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Abstract: A delayed rumor propagation model with psychological factors and forgetting mechanism is formulated. The local stability

of the rumor-free equilibrium and the rumor-prevailing equilibrium is discussed by analyzing the corresponding characteristic equations.

Using Lyapunov functional, we prove that the rumor-free equilibrium is globally asymptotically stable when the basic reproduction

number R0 ≤ 1. Also, a sufficient condition is obtained for the global asymptotic stability of the rumor-prevailing equilibrium when

R0 > 1. Numerical examples are presented to illustrate the theoretical results.
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1 Introduction

Rumors are a part of our everyday life, and affects the
community as well as the individual. Mathematical
modeling has played an important role in describing
rumors. The first classical rumor spreading model, which
was proposed in the 1960s by Daley and Kendall [1, 2],
was called DK model. In this model, people are divided
into three classes: ignorants (those who do not know
rumors), spreaders (those who know and spread rumors)
and stiflers (those who know rumors, but do not spread
them). Afterwards, Maki and Thomson [3] developed
another classical MK model in 1973. It focused on the
analysis of rumor prevalence based on mathematical
theory via direct contact between spreaders and others.
Later, many scholars paid attention to the spread of
rumors. Bettencourt et al. [4] have addressed spread
process. Kawachi et al. [5] presented a rumor
transmission model with various contact interactions.
Al-Tuwairqi et al. [6] considered a rumor transmission
model with incubation. Deng et al. [7] proposed a rumor
propagation model with forget-remember mechanism.

Most previous rumor spread models mainly consider
that rumor diffusion process meets the bilinear incidence
rate. Rumor propagation is closely related to personal

psychological quality. Thus, the bilinear incidence rate in
real rumor spread is inappropriate. Recently, the nonlinear
incidence rate in rumor propagation process has been
suggested by several authors, see for example [8, 9].

Time delay is a common and inevitable phenomenon
in nature, which is viewed as a latent period and immune
period in epidemics (see, e.g. [10–16]). Similarly, in
rumor spread mechanism, time delay occurs when the
spreaders contact the ignorants because individuals may
not timely respond to rumors. Laarabi et al. [17]
introduced a rumor spreading model incorporating latent
period. Li established a rumor model with time delay
considering forgetting effect [18]. Zhu et al. [19]
proposed time delay state feedback controller and
described authorities actions in reaction-diffusion rumor
spreading model. Li in [20] introduced a time delay
rumor propagation model with a saturated control
function in emergencies. Further works of rumor
propagation models with time delay are found in [21–23].

In this work, we propose the following delayed rumor
propagation model with psychological factors and
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forgetting mechanism :



























dS(t)
dt

= Λ − µ1S(t)− β S(t)I(t−τ)
1+αI(t−τ) ,

dI(t)
dt

= β S(t)I(t−τ)
1+αI(t−τ) − γI(t)(I(t)+R(t))−ηI(t)− µ2I(t),

dR(t)
dt

= γI(t)(I(t)+R(t))+ηI(t)− µ3R(t),
(1)

where S(t), I(t) and R(t) denote the proportions of
ignorants, spreaders and stiflers at time t, respectively. Λ
is the recruitment rate of ignorant, η is the transfer rate
from spreader to stifler due to forgetting mechanism, β is
the rumor propagation rate from ignorant to spreader, and
α is the saturation factors measuring the psychological or
inhibitory effect of the general public toward rumor. γ is
the transfer rate from spreader to stifler due to a
spreader’s contacts with another spreader or a stifler, with
only the initiating spreader turns into a stifler. µ1, µ2 and
µ3 describe the removal rate of ignorant, spreader and
stifler from the system when they lose interest in rumors.
τ ≥ 0 is the average infectious delay of the rumor, i.e. the
time when an individual infected with the rumor will
become infectious. The parameters Λ , β , γ , µ1, µ2 and µ3

are positive constants and parameters η and α are
nonnegative constants.

The initial condition for system (1) takes the form

S (0) > 0, I (θ ) = φ (θ )≥ 0, θ ∈ [−τ,0] , φ (0)> 0,

R(0) > 0, (2)

where φ ∈ C ([−τ,0] ,R+), the Banach space of
continuous functions mapping the interval [−τ,0] into
R+.

From the fundamental theory of functional differential
equations [24], system (1) has a unique solution
(S(t), I(t),R(t)) satisfying the initial condition (2). It is
easy to show that the solution (S(t), I(t),R(t)) of system
(1) with initial condition (2) is positive for all t > 0.

Summing all equations of system (1) we find that the
total population size N (t) = S(t)+ I(t)+R(t) satisfies the
inequality

dN (t)

dt
= Λ − µ1S(t)− µ2I(t)− µ3R(t)≤Λ − µN (t) ,

where µ = min{µ1,µ2,µ3}. It follows that

limsup
t→∞

N (t)≤
Λ

µ
,

so the meaningful feasible region of (1) is

∆ =

{

(S, I,R) ∈ R
3
+ : S+ I+R ≤

Λ

µ

}

.

Lemma 1. The compact set

∆ =

{

(S, I,R) ∈ R
3
+ : S+ I+R ≤

Λ

µ

}

is positively invariant with respect to system (1), where
µ = min{µ1,µ2,µ3}.

The rest of this paper is organized as follows: In the
next section, we discuss the existence and the local
stability of the equilibria using linearization method. In
Section 3, by constructing suitable Lyapunov functionals,
the global stability of equilibria is investigated. In Section
4, we present numerical examples to illustrate our results.
Conclusion is presented in Section 5.

2 Local stability

In this section, we discuss the existence and the local
asymptotic stability of the equilibria of system (1).

We define the basic reproduction number of model (1)
as follows

R0 =
βΛ

µ1 (η + µ2)
,

which represents the average number of secondary
transmissions of the rumor [25].

It is easy to verify that model (1) always has a
rumor-free equilibrium E0 = ( Λ

µ1
,0,0). Next, we obtain

the following lemma which ensures the unique existence
of a rumor-prevailing equilibrium E∗ for R0 > 1.

Lemma 2. If R0 > 1, system (1) has a unique positive
rumor-prevailing equilibrium E∗ = (S∗, I∗,R∗) with

I∗ ∈
(

0,
µ3
γ

)

.

Proof. Assume that R0 > 1. From the second and third
equations of (1), it follows that

S∗ =
1+αI∗

β

(

γ (η + µ3) I∗

µ3 − γI∗
+η + µ2

)

, (3)

R∗ =
γ(I∗)2 +ηI∗

µ3 − γI∗
.

We have R∗ ≥ 0 implies that I∗ ∈
[

0,
µ3
γ

)

. Hence, no

positive equilibrium exists if I∗ ≥ µ3

γ .

Substituting equation (3) into the first equation of (1),
we obtain that

F(I∗) = 0,

where

F(I) = Λ −

(

µ1 (1+αI)

β
+ I

)(

γ (η + µ3) I

µ3 − γI
+η + µ2

)

,

I ∈

[

0,
µ3

γ

)

.

We have

F(0) =
µ1(η + µ2)

β
(R0 − 1)> 0, lim

I→
µ3
γ

I<
µ3
γ

F(I) =−∞,
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and

F ′(I) =−
(

αµ1

β
+ 1
)(

γ(η+µ3)I
µ3−γI

+η + µ2

)

−
(

µ1(1+αI)
β

+ I
)

γµ3(η+µ3)

(µ3−γI)2 < 0.

Hence, there exists unique I∗ ∈
(

0,
µ3
γ

)

such that

F(I∗) = 0 if R0 > 1. This shows that model (1) has a
unique positive rumor-prevailing equilibrium
E∗ = (S∗, I∗,R∗) when R0 > 1. �

Now, we discuss the local behavior of the rumor-free
equilibrium E0. Let x(t) = S(t)− Λ

µ1
, y(t) = I(t) and z(t) =

R(t). Then, the linearized system of (1) around E0 takes the
following form



























dx(t)
dt

= −µ1x(t)− βΛ
µ1

y(t − τ),

dy(t)
dt

= βΛ
µ1

y(t − τ)− (η + µ2)y(t),

dz(t)
dt

= ηy(t)− µ3z(t).

(4)

The associated characteristic equation of system (4)
can be described as

(λ + µ1)(λ + µ3)
[

λ +(η + µ2)(1−R0e−λ τ)
]

= 0. (5)

Theorem 1. If R0 < 1, the rumor-free equilibrium E0 is
locally asymptotically stable for all τ ≥ 0. E0 is unstable if
R0 > 1.

Proof. If no delay exists, i.e. τ = 0, Eq. (5) becomes

(λ + µ1)(λ + µ3) [λ +(η + µ2) (1−R0)] = 0. (6)

It is clear that (6) has three roots λ1 = −µ1 < 0,
λ2 = −µ3 < 0 and λ3 = (η + µ2)(R0 − 1). Hence, the
equilibrium E0 will be locally asymptotically stable if
R0 < 1 for τ = 0.

Now, we address the circumstances of delay. Assume
that (5) has a purely imaginary root λ = iω , with ω > 0.
Then, separating real and imaginary parts gives

{

(η + µ2)R0 cosωτ = (η + µ2) ,
(η + µ2)R0 cosωτ = −ω .

Hence
ω2 = (η + µ2)

2
(

R2
0 − 1

)

,

which ensures that Eq. (5) has no purely imaginary roots if
R0 < 1. Then, the equilibrium E0 is locally asymptotically
stable for any delay τ ≥ 0 if R0 < 1.

Let G(λ ) = λ + (η + µ2)(1 − R0e−λ τ). We have
G(0) = −(η + µ2) (R0 − 1) < 0 if R0 > 1 and

lim
λ→+∞

G(λ ) = +∞. Hence, G(λ ) = 0 has a positive real

root. Therefore, if R0 > 1, the rumor-free equilibrium E0

is unstable. The proof is completed.
Next, we focus on the local stability of the

rumor-prevailing equilibrium E∗ by assuming that

R0 > 1. Let x(t) = S(t) − S∗, y(t) = I(t) − I∗ and
z(t) = R(t)−R∗. Then, by linearizing system (1) around
E∗, we get the following system























dx(t)
dt

= −m1x(t)−m2y(t − τ),

dy(t)
dt

= m3x(t)+m2y(t − τ)−m4y(t)−m5z(t),

dz(t)
dt

= m6y(t)−m7z(t),

(7)

where

m1 = µ1 +
β I∗

1+αI∗
> 0,

m2 =
β S∗

(1+αI∗)2
> 0,

m3 =
β I∗

1+αI∗
> 0,

m4 = 2γI∗+ γR∗+η + µ2 > 0,

m5 = γI∗ > 0,

m6 = 2γI∗+ γR∗+η > 0,

m7 = µ3 − γI∗ > 0.

Characteristic equation, which is associated with
system (7), is given by

det





λ +m1 m2e−λ τ 0

−m3 λ −m2e−λ τ +m4 m5

0 −m6 λ +m7



= 0,

which is equivalent to

λ 3+ p2λ 2+ p1λ + p0−(q2λ 2+q1λ +q0)e
−λ τ = 0, (8)

where

p2 = m1 +m4 +m7 > 0,

p1 = m4(m1 +m7)+m1m7 +m5m6 > 0,

p0 = m1 (m4m7 +m5m6)> 0,

q2 = m2 > 0,

q1 = m2(m1 −m3 +m7) = m2(µ1 +m7)> 0,

q0 = m2m7(m1 −m3) = µ1m2m7 > 0.

In the absence of delay, we have the following result.

Theorem 1. If R0 > 1, then, when τ = 0, the
rumor-prevailing equilibrium E∗ is locally asymptotically
stable.

Proof. When τ = 0, the characteristic equation (8)
becomes

λ 3 +(p2 − q2)λ
2 +(p1 − q1)λ + p0 − q0 = 0, (9)

where

p2 − q2 = m1 +m7 +(m4 −m2),

p1 − q1 = (µ1 +m7)(m4 −m2)+m1m7 +m3m4 +m5m6,

p0 − q0 = µ1m7(m4 −m2)+m3m4m7 +m1m5m6.
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Note that

m4 −m2 = γI∗+
αβ S∗I∗

(1+αI∗)2
> 0, (10)

then it is easy to show that p2 − q2 > 0, p1 − q1 > 0,
p0 − q0 > 0 and (p2 − q2)(p1 − q1) > p0 − q0. Thus, by
the Routh-Hurwitz criterion, all roots λi (i = 1,2,3) of (9)
have negative real part. Then, we can conclude that when
E∗ exists (i.e., R0 > 1), it is locally asymptotically stable
for τ = 0. The proof is completed.

Now, we handle the case of positive delay τ > 0. We
have the following theorem.

Theorem 3. If R0 > 1 and µ3 ≤ 2µ2, the rumor-prevailing
equilibrium E∗ is locally asymptotically stable for all τ ≥
0.

Proof. According to Theorem 2, E∗ is locally
asymptotically stable for τ = 0 if R0 > 1. For τ > 0, let
λ = iω be a root of Eq. (8), with ω > 0. Then,

{(

q2ω2 − q0

)

coswτ − q1ω sinwτ = p2ω2 − p0,
(

q2ω2 − q0

)

sinwτ + q1ω coswτ = −ω3 + p1ω .

(11)

Squaring and adding the two equations in (11), we
obtain

ω6 +
(

p2
2 − q2

2 − 2p1

)

ω4 +
(

p2
1 − q2

1 − 2p2p0 + 2q2q0

)

ω2

+p2
0 − q2

0 = 0.
(12)

We have

p2
2 −q2

2 −2p1

= m2
1 +m2

7 +m2
4 −m2

2 −2m5m6

=

(

µ1 +
β I∗

1+αI∗

)2

+(µ3 − γI∗)2 +(2γI∗+ γR∗+η +µ2)
2

−

(

βS∗

(1+αI∗)2

)2

−2γI∗ (2γI∗+ γR∗+η)

=

(

µ1 +
β I∗

1+αI∗

)2

+(µ3 − γI∗)2 +(γI∗)2

+2γI∗ (γI∗+ γR∗+η +µ2)+(γI∗+ γR∗+η +µ2)
2

−

(

βS∗

(1+αI∗)2

)2

−2γI∗ (2γI∗+ γR∗+η)

=

(

µ1 +
β I∗

1+αI∗

)2

+

(

βS∗

1+αI∗
+

βS∗

(1+αI∗)2

)

αβS∗I∗

(1+αI∗)2

+µ3 (µ3 − γI∗)+ γI∗ (2µ2 −µ3) ,

then p2
2 − q2

2 − 2p1 > 0. Furthermore, we have

p2
1 − q2

1 − 2p2p0 + 2q2q0

= m2
1m2

4 +m2
1m2

7 +
(

m2
4 −m2

2

)

m2
7 + 2m4m5m6m7

+m2
5m2

6 − µ2
1 m2

2 − 2m2
1m5m6.

Note that

m2
1m2

4 − µ2
1 m2

2 − 2m2
1m5m6

=

(

µ1 +
β I∗

1+αI∗

)2

(2γI∗+ γR∗+η + µ2)
2

−µ2
1

(

β S∗

(1+αI∗)2

)2

−2

(

µ1 +
β I∗

1+αI∗

)2

γI∗ (2γI∗+ γR∗+η)

= γI∗

(

µ1 +
β I∗

1+α (I∗)2

)2

(2µ2 − µ3 + µ3 − γI∗)

+

(

2µ1β I∗

1+αI∗
+

(

β I∗

1+αI∗

)2
)

(

β S∗

1+αI∗

)2

+µ2
1

(

β S∗

1+αI∗
+

β S∗

(1+αI∗)2

)

αβ S∗I∗

(1+αI∗)2
,

then m2
1m2

4 − µ2
1 m2

2 − 2m2
1m5m6 > 0, and from (10),

we have m2
4 − m2

2 > 0 since m2,m4 > 0. Then,

p2
1 − q2

1 − 2p2p0 + 2q2q0 > 0. In addition, we have

p2
0 − q2

0 = (p0 − q0)(p0 + q0)> 0,

since p0 − q0 > 0 and p0,q0 > 0.

Thus, Eq. (12) has no positive real roots, which
ensures that Eq. (8) has no purely imaginary roots. Hence,
the equilibrium E∗ is asymptotically stable for any delay
τ ≥ 0 if R0 > 1 and µ3 ≤ 2µ2. The proof is completed.

3 Global stability

We use the convention that S = S(t), I = I(t), R= R(t) and
Iτ = I (t − τ) to simplify the following calculations.

First, we consider the global stability of model (1) at
the rumor-free equilibrium E0.

Theorem 4. If R0 ≤ 1, the rumor-free equilibrium E0 is
globally asymptotically stable for all τ ≥ 0.

Proof. Let U be the Lyapunov functional defined as

U(t) =
1

2
(S−

Λ

µ1

)2 +
Λ

µ1

I+
Λ

µ1

(η + µ2)

∫ τ

0
I(t − u)du.
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Differentiating U along the solutions of system (1), we
have

dU

dt
= (S−

Λ

µ1

)

(

Λ − µ1S−
β SIτ

1+αIτ

)

+
Λ

µ1

β SIτ

1+αIτ

−
Λ

µ1

γI(I+R)−
Λ

µ1

(η + µ2) I+
Λ

µ1

(η + µ2) I

−
Λ

µ1

(η + µ2) Iτ

= −µ1(S−
Λ

µ1

)2 − (S−
Λ

µ1

)
β SIτ

1+αIτ
+

Λ

µ1

β SIτ

1+αIτ

−
Λ

µ1

γI(I+R)−
Λ

µ1

(η + µ2) Iτ

= −µ1(S−
Λ

µ1

)2 − (S−
Λ

µ1

)2 β Iτ

1+αIτ

−
Λ

µ1

(S−
Λ

µ1

)
β Iτ

1+αIτ
+

Λ

µ1

β SIτ

1+αIτ

−
Λ

µ1

γI(I+R)−
Λ

µ1

(η + µ2) Iτ

= −(S−
Λ

µ1

)2

(

µ1 +
β Iτ

1+αIτ

)

−
Λ

µ1

γI(I+R)

+

(

Λ

µ1

)2
β Iτ

1+αIτ
−

Λ

µ1

(η + µ2) Iτ

= −(S−
Λ

µ1

)2

(

µ1 +
β Iτ

1+αIτ

)

−
Λ

µ1

γI(I+R)

+
Λ

µ1

[

βΛ

µ1

1

1+αIτ
− (η + µ2)

]

Iτ

≤ −(S−
Λ

µ1

)2

(

µ1 +
β Iτ

1+αIτ

)

−
Λ

µ1

γI(I+R)

+
Λ

µ1

(R0 − 1)Iτ .

Therefore, R0 ≤ 1 ensures that dU
dt

≤ 0. Furthermore, it is
easy to verify that the singleton {E0} is the largest

compact invariant set in
{

(S, I,R) ∈ R
3
+ : dU

dt
= 0
}

.
Adopting the LaSalle’s invariance principle [26], we
conclude that E0 is globally asymptotically stable if
R0 ≤ 1. �

For the global stability of rumor-prevailing equilibrium
E∗ of model (1), we have the following result.

Theorem 5. Assume that R0 > 1. If µµ3 ≥ γΛ , the
rumor-prevailing equilibrium E∗ is globally
asymptotically stable.

Proof.

Consider the Lyapunov functional

V (t) =V1(t)+V2(t)+β S∗ f (I∗)V3(t)+ωV4(t),

where

V1(t) = S∗g

(

S

S∗

)

,

V2(t) = I∗g

(

I

I∗

)

,

V3(t) =

∫ τ

0
g

(

I(t − u)

I∗

)

du,

V4(t) =
1

2
(R−R∗)2

,

f (x) =
x

1+αx
,

g(x) = x− 1− lnx ≥ g(1) = 0 for any x > 0,

and ω is a positive constant which will be defined later.
First, we calculate the derivative of V1 along the

solutions of system (1).

dV1

dt
=

(

1−
S∗

S

)

dS

dt

=

(

1−
S∗

S

)

(Λ −µ1S−βS f (Iτ))

=

(

1−
S∗

S

)

(−µ1 (S−S∗)+βS∗ f (I∗)−βS f (Iτ))

= −µ1
(S−S∗)2

S
+βS∗ f (I∗)

(

1−
S∗

S

)(

1−
S f (Iτ)

S∗ f (I∗)

)

= −µ1
(S−S∗)2

S
+βS∗ f (I∗)

(

1−
S∗

S
−

S f (Iτ)

S∗ f (I∗)
+

f (Iτ )

f (I∗)

)

.

Then, calculating the derivative of V2 along the solutions
of (1) gives

dV2

dt
=

(

1−
I∗

I

)

dI

dt

=

(

1−
I∗

I

)

(βS f (Iτ)− γI(I +R)− (η +µ2) I)

=

(

1−
I∗

I

)(

βS f (Iτ)− γI(I +R)−βS∗ f (I∗)
I

I∗

+γI(I∗+R∗))

=

(

1−
I∗

I

)(

βS f (Iτ)−βS∗ f (I∗)
I

I∗

)

− γ (I − I∗)2

−γ (I − I∗)(R−R∗)

= βS∗ f (I∗)

(

1−
I∗

I

)(

S f (Iτ )

S∗ f (I∗)
−

I

I∗

)

− γ (I − I∗)2

−γ (I − I∗)(R−R∗)

= βS∗ f (I∗)

(

S f (Iτ)

S∗ f (I∗)
−

I

I∗
−

I∗S f (Iτ)

IS∗ f (I∗)
+1

)

− γ (I − I∗)2

−γ (I − I∗)(R−R∗) .

Now, we calculate the derivative of V3.

dV3

dt
= g

(

I

I∗

)

− g

(

Iτ

I∗

)

=
I

I∗
−

Iτ

I∗
+ ln

(

Iτ

I∗

)

− ln

(

I

I∗

)

=
I

I∗
−

Iτ

I∗
+ ln

(

Iτ

I

)

.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


602 M. Naim et al.: Dynamics of a Delayed Rumor Propagation Model...

Differentiating V4 along the solutions of system (1), we
have

dV4

dt
= (R−R∗)

dR

dt

= (R−R∗) (γI(I +R)+ηI− µ3R)

= (R−R∗)(γI(I +R)+ηI− µ3(R−R∗)− µ3R∗)

= (R−R∗)(γI(I +R)+ηI− µ3(R−R∗)

−γI∗(I∗+R∗)−ηI∗)

= (R−R∗)(γ (I − I∗)(I + I∗+R∗)+ γI(R−R∗)

+η (I − I∗)− µ3(R−R∗))

= (γ (I+ I∗+R∗)+η)(I− I∗)(R−R∗)

−(µ3 − γI)(R−R∗)2
.

Then,

dV

dt
= −µ1

(S−S∗)2

S
+βS∗ f (I∗)

(

1−
S∗

S
−

S f (Iτ )

S∗ f (I∗)
+

f (Iτ)

f (I∗)

)

+βS∗ f (I∗)

(

S f (Iτ )

S∗ f (I∗)
−

I

I∗
−

I∗S f (Iτ)

IS∗ f (I∗)
+1

)

−γ (I − I∗)2 − γ (I − I∗)(R−R∗)

+βS∗ f (I∗)

(

I

I∗
−

Iτ

I∗
+ ln

(

Iτ

I

))

+ω (γ (I + I∗+R∗)+η) (I − I∗) (R−R∗)

−ω (µ3 − γI)(R−R∗)2
.

Hence,

dV

dt
= −µ1

(S− S∗)2

S
+β S∗ f (I∗)

(

2−
S∗

S
+

f (Iτ)

f (I∗)

−
I∗S f (Iτ)

IS∗ f (I∗)
−

Iτ

I∗
+ ln

(

Iτ

I

))

− γ (I − I∗)2

+(ω (γ (I+ I∗+R∗)+η)− γ)(I − I∗)(R−R∗)

−ω (µ3 − γI)(R−R∗)2

= −µ1
(S− S∗)2

S
−β S∗ f (I∗)

{

S∗

S
− 1− ln

(

S∗

S

)

+
I∗S f (Iτ)

IS∗ f (I∗)
− 1− ln

(

I∗S f (Iτ)

IS∗ f (I∗)

)

+
Iτ f (I∗)

I∗ f (Iτ)
− 1− ln

(

Iτ f (I∗)

I∗ f (Iτ)

)}

−β S∗ f (I∗)

(

1−
Iτ f (I∗)

I∗ f (Iτ)
−

f (Iτ)

f (I∗)
+

Iτ

I∗

)

− γ (I− I∗)2

+(ω (γ (I+ I∗+R∗)+η)− γ)(I − I∗)(R−R∗)

−ω (µ3 − γI)(R−R∗)2
.

Then,

dV

dt
= −µ1

(S−S∗)2

S
−βS∗ f (I∗)

(

g

(

S∗

S

)

+g

(

I∗S f (Iτ )

IS∗ f (I∗)

)

+g

(

Iτ f (I∗)

I∗ f (Iτ)

))

−βS∗ f (I∗)

(

1−
Iτ f (I∗)

I∗ f (Iτ )
−

f (Iτ)

f (I∗)
+

Iτ

I∗

)

+
1

2
(ω (γ (I + I∗+R∗)+η)− γ) (I − I∗+R−R∗)2

−
1

2
(ω (γ (I + I∗+R∗)+η)+ γ) (I − I∗)2

+
1

2
(γ −ω (γ (I∗+R∗)+η)+ωγI −2ωµ3)(R−R∗)2

.

Note that

1−
Iτ f (I∗)

I∗ f (Iτ)
−

f (Iτ)

f (I∗)
+

Iτ

I∗
=

α (Iτ − I∗)2

I∗ (1+αI∗)(1+αIτ)
.

Then,

dV

dt
= −µ1

(S−S∗)2

S
−βS∗ f (I∗)

(

g

(

S∗

S

)

+g

(

I∗S f (Iτ )

IS∗ f (I∗)

)

+g

(

Iτ f (I∗)

I∗ f (Iτ )

))

−βS∗ f (I∗)
α (Iτ − I∗)2

I∗ (1+αI∗)(1+αIτ )

+
1

2
(ω (γ (I + I∗+R∗)+η)− γ) (I − I∗+R−R∗)2

−
1

2
(ω (γ (I + I∗+R∗)+η)+ γ) (I − I∗)2

+
1

2
(γ −ω (γ (I∗+R∗)+η)+ωγI −2ωµ3)(R−R∗)2

.

By Lemma 1, we have I ≤ Λ
µ . Hence,

dV

dt
≤ −µ1

(S− S∗)2

S
−β S∗ f (I∗)

(

g

(

S∗

S

)

+g

(

I∗S f (Iτ)

IS∗ f (I∗)

)

+ g

(

Iτ f (I∗)

I∗ f (Iτ)

))

−β S∗ f (I∗)
α (Iτ − I∗)2

I∗ (1+αI∗)(1+αIτ)

+
1

2

(

ω

(

γ

(

Λ

µ
+ I∗+R∗

)

+η

)

− γ

)

×(I− I∗+R−R∗)2

−
1

2
(ω (γ (I+ I∗+R∗)+η)+ γ)(I− I∗)2

+
1

2

(

γ −ω (γ (I∗+R∗)+η)+ωγ
Λ

µ
− 2ωµ3

)

×(R−R∗)2
.
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Choose ω = γ

γ
(

Λ
µ +I∗+R∗

)

+η
, then

dV

dt
≤ −µ1

(S− S∗)2

S
−β S∗ f (I∗)

(

g

(

S∗

S

)

+g

(

I∗S f (Iτ)

IS∗ f (I∗)

)

+ g

(

Iτ f (I∗)

I∗ f (Iτ)

))

−β S∗ f (I∗)
α (Iτ − I∗)2

I∗ (1+αI∗)(1+αIτ)

−
1

2
(ω (γ (I + I∗+R∗)+η)+ γ)(I− I∗)2

+ω

(

γ
Λ

µ
− µ3

)

(R−R∗)2
.

Hence, µµ3 ≥ γΛ ensures that dV
dt

≤ 0, and the equality
occurs only at E∗. Applying the LaSalle’s invariance
principle, we can obtain that the rumor-prevailing
equilibrium E∗ of model (1) is globally asymptotically
stable if R0 > 1 and µµ3 ≥ γΛ .

4 Numerical examples

Example 1. Consider the following parameters Λ = 0.25,
β = 0.4, γ = 0.4, η = 0.1, α = 0.7, µ1 = 0.4, µ2 = 0.3,
µ3 = 0.7. By calculation, we obtain R0 = 0.625. Hence,
according to Theorem 4, the rumor-free equilibrium E0 =
(0.625,0,0) is globally asymptotically stable for different
delays suggesting that the rumor disappears.

Example 2. We keep all the system (1) parameters the
same as in Example 1 except that µ2 reduced from 0.3 to
0.1. Then, R0 = 1.25 > 1, and we can conclude, by
Theorem 1, that the rumor-free equilibrium
E0 = (0.625,0,0) is unstable.

Example 3. Consider the following parameters Λ = 0.15,
β = 0.45, γ = 0.25, η = 0.08, α = 0.9, µ1 = 0.2,
µ2 = 0.15, µ3 = 0.5. Then, R0 = 1.4673 > 1 and
µµ3 = 0.075 ≥ γΛ = 0.0375. From Theorem 5, the
rumor-prevailing equilibrium E∗ is globally
asymptotically stable for different delays, which means
that rumor persists.

5 Conclusion

In this paper, we have presented a delayed rumor
propagation model with psychological factors and
forgetting mechanism. From the model we get the
equilibria and the basic reproduction number R0. We have
shown that if R0 ≤ 1, the rumor-free equilibrium is
globally asymptotically stable, which means that the
rumor disappears. Moreover, we have proved that if
R0 > 1, the rumor-prevailing equilibrium is globally
asymptotically stable provided that µµ3 ≥ γΛ , so rumor
will persist at the unique positive equilibrium.
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