1.9118 0.9863 1.6278

1.5 1.0 0.9908 1.9640 0.9702 1.7396 0.9805 1.7352 0.9503 1.3870 0.9693 1.9957

2.0 0.9976 1.9472 0.9874 1.7468 0.9735 1.7317 0.9716 1.3998 0.9696 2.0009

4.0 0.9870 1.9487 0.9849 1.7301 0.9758 1.7310 0.9823 1.3564 0.9810 1.9995

6.0 0.9911 1.9496 0.9827 1.7296 0.9779 1.7276 0.9736 1.3278 0.9881 2.0102

2.0 1.0 0.9901 2.6753 0.9854 2.3441 0.9549 1.2987 0.9722 0.9988 0.9835 2.4069

2.0 0.9852 2.5961 0.9887 2.3158 0.9427 1.3007 0.9814 1.0091 0.9788 2.3689

4.0 0.9847 2.6075 0.9885 2.3069 0.9754 1.2944 0.9758 0.9688 0.9830 2.3737

6.0 0.9841 2.6011 0.9804 2.3060 0.9635 1.3073 0.9847 0.9550 0.9816 2.3673

Table 8: Coverage probabilities and average widths of α for n = 100 at the 0.99 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9847 0.6046 0.9867 0.4010 0.9788 7.3237 0.9777 5.9770 0.9814 1.2971

2.0 0.9840 0.6076 0.9838 0.4016 0.9777 7.3262 0.9714 5.6972 0.9847 1.2866

4.0 0.9866 0.6038 0.9858 0.4038 0.9783 7.3277 0.9813 5.6293 0.9869 1.2866

6.0 0.9866 0.6038 0.9868 0.3990 0.9782 7.3241 0.9803 5.6292 0.9871 1.2853

1.0 1.0 0.9875 1.2147 0.9889 0.6711 0.9752 3.6722 0.9710 2.8268 0.9964 1.6959

2.0 0.9855 1.2130 0.9820 0.6757 0.9757 3.6635 0.9705 2.8194 0.9843 1.7004

4.0 0.9880 1.2075 0.9821 0.6700 0.9834 3.6638 0.9820 2.8182 0.9863 1.6941

6.0 0.9850 1.2069 0.9863 0.6728 0.9779 3.6617 0.9782 2.8150 0.9870 1.6966

1.5 1.0 0.9927 1.8306 0.9817 0.9482 0.9769 2.4629 0.9722 1.9145 0.9857 2.1357

2.0 0.9847 1.8120 0.9788 0.9462 0.9691 2.4441 0.9744 1.8970 0.9727 2.1086

4.0 0.9863 1.8139 0.9838 0.9397 0.9665 2.4452 0.9669 1.8699 0.9821 2.1024

6.0 0.9881 1.8162 0.9846 0.9451 0.9737 2.4413 0.9696 1.8614 0.9869 2.0992

2.0 1.0 0.9843 2.4301 0.9825 1.2244 0.9658 1.8487 0.9741 1.4837 0.9825 2.5251

2.0 0.9878 2.4202 0.9832 1.2048 0.9794 1.8428 0.9629 1.4553 0.9859 2.5153

4.0 0.9874 2.4139 0.9823 1.2115 0.9643 1.8335 0.9546 1.4153 0.9896 2.5093

6.0 0.9892 2.4164 0.9876 1.2077 0.9583 1.8322 0.9670 1.4043 0.9892 2.5113

Table 9: Coverage probabilities and average widths of α for n = 500 at the 0.99 nominal level

α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9865 0.5451 0.9845 0.2700 0.9797 8.2247 0.9792 7.9834 0.9863 1.3363

2.0 0.9860 0.5453 0.9857 0.2712 0.9824 8.2250 0.9800 7.9698 0.9859 1.3356

4.0 0.9864 0.5454 0.9857 0.2726 0.9807 8.2250 0.9807 7.8257 0.9865 1.3364

6.0 0.9861 0.5457 0.9860 0.2702 0.9814 4.5634 0.9807 7.6840 0.9860 1.3364

1.0 1.0 0.9871 1.0914 0.9828 0.5421 0.9741 4.5654 0.9784 3.9855 0.9849 1.7938

2.0 0.9880 1.0913 0.9867 0.5446 0.9830 4.5627 0.9827 3.9436 0.9874 1.7937

4.0 0.9869 1.0914 0.9860 0.5408 0.9810 4.5615 0.9828 3.8429 0.9865 1.7930

6.0 0.9858 1.0904 0.9828 0.5426 0.9814 3.3426 0.9808 3.4132 0.9860 1.7929

1.5 1.0 0.9882 1.6365 0.9872 0.8135 0.9830 3.3412 0.9792 2.6624 0.9875 2.2575

2.0 0.9870 1.6376 0.9849 0.8133 0.9844 3.3422 0.9838 2.6604 0.9858 2.2513

4.0 0.9854 1.6353 0.9849 0.8082 0.9794 3.3417 0.9802 2.6564 0.9860 2.2511

6.0 0.9863 1.6351 0.9851 0.8164 0.9795 2.7314 0.9809 2.6095 0.9859 2.2501

2.0 1.0 0.9913 2.1900 0.9881 1.0855 0.9802 2.7373 0.9623 1.9242 0.9834 2.7125

2.0 0.9870 2.1829 0.9844 1.0733 0.9773 2.7368 0.9858 1.9097 0.9824 2.7088

4.0 0.9874 2.1811 0.9846 1.0839 0.9807 2.7322 0.9831 1.8944 0.9851 2.7082

6.0 0.9868 2.1800 0.9866 1.0743 0.9796 2.7289 0.9807 1.8224 0.9867 2.7089

indicates that the width of the BS approach provides the
shortest width among all methods.

3.4 Summary and Concluding Remarks

In this paper, we proposed five methods of interval
estimation for the shape parameter of the Lomax
distribution. These methods are the ML, BS, BJ, BC, and
GPWM approaches. Moreover, the Monte Carlo

simulation numerically evaluated the performances of all
methods that are considered as coverage probability and
average width. The findings revealed that the ML method
performed well for all cases because the coverage
probabilities were consistently greater than, or close to,
the nominal confidence level, while the average widths
were mostly shorter than other methods. Furthermore, the
GPWM method is regarded as a recommended method
when large α and β exist. Moreover, underestimation
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Table 10: Coverage probabilities and average widths of α for n = 1000 at the 0.99 nominal level
α β ML BS BJ BC GPWM

CPa AWb CPa AWb CPa AWb CPa AWb CPa AWb

0.5 1.0 0.9898 0.5317 0.9864 0.1770 0.9787 8.9783 0.9796 8.6464 0.9849 1.3491

2.0 0.9861 0.5331 0.9858 0.1767 0.9809 8.9772 0.9819 8.6457 0.9863 1.3488

4.0 0.9860 0.5328 0.9859 0.1769 0.9809 8.9774 0.9815 8.6415 0.9860 1.3485

6.0 0.9861 0.5326 0.9859 0.1774 0.9811 8.9770 0.9813 8.6385 0.9860 1.3485

1.0 1.0 0.9868 1.0651 0.9866 0.3536 0.9826 6.3910 0.9826 6.3268 0.9857 1.8173

2.0 0.9860 1.0632 0.9857 0.3546 0.9794 6.3891 0.9799 6.3228 0.9857 1.8171

4.0 0.9863 1.0634 0.9856 0.3531 0.9805 6.3897 0.9803 6.3215 0.9864 1.8178

6.0 0.9858 1.0638 0.9860 0.3548 0.9808 6.3887 0.9808 6.3176 0.9859 1.8180

1.5 1.0 0.9890 1.5963 0.9868 0.6669 0.9859 5.5822 0.9809 5.2904 0.9879 2.2897

2.0 0.9862 1.5949 0.9855 0.6635 0.9795 5.5268 0.9803 5.2511 0.9865 2.2876

4.0 0.9858 1.5954 0.9858 0.6677 0.9801 5.5564 0.9811 5.2165 0.9861 2.2873

6.0 0.9861 1.5958 0.9859 0.6593 0.9816 5.5306 0.9819 5.2160 0.9858 2.2875

2.0 1.0 0.9929 2.1269 0.9869 0.9679 0.9878 5.1000 0.9768 4.1681 0.9897 2.7585

2.0 0.9879 2.1271 0.9867 0.9827 0.9839 5.0459 0.9765 4.1615 0.9868 2.7564

4.0 0.9860 2.1268 0.9861 0.9682 0.9815 5.0432 0.9814 4.1629 0.9858 2.7566

6.0 0.9857 2.1272 0.9857 0.9746 0.9812 5.0089 0.9809 4.1521 0.9858 2.7572

occurred for many cases when applying the Bayesian
methods.

Table 11: Interval estimations of α the 0.95 nominal level

Methods Interval estimations

(Lower bound, Upper bound) widths

ML (0.4173, 0.9302) 0.5129

BS (0.2215, 0.6873) 0.4658

BJ (0.4197, 0.5902) 1.1705

BC (0.1570, 1.1925) 1.0355

GPWM (0.3270, 1.1732) 0.8462
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