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Abstract: This paper addresses the generalized Euler polynomial matrix E (α)(x) and the Euler matrix E . Taking into account some

properties of Euler polynomials and numbers, we deduce product formulae for E (α)(x) and define the inverse matrix of E . We establish

some explicit expressions for the Euler polynomial matrix E (x), which involves the generalized Pascal, Fibonacci and Lucas matrices,

respectively. From these formulae, we get some new interesting identities involving Fibonacci and Lucas numbers. Also, we provide

some factorizations of the Euler polynomial matrix in terms of Stirling matrices, as well as a connection between the shifted Euler

matrices and Vandermonde matrices.
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1 Introduction

The classical Euler polynomials En(x) and the generalized

Euler polynomials E
(α)
n (x) of (real or complex) order α ,

are usually defined, as follows (see, for details, [1,2,3,4]):

(
2

ez + 1

)α

exz =
∞

∑
n=0

E
(α)
n (x)

zn

n!
, |z|< π , 1α := 1,

(1)
and

En(x) := E
(1)
n (x), n ∈ N0, (2)

where N0 := N∪{0} and N= {1,2,3, . . .}.

The numbers E
(α)
n := E

(α)
n (0) are called generalized

Euler numbers of order α . The classical Euler numbers εn

are defined by the generating function

2

ez + e−z
=

∞

∑
n=0

εn
zn

n!
. (3)

From (1)-(3), it is easy to check that the connection
between the classical Euler numbers and the Euler
polynomials is given by the formula

εn = 2nEn

(
1

2

)

, n ∈ N0. (4)

Thus, the numbers En := En(0) are also known in pieces
of literature as Euler numbers (cf., e.g., [3,5]). The first six
generalized Euler polynomials are

E
(α)
0 (x) =1, E

(α)
1 (x) = x−

α

2
,

E
(α)
2 (x) =x2 −αx+

α(α − 1)

4
,

E
(α)
3 (x) =x3 −

3α

2
x2 +

3α(α − 1)

4
x−

α2(α − 3)

8
,

E
(α)
4 (x) =x4 − 2αx3 +

3α(α − 1)

2
x2 −

α2(α − 3)

2
x

+
α(α − 1)(α2 − 5α − 2)

16
,

E
(α)
5 (x) =x5 −

5α

2
x4 +

5α(α − 1)

2
x3 −

5α2(α − 3)

4
x2

+
5α(α − 1)(α2 − 5α − 2)

16
x

−
α2(α3 − 10α2 + 15α + 10)

32
.

For a broad information on old literature and new
research trends on these classes of polynomials, we
strongly encourage the interested reader to [2,3], [5]-[18].
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From the generating relation (1), it is fairly
straightforward to deduce the addition formula:

E
(α+β )
n (x+ y) =

n

∑
k=0

(
n

k

)

E
(α)
k (x)E

(β )
n−k(y). (5)

And, it follows that

E
(α)
n (x+ 1)+E

(α)
n (x) = 2E

(α−1)
n (x). (6)

Since E
(0)
n (x) = xn, making the substitution β = 0 into (5)

and interchanging x and y, we get

E
(α)
n (x+ y) =

n

∑
k=0

(
n

k

)

E
(α)
k (y)xn−k

. (7)

As an immediate consequence, we have

En(x+ y) =
n

∑
k=0

(
n

k

)

Ek(y)x
n−k

, (8)

En(x) =
n

∑
k=0

(
n

k

)

Ek xn−k
. (9)

Using (4), (8) and the well known relation
En(1 − x) = (−1)nEn(x), it is possible to deduce the
following connection formula between En and the
classical Euler numbers εn:

En =







− 1
2n ∑n

k=0

(
n
k

)
εn−k, if n is odd,

0, if n is even.

(10)

Inspired by the article [19] in which the authors
introduce the generalized Bernoulli matrix and show
some of its algebraic properties, we examine some
properties of generalized Euler matrix.

The outline of the paper is, as follows: Section 2 has
an auxiliary character and provides some background as
well as some results which will be used throughout the
paper. In Section 3, we introduce the generalized Euler
matrix and investigate some interesting particular cases of
this matrix, namely the Euler polynomial matrix, the
Euler matrix, and the specialized Euler matrix. The main
results of this section are Theorems 1, 2, 3 and 4, which
contain the information concerning the product formula
for the Euler matrix, an explicit expression for the inverse
matrix of the specialized Euler matrix, the factorization of
the Euler matrix via the generalized Pascal matrix of first
kind, and a useful factorization for the inverse matrix of a
particular “horizontal sliding” of the Euler polynomial
matrix, respectively. Section 4 shows some factorizations
of the generalized Euler matrix in terms the Fibonacci and
Lucas matrices, respectively (cf. Theorems 5 and 6).
Also, some new identities involving Fibonacci and Lucas
numbers are presented in this section. In Section 5, we
provide some factorizations of the Euler polynomial
matrix in terms of Stirling matrices, and the shifted Euler
matrices as well as their connection with Vandermonde
matrices. Section 6 is devoted to conclusion and further
research.

2 Background and previous results

Throughout this paper, all matrices are in Mn+1(R), the
set of all (n+ 1)-square matrices over the real field. Also,
for i, j any nonnegative integers, we adopt the following
convention

(
i

j

)

= 0, whenever j > i.

In this section, we recall the definitions of the
generalized Pascal matrix, Fibonacci matrix and, Lucas
matrix.

Definition 1.Let x be any nonzero real number. The

generalized Pascal matrix of first type P[x] ∈ Mn+1(R) is

the matrix whose entries are given by (see [20,21]):

pi, j(x) =







(
i
j

)
xi− j, i ≥ j,

0, otherwise.

In [20]-[22], some properties of the generalized
Pascal matrix of first type are shown, for example, its
matrix factorization by special summation matrices, its
associated differential equation and its bivariate
extensions. The following proposition summarizes some
algebraic and differential properties of P[x].

Proposition 1.Let P[x] ∈ Mn+1(R) be the generalized

Pascal matrix of first type. Then, the following statements

hold.

(a)Special value. If the convention 00 = 1 is adopted, then

it is possible to define

P[0] := In+1 = diag(1,1, . . . ,1), (11)

where In+1 denotes the identity matrix of order n+ 1.

(b)P[x] is an invertible matrix and its inverse is given by

P−1[x] := (P[x])−1 = P[−x]. (12)

(c)[20, Theorem 2] Addition theorem of the argument. For

x,y ∈ R, we have

P[x+ y] = P[x]P[y].

(d)[20, Theorem 5] Differential relation (Appell type

polynomial entries). P[x] satisfies the following

differential equation

DxP[x] = LP[x] = P[x]L,

where DxP[x] is the matrix resulting from taking the

derivative with respect to x of each entry of P[x] and

the entries of the (n+ 1)× (n+ 1) matrix L are given

by

li, j =







p′i, j(0), i ≥ j,

0, otherwise,

=







j+ 1, i = j+ 1,

0, otherwise.
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(e)([21, Theorem 1]) The matrix P[x] can be factorized,

as follows:

P[x] = Gn[x]Gn−1[x] · · ·G1[x], (13)

where Gk[x] is the (n+ 1)× (n+ 1) summation matrix

given by

Gk[x] =







[
In−k 0

0 Sk[x]

]

, k = 1, . . . ,n− 1,

Sn[x], k = n,

being Sk[x] the (k+ 1)× (k+ 1) matrix whose entries

Sk(x; i, j) are given by

Sk(x; i, j) =







xi− j, j ≤ i,

0, j > i,

(0 ≤ i, j ≤ k).

Another necessary structured matrices in what follows,
are the Fibonacci and Lucas matrices. Below, we recall the
definitions of each matrix.

Definition 2.Let {Fn}n≥1 be the Fibonacci sequence, i.e.,

Fn = Fn−1 +Fn−2 for n ≥ 2 with initial conditions F0 = 0
and F1 = 1. The Fibonacci matrix F ∈ Mn+1(R) is the

matrix whose entries are given by [23]:

fi, j =







Fi− j+1, i− j+ 1 ≥ 0,

0, i− j+ 1 < 0.

Let F−1 be the inverse of F and denote by f̃i, j the

entries of F−1. In [23], the authors obtained the following
explicit expression for F−1.

f̃i, j =







1, i = j,

−1, i = j+ 1, j+ 2,

0, otherwise.

Definition 3.Let {Ln}n≥1 be the Lucas sequence, i.e.

Ln+2 = Ln+1 +Ln for n ≥ 1 with initial conditions L1 = 1
and L2 = 3. The Lucas matrix L ∈ Mn+1(R) is the matrix

whose entries are given by [24]:

li, j =







Li− j+1, i− j ≥ 0,

0, otherwise.

Let L −1 be the inverse of L and denote by l̃i, j the

entries of L −1. In [24, Theorem 2.2], the authors obtained
the following explicit expression for L −1.

l̃i, j =







1, i = j,

−3, i = j+ 1,

5(−1)i− j2i− j−2, i ≥ j+ 2,

0, otherwise.

For x any nonzero real number, the following relation
between the matrices P[x] and L was stated and proved in
[24, Theorem 3.1].

P[x] = L G [x] = H [x]L , (14)

where the entries of the (n+1)×(n+1)matrices G [x] and
H [x] are given by

gi, j(x) =x− j−1

[

xi+1

(
i

j

)

− 3xi

(
i− 1

j

)]

+ x− j−1
[

5(−1)i+12i−1mi−1, j+1

( x

2

)]

,

hi, j(x) =x− j−1

[

xi+1

(
i

j

)

− 3xi

(
i

j+ 1

)

+ x− j−1

[

(−1) j+1 5xi+ j+2

2 j+3
ni+1, j+3

(
2

x

)]

,

respectively, with

mi, j(x) :=







∑i
k= j(−1)k

(
k
j

)
xk, i ≥ j,

0, i < j,

and

ni, j(x) :=







∑i
k= j(−1)k

(
i
k

)
xk, i ≥ j,

0, i < j.

3 The generalized Euler matrix

Definition 4.The generalized (n + 1) × (n + 1) Euler

matrix E (α)(x) is defined by

E
(α)
i, j (x) =







(
i
j

)
E
(α)
i− j (x), i ≥ j,

0, otherwise.

While, E (x) := E (1)(x) and E := E (0) are called the Euler

polynomial matrix and the Euler matrix, respectively. In

the particular case x = 1
2
, we call the matrix E := E

(
1
2

)

specialized Euler matrix.

It is clear that (6) yields the following matrix identity:

E
(α)(x+ 1)+E

(α)(x) = 2E
(α−1)(x). (15)

Since E (0)(x) =P[x], replacing α by 1 in (15), we have

E (x+ 1)+E (x) = 2P[x]. (16)

Then, putting x = 0 in (16) and taking into account
(11), we get

E (1)+E = 2In+1.
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Analogously,

E +E (−1) = 2P [−1] .

From (4), it follows that the entries of the specialized
Euler matrix E are given by

ei, j =







(
i
j

)
2 j−iεi− j, i ≥ j,

0, otherwise.

(17)

From (10), it follows that the entries of the Euler
matrix E are given by

Ei, j =







(
i
j

)
Ei− j, i > j and i− j odd,

1, i = j,

0, otherwise.

The next result is an immediate consequence of
Definition 4 and the addition formula (5).

Theorem 1.The generalized Euler matrix E (α)(x) satisfies

the following product formula.

E
(α+β )(x+ y) = E

(α)(x)E (β )(y) = E
(β )(x)E (α)(y)

= E
(α)(y)E (β )(x). (18)

Proof.We proceed as in the proof of [19, Theorem 2.1],

making the corresponding modifications. Let A
(α ,β )
i, j (x,y)

be the (i, j)-th entry of the matrix product E (α)(x)E (β )(y).
Then, by the addition formula (5), we have

A
(α ,β )
i, j (x,y) =

n

∑
k=0

(
i

k

)

E
(α)
i−k (x)

(
k

j

)

E
(β )
k− j(y)

=
i

∑
k= j

(
i

k

)

E
(α)
i−k

(x)

(
k

j

)

E
(β )
k− j

(y)

=
i

∑
k= j

(
i

j

)(
i− j

i− k

)

E
(α)
i−k(x)E

(β )
k− j(y)

=

(
i

j

) i− j

∑
k=0

(
i− j

k

)

E
(α)
i− j−k(x)E

(β )
k (y)

=

(
i

j

)

E
(α+β )
i− j (x+ y),

which implies the first equality of (18). The second and
third equalities of (18) can be derived in a similar way.

Corollary 1.Let (x1, . . . ,xk) ∈ Rk. For α j real or complex

parameters, the Euler matrix E (α j)(x) satisfies the

following product formula, j = 1, . . . ,k.

E
(α1+α2+···+αk)(x1 + x2 + · · ·+ xk) =

k

∏
j=1

E
(α j)(x j).

Proof.The application of induction on k gives the desired
result.

Taking x= x1 = x2 = · · ·= xk and α =α1 =α2 = · · ·=
αk, we obtain the following simple formula for the powers
of the generalized Euler matrix, and consequently, for the
powers of the Euler polynomial and Euler matrices.

Corollary 2.The generalized Euler matrix E (α)(x)
satisfies the following identity.

(

E
(α)(x)

)k

= E
(kα)(kx).

In particular,

(E (x))k =E
(k)(kx),

E
k =E

(k)
.

(19)

Remark.Note that Theorem 1 and Corollaries 1 and 2 are
respectively, the analogous of Theorem 2.1 and Corollaries
2.2 and 2.3 of [19] in the setting of Euler matrices.

Let D ∈ Mn+1(R) be the matrix whose entries are
defined by

di, j =







(1+(−1)i− j)
(

i
j

)
2 j−i−1

, i ≥ j,

0, otherwise.

Theorem 2.The inverse matrix of the specialized Euler

matrix E is given by

E
−1 = D .

Furthermore,

[

E
(k)

(
k

2

)]−1

= D
k
.

Proof.Taking into account (4) and (17), it is possible to
deduce

n

∑
k=0

(1+(−1)k)

2

(
n

k

)

2n−kEn−k

(
1

2

)

=
n

∑
k=0

(1+(−1)k)

2

(
n

k

)

εn−k = δn,0,

where δn,0 is the Kronecker delta (cf., e.g., [12, pp.
107-109]). Hence, we obtain that the (i, j)-th entry of the
matrix product DE may be written as

i

∑
k= j

(
i

k

)
(1+(−1)i−k)

2
2k−i

(
k

j

)

Ek− j

(
1

2

)

=

(
i

j

)

2 j−i
i

∑
k= j

(
i− j

k− j

)
(1+(−1)i−k)

2
2k− jEk− j

(
1

2

)

=

(
i

j

)

2 j−i
i− j

∑
k=0

(
i− j

k

)
(1+(−1)i− j−k)

2
2kEk

(
1

2

)

=

(
i

j

)

2 j−iδi− j,0,
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and consequently, DE = In+1. Similar arguments allow to
show that ED = In+1, so E−1 = D .

Finally, from the identity E−1 = D and (19) we see
that

[

E
(k)

(
k

2

)]−1

=
(

E
k
)−1

=
(
E
−1
)k

= D
k
.

This last chain of equalities finishes the proof.

The calculation of E−1 depends on the use of inverse
relations derived from exponential generating functions
(cf. [12, Chap. 3, Sec. 3.4]). This tool can be applied to
define E−1, but it does not work for determining of E −1.
This fact and (10) suggest that methodology proposed in
[19] does not suffice to find an explicit formula for E −1.

The next result establishes the relation between the
generalized Euler matrix and the generalized Pascal
matrix of first type.

Theorem 3.The generalized Euler matrix E (α)(x) satisfies

the following relation.

E
(α)(x+ y) = E

(α)(x)P[y] = P[x]E (α)(y)

= E
(α)(y)P[x]. (20)

In particular,

E (x+ y) = P[x]E (y) = P[y]E (x), (21)

E (x) = P[x]E , (22)

E

(

x+
1

2

)

= P[x]E, (23)

and

E = P

[

−
1

2

]

E.

Proof.The substitution β = 0 into (18) yields

E
(α)(x+ y) = E

(α)(x)E (0)(y) = E
(0)(x)E (α)(y)

= E
(α)(y)E (0)(x).

Since E (0)(x) = P[x], we obtain

E
(α)(x+ y) = P[x]E (α)(y).

A similar argument allows to show that

E (α)(x+ y) = E (α)(x)P[y] and E (α)(x+ y) = E (α)(y)P[x].
Next, the substitution α = 1 into (20) yields (21). From

the substitutions y = 0 and y = 1
2

into (21), we obtain the
relations (22) and (23), respectively.

Finally, the substitution x=− 1
2

into (23) completes the
proof.

Remark.Note that the relation (21) is the analogous of
[19, Eq. (13)] in the context of Euler polynomial matrices
and, the counterpart of (22) is [19, Eq. (14)]. However,
the relation (23) is slightly different from [19, Eq. (14)],
since it involves an Euler polynomial matrix with “shifted
argument” and the specialized Euler matrix. More
precisely, the relation [19, Eq. (14)] reads as

B(x) = P[x]B.

Consequently, this relation expresses the Bernoulli
polynomial matrix B(x) in terms of the matrix product
between the generalized Pascal matrix of first type P[x]
and the Bernoulli matrix B. While, on the left hand side
of (23), an Euler polynomial matrix with “shifted
argument” appears, and the matrix product on the right
hand side of (23) contains the specialized Euler matrix E.

The following example shows validity of Theorem 3.

Example 1.Let us consider n = 3. It follows from the
definition 4 that

E=







1 0 0 0

0 1 0 0

− 1
4 0 1 0

0 − 3
4 0 1






, E

(

x+
1

2

)

=







1 0 0 0

x 1 0 0

x2 − 1
4 2x 1 0

x3 − 3
4 x 3x2 − 3

4 3x 1






.

On the other hand, from (23) and a simple
computation, we have

E

(

x+
1

2

)

=






1 0 0 0
x 1 0 0

x2 2x 1 0

x3 3x2 3x 1






︸ ︷︷ ︸

P[x]







1 0 0 0
0 1 0 0

− 1
4

0 1 0

0 − 3
4

0 1







︸ ︷︷ ︸

E

=







1 0 0 0
x 1 0 0

x2 − 1
4

2x 1 0

x3 − 3
4
x 3x2 − 3

4
3x 1






.

The next theorem is followed by a simple computation.

Theorem 4.The inverse of the Euler polynomial matrix

E
(
x+ 1

2

)
can be expressed as

[

E

(

x+
1

2

)]−1

= E
−1P[−x] = DP[−x]. (24)

In particular,

E
−1 = DP

[
1

2

]

. (25)

Proof.Using (12), (23) and Theorem 2, the relation (24) is
deduced. The substitution x =− 1

2
into (24) yields (25).
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Example 2.Let us consider n= 3. From the definition 4 and
a standard computation, we obtain

[

E

(

x+
1

2

)]−1

=







1 0 0 0
x 1 0 0

x2 − 1
4

2x 1 0

x3 − 3
4
x 3x2 − 3

4
3x 1







−1

=







1 0 0 0
−x 1 0 0

x2 + 1
4

−2x 1 0

−x3 − 3
4
x 3x2 + 3

4
−3x 1






.

On the other hand, from (24), we have

[

E

(

x+
1

2

)]−1

=







1 0 0 0
0 1 0 0
1
4

0 1 0

0 3
4

0 1







︸ ︷︷ ︸

D






1 0 0 0
−x 1 0 0

x2 −2x 1 0

−x3 3x2 −3x 1






︸ ︷︷ ︸

P[−x]

=







1 0 0 0
−x 1 0 0

x2 + 1
4

−2x 1 0

−x3 − 3
4
x 3x2 + 3

4
−3x 1






.

Hence, when x =− 1
2
, we get

E
−1 =







1 0 0 0
0 1 0 0
1
4

0 1 0

0 3
4

0 1







︸ ︷︷ ︸

D







1 0 0 0
1
2

1 0 0
1
4

1 1 0
1
8

3
4

3
2

1







︸ ︷︷ ︸

P[ 1
2 ]

=







1 0 0 0
1
2

1 0 0
1
2

1 1 0
1
2

3
2

3
2

1






.

At this point, we should refer to the recent work [25]
since it states an explicit formula to the inverse matrix of
the q-Pascal matrix plus one in terms of the q-analogue of
the Euler matrix E .

As a consequence of the relations (13), (14), and
Theorems 3 and 4, we obtain the following corollaries.

Corollary 3.The Euler polynomial matrix E
(
x+ 1

2

)
and

its inverse can be factorized by summation matrices, as

follows:

E

(

x+
1

2

)

=Gn[x]Gn−1[x] · · ·G1[x]E,

[

E

(

x+
1

2

)]−1

=DGn[−x]Gn−1[−x] · · ·G1[−x].

In particular,

E =Gn

[

−
1

2

]

Gn−1

[

−
1

2

]

· · ·G1

[

−
1

2

]

E,

E
−1 =DGn

[
1

2

]

Gn−1

[
1

2

]

· · ·G1

[
1

2

]

.

Corollary 4.For x any nonzero real number, the Euler

polynomial matrix E
(
x+ 1

2

)
and its inverse can be

factorized, respectively, in terms of the Lucas matrix L

and its inverse, as follows:

E

(

x+
1

2

)

=L G [x]E= H [x]LE,

[

E

(

x+
1

2

)]−1

=D(G [x])−1
L

−1 = DL
−1(H [x])−1

.

In particular,

E =L G

[

−
1

2

]

E= H

[

−
1

2

]

LE,

E
−1 =D

(

G

[

−
1

2

])−1

L
−1 = DL

−1

(

H

[

−
1

2

])−1

.

We end this section showing other identities, which can
be easily deduced from the content of this paper. Thus, we
will omit the details of their proofs.

DxE (x+ y) =LP[x]E (y),

DxE (x) =LP[x]E ,

DxE

(

x+
1

2

)

=LP[x]E,

Dx

[

E

(

x+
1

2

)]−1

=DLP[−x].

4 Generalized Euler polynomial matrices via

Fibonacci and Lucas matrices

For 0 ≤ i, j ≤ n and α a real or complex number, let

M (α)(x) be the (n+1)× (n+1) matrix whose entries are
given by (cf. [19, Eq. (18)]):

m̃
(α)
i, j (x) =

(
i

j

)

E
(α)
i− j (x)−

(
i− 1

j

)

E
(α)
i− j−1(x)

−

(
i− 2

j

)

E
(α)
i− j−2(x). (26)

We denote M (x) = M (1)(x) and M = M (0).

Similarly, let N (α)(x) be the (n+ 1)× (n+ 1) matrix
whose entries are given by (cf. [19, Eq. (32)]):

ñ
(α)
i, j (x) =

(
i

j

)

E
(α)
i− j (x)−

(
i

j+ 1

)

E
(α)
i− j−1(x)

−

(
i

j+ 2

)

E
(α)
i− j−2(x).
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We denote N (x) = N (1)(x) and N = N (0).

From the definitions of M (α)(x) and N (α)(x), we see
that

m̃
(α)
0,0 (x) = m̃

(α)
1,1 (x) = ñ

(α)
0,0 (x) = ñ

(α)
1,1 (x) = E

(α)
0 (x) = 1,

m̃
(α)
0, j (x) = ñ

(α)
0, j (x) = 0, j ≥ 1,

m̃
(α)
1,0 (x) = ñ

(α)
1,0 (x) = E

(α)
1 (x)−E

(α)
0 (x) = x− α

2
− 1,

m̃
(α)
1, j (x) = ñ

(α)
1, j (x) = 0, j ≥ 2,

m̃
(α)
i,0 (x) = E

(α)
i (x)−E

(α)
i−1(x)−E

(α)
i−2(x), i ≥ 2,

ñ
(α)
i,0 (x) = E

(α)
i (x)− iE

(α)
i−1(x)−

i(i−1)
2

E
(α)
i−2(x), i ≥ 2.

For 0 ≤ i, j ≤ n and α a real or complex number, let

L
(α)
1 (x) be the (n+ 1)× (n+ 1) matrix whose entries are

given by

l̂
(α ,1)
i, j (x) =

(
i

j

)

E
(α)
i− j (x)− 3

(
i− j

j

)

E
(α)
i− j−1(x)

= 5
i−2

∑
k= j

(−1)i−k2i−k−2

(
k

j

)

E
(α)
k− j(x).

We denote L1(x) = L
(1)
1 (x) and L1 = L1(0).

Similarly, let L
(α)

2 (x) be the (n+ 1)× (n+ 1) matrix
whose entries are given by

l̂
(α ,2)
i, j (x) =

(
i

j

)

E
(α)
i− j (x)− 3

(
i

j+ 1

)

E
(α)
i− j−1(x)

+5
i

∑
k= j+1

(−1)k− j2k− j−2

(
i

k

)

E
(α)
i−k (x).

We denote L2(x) = L
(1)
2 (x) and L2 = L2(0).

From the definitions of L
(α)

1 (x) and L
(α)
2 (x), we see

that

l̂
(α ,1)
i,i (x) = l̂

(α ,2)
i,i (x) = 1, i ≥ 0,

l̂
(α ,1)
0, j (x) = l̂

(α ,2)
0, j (x) = 0, j ≥ 1,

l̂
(α ,1)
1,0 (x) = E

(α)
1 (x)− 3E

(α)
0 (x) = x− α

2
− 3,

l̂
(α ,2)
1,0 (x) = E

(α)
1 (x)− 11

2
E
(α)
0 (x) = x− α

2
− 11

2
,

l̂
(α ,1)
1, j (x) = l̂

(α ,2)
1, j (x) = 0, j ≥ 2,

l̂
(α ,1)
i,0 (x) = E

(α)
i (x)− 3E

(α)
i−1(x)+

5
4 ∑i−2

k=0(−2)i−kE
(α)
k (x),

l̂
(α ,2)
i,0 (x) = E

(α)
i (x)− 3iE

(α)
i−1(x)+

5
4 ∑i

k=1(−2)k
(

i
k

)
E
(α)
i−k

(x),

for i ≥ 2, and

l̂
(α ,1)
i,1 (x) = iE

(α)
i−1(x)− 3(i− 1)E

(α)
i−2(x)

+
5

4

i−2

∑
k=1

(−2)i−kkE
(α)
k−1(x),

for i ≥ 3.
The following results show some factorizations of

E (α)(x) in terms of Fibonacci and Lucas matrices,
respectively.

Theorem 5.The generalized Euler polynomial matrix

E (α)(x) can be factorized in terms of the Fibonacci

matrix F , as follows:

E
(α)(x) = FM

(α)(x), (27)

or,

E
(α)(x) = N

(α)(x)F . (28)

In particular,

FM (x) = E (x) = N (x)F , (29)

FM = E = N F , (30)

and

FM

(
1

2

)

= E= N

(
1

2

)

F . (31)

Proof.Since the relation (27) is equivalent to

F−1E (α)(x) = M (α)(x), it is possible to follow the proof
given in [19, Theorem 4.1], making the corresponding
modifications, for obtaining (27). The relation (28) can be
obtained using a similar procedure. The relations (29),
(30) and (31) are straightforward consequences of (27)
and (28).

Also, the relations (27) and (28) allow us to deduce the
following identity:

M
(α)(x) = F

−1
N

(α)(x)F .

As a consequence of Theorems 4 and 5, we can derive
simple factorizations for the inverses of the polynomial
matrices M

(
x+ 1

2

)
and N

(
x+ 1

2

)
:

Corollary 5.The inverses of the polynomial matrices

M
(
x+ 1

2

)
and N

(
x+ 1

2

)
can be factorized, as follows:

[

M

(

x+
1

2

)]−1

= DP[−x]F ,

[

N

(

x+
1

2

)]−1

= FDP[−x].

In particular,

M
−1 = DP

[
1

2

]

F , and N
−1 = FDP

[
1

2

]

,

[

M

(
1

2

)]−1

= DF , and

[

N

(
1

2

)]−1

= FD .
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An analogous reasoning as used in the proof of
Theorem 5 allows us to prove the results below.

Theorem 6.The generalized Euler polynomial matrix

E (α)(x) can be factorized in terms of the Lucas matrix

L , as follows:

E
(α)(x) = L L

(α)
1 (x), (32)

or,

E
(α)(x) = L

(α)
2 (x)L . (33)

In particular,

L L1(x) = E (x) = L2(x)L ,

L L1 = E = L2L ,

and

L L
( 1

2)
1 (x) = E= L

( 1
2 )

2 (x)L .

Also, the relations (32) and (33) allow us to deduce the
following identity:

L
(α)
1 (x) = L

−1
L

(α)
2 (x)L .

Corollary 6.The inverses of the polynomial matrices

L1

(
x+ 1

2

)
and L2

(
x+ 1

2

)
can be factorized, as follows:

[

L1

(

x+
1

2

)]−1

= DP[−x]L ,

[

L2

(

x+
1

2

)]−1

= L DP[−x].

In particular,

L
−1

1 = DP

[
1

2

]

L , and L
−1
2 = L DP

[
1

2

]

,

[

L1

(
1

2

)]−1

= DL , and

[

L2

(
1

2

)]−1

= L D .

Remark.If we consider a ∈ C, b ∈ C \ {0} and s = 0,1,
then Theorems 5 and 6, as well as their corollaries have
corresponding analogous forms for generalized Fibonacci

matrices of type s, F (a,b,s), and generalized Fibonacci

matrices U (a,b,0) with second order recurrent sequence

U
(a,b)
n subordinated to certain constraints [26].

Another identities involving Fibonacci and Lucas
numbers as well as the generalized Euler polynomials and
numbers are, as follows:

Theorem 7.For 0 ≤ r ≤ n and α any real or complex

number, we have
(

n

r

)

E
(α)
n−r(x) = Fn−r+1 +

[

(r+ 1)x−
(r+ 1)α + 2

2

]

Fn−r

+
n

∑
k=r+2

(
k

r

){

E
(α)
k−r(x)−

k− r

k

[

E
(α)
k−r−1(x)

+
k− r− 1

k− 1
E
(α)
k−r−2(x)

]}

Fn−k+1 (34)

= Fn−r+1 +
[

n
(

x−
α

2

)

− 1
]

Fn−r

+
n−2

∑
k=0

(
n

k

){

E
(α)
n−k(x)−

n− k

k+ 1

[

E
(α)
n−k−1(x)

+
n− k− 1

k+ 2
E
(α)
n−k−2(x)

]}

Fk−r+1.

Proof.We proceed as in the proof of [19, Theorem 4.2],
making the corresponding modifications. From (26), it is
clear that

m̃
(α)
r,r (x) = 1, m̃

(α)
r+1,r(x) = (r+ 1)x−

(r+ 1)α + 2

2
,

and, for k ≥ r+ 2:

m̃
(α)
k,r (x) =

(
k

r

){

E
(α)
k−r(x)−

k− r

k

[

E
(α)
k−r−1(x)

+
k− r− 1

k− 1
E
(α)
k−r−2(x)

]}

.

Next, it follows from (27) that
(

n

r

)

E
(α)
n−r(x) = E

(α)
n,r (x) =

n

∑
k=r

Fn−k+1m̃
(α)
k,r (x)

= Fn−r+1 +Fn−rm̃
(α)
r+1,r(x)

+
n

∑
k=r+2

Fn−k+1m̃
(α)
k,r (x),

so,
(

n

r

)

E
(α)
n−r(x) = Fn−r+1 +

[

(r+ 1)x−
(r+ 1)α + 2

2

]

Fn−r

+
n

∑
k=r+2

(
k

r

){

E
(α)
k−r(x)−

k− r

k

[

E
(α)
k−r−1(x)

+
k− r− 1

k− 1
E
(α)
k−r−2(x)

]}

Fn−k+1.

This chain of equalities completes the first part of the
proof. The second one is obtained in a similar way, taking
into account the following identities:

ñ
(α)
n,n (x) = 1, ñ

(α)
n,n−1(x) = n

(

x−
α

2

)

− 1,

and, for 0 ≤ k ≤ n− 2:

ñ
(α)
n,k (x) =

(
n

k

){

E
(α)
n−k(x)−

n− k

k+ 1

[

E
(α)
n−k−1(x)

+
n− k− 1

k+ 2
E
(α)
n−k−2(x)

]}

.
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Corollary 7.For 0≤ r ≤ n and α any real number, we have

(−1)n

(
n

r

)

E
(α)
n−r(x) = (−1)rFn−r+1

+(−1)r+1

[
(r+ 1)(2x−α)+ 2

2

]

Fn−r

+
n

∑
k=r+2

(−1)k

(
k

r

){

E
(α)
k−r(x)+

k− r

k

[

E
(α)
k−r−1(x)

−
k− r− 1

k− 1
E
(α)
k−r−2(x)

]}

Fn−k+1

= (−1)rFn−r+1 +(−1)r+1
[

n
(

x−
α

2

)

− 1
]

Fn−r

+
n−2

∑
k=0

(−1)n−k+r

(
n

k

){

E
(α)
n−k(x)+

n− k

k+ 1

[

E
(α)
n−k−1(x)

+
n− k− 1

k+ 2
E
(α)
n−k−2(x)

]}

Fk−r+1.

Proof.Replacing x by α − x in (34) and applying the
formula

E
(α)
n (x) = (−1)nE

(α)
n (α − x)

to the resulting identity, we obtain the first identity of
Corollary 7. An analogous reasoning yields the second
identity.

Analogous reasonings to those used in the proofs of
Theorem 7 and Corollary 7 allow us to prove the following
results.

Theorem 8.For any real or complex number α , we have

the following identities

E
(α)
n (x) = Ln+1 +

(

x−
α

2
− 3

)

Ln

+
n

∑
k=2

(

E
(α)
k (x)− 3E

(α)
k−1(x)

)

Ln−k+1

+5
n

∑
k=2

k−2

∑
s=0

(−1)k−s2k−s−2Ln−k+1E
(α)
s (x), (35)

whenever n ≥ 2.

nE
(α)
n−1(x) = Ln +(2x−α − 3)Ln−1

+
n

∑
k=3

(

kE
(α)
k−1(x)− 3(k− 1)E

(α)
k−2(x)

)

Ln−k+1

+5
n

∑
k=3

k−2

∑
s=1

(−1)k−s2k−s−2sLn−k+1E
(α)
s−1(x),

(36)

whenever n ≥ 3.

Corollary 8.The following identities hold.

(−1)nE
(α)
n (x) = Ln+1 −

(

x−
α

2
+ 3

)

Ln

+
n

∑
k=2

(−1)k
(

E
(α)
k (x)+ 3E

(α)
k−1(x)

)

Ln−k+1

+5
n

∑
k=2

k−2

∑
s=0

(−1)k−s2k−s−2Ln−k+1E
(α)
s (x),

(37)

whenever n ≥ 2.

(−1)n−1nE
(α)
n−1(x) = Ln +(α − 2x− 3)Ln−1

(38)

+
n

∑
k=3

(−1)k−1
(

kE
(α)
k−1(x)+ 3(k− 1)E

(α)
k−2(x)

)

Ln−k+1

+5
n

∑
k=3

k−2

∑
s=1

(−1)k−12k−s−2sLn−k+1E
(α)
s−1(x),

whenever n ≥ 3.

By (35), (36), (37) and (38), we obtain the following
interesting identities involving Lucas and Euler numbers.

–For n ≥ 2:

En −

(

Ln+1 −
7

2
Ln

)

=
n

∑
k=2

(Ek − 3Ek−1)Ln−k+1

+5
n

∑
k=2

k−2

∑
s=0

(−1)k−s2k−s−2EsLn−k+1,

(−1)nEn = Ln+1 −
5

2
Ln

+
n

∑
k=2

(−1)k (Ek + 3Ek−1)Ln−k+1

+5
n

∑
k=2

k−2

∑
s=0

(−1)k−s2k−s−2Ln−k+1Es.

–For n ≥ 3:

nEn−1 − (Ln − 4Ln−1)

=
n

∑
k=3

(kEk−1 − 3(k− 1)Ek−2)Ln−k+1

+5
n

∑
k=3

k−2

∑
s=1

(−1)k−s2k−s−2sEs−1Ln−k+1,

(−1)n−1nEn−1 −Ln − (α − 2x− 3)Ln−1

=
n

∑
k=3

(−1)k−1 (kEk−1 + 3(k− 1)Ek−2)Ln−k+1

+5
n

∑
k=3

k−2

∑
s=1

(−1)k−12k−s−2sLn−k+1Es−1.
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Other similar combinatorial identities may be obtained
using the results of [27]. We leave their formulation to the
interested reader.

5 Euler matrices and their relation with

Stirling and Vandermonde matrices

Let s(n,k) and S(n,k) be the Stirling numbers of the first
and second types, which are respectively defined by the
generating functions [3, Chapther 1, Section 1.6]:

n

∑
k=0

s(n,k)zk = z(z− 1) · · ·(z− n+ 1), (39)

(log(1+ z))k = k!
∞

∑
n=k

s(n,k)
zn

n!
, |z|< 1,

zn =
n

∑
k=0

S(n,k)z(z− 1) · · ·(z− k+ 1),

(ez − 1)k = k!
∞

∑
n=k

S(n,k)
zn

n!
.

The value |s(n,k)| represents the number of
permutations of n elements with k disjoint cycles. While,
the Stirling numbers of the second type S(n,k) give the
number of partitions of n objects into k non-empty
subsets. Another way to compute these numbers is by
means of the formula (see [12, p. 226] or [28, Eq. (5.1)]):

S(n,k) =
1

k!

k

∑
l=0

(−1)k−l

(
k

l

)

ln
, 1 ≤ k ≤ n.

A recent connection between the Stirling numbers of
the second type and the Euler polynomials is given by the
formula (see [29, Theorem 3.1, Eq. (3.3)]):

En(x) =
n

∑
k=0

(−1)n−k

(
n

k

)[
n−k+1

∑
l=1

(−1)l−1(l − 1)!

2l−1

×S(n− k+ 1, l)

]

xk
. (40)

Proceeding as in the proof of [29, Theorem 3.1], one
can find a similar relation to the previous one, but
connecting Stirling numbers of the first type and a
particular class of generalized Euler polynomials.

Theorem 9.Let us assume that α = m ∈ N. Then, the

connection between the Stirling numbers of the first kind

and the generalized Euler polynomial E
(m)
n (x) is given by

the formula:

E
(m)
n (x) =

1

2n

n

∑
k=0

(
n

k

)[
n−k

∑
j=0

s(n− k, j)(−m) j

]

(2x)k
,

(41)

Proof.By Leibniz’s theorem for differentiation, we have

∂ r

∂ zr

[(
2

ez + 1

)m

exz

]

=
r

∑
k=0

(
r

k

)[(
2

ez + 1

)m](k) ∂ r−k

∂ zr−k
(exz)

=
r

∑
k=0

(
r

k

)[(
2

ez + 1

)m](k)

xr−kexz

=

(
2

ez + 1

)m

e(x+1)z
r

∑
k=0

(
r

k

)
(−m)k xr−k

(ez + 1)k
,

where in the last expression, (−m)k denotes the falling
factorial with opposite argument −m.

Combining this with the r-th differentiation on both
sides of the generating function in (1) reveals that

∞

∑
n=r

E
(m)
n (x)

zn−r

(n− r)!
=

(
2

ez + 1

)m

e(x+1)z
r

∑
k=0

(
r

k

)
(−m)k xr−k

(ez + 1)k
.

Further taking z → 0 and employing (39) give

E
(m)
r (x) =

r

∑
k=0

(
r

k

)

(−m)k

xr−k

2k

=
1

2r

r

∑
k=0

(
r

k

)

(−m)r−k (2x)k

=
1

2r

r

∑
k=0

(
r

k

)[
r−k

∑
j=0

s(r− k, j)(−m) j

]

(2x)k
.

Finally, changing r by n, the proof of the formula (41)
is completed.

Definition 5.For the Stirling numbers s(i, j) and S(i, j) of

the first and the second types, respectively, define S and

S to be the (n+ 1)× (n+ 1)matrices by

Si, j =
{

s(i, j), i ≥ j, 0, otherwise, and

Si, j =

{
S(i, j), i ≥ j,

0, otherwise.

The matrices S and S are called Stirling matrix of

the first and the second types, respectively (see [30]).

To obtain factorizations for Euler matrices via Stirling
matrices of the first type, we will need the following

matrix: For m ∈ N, let S
(m) be the (n + 1)× (n + 1)

matrix whose (i, j)-entries are defined by

S
(m)
i, j =







(
i
j

)

∑
i− j
k=0 s(i− j,k)(−m)k, i ≥ j,

0, otherwise.
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Next theorem shows the corresponding factorizations

of the generalized Euler matrix E (m), m ∈ N, in terms of
Stirling matrices of the first type, when the expression (41)
is incorporated.

Theorem 10.For m ∈ N, the generalized Euler matrix

E (m)(x) can be factorized, as follows:

E
(m)(x) =S

(m)P[x]. (42)

Proof.For m ∈N and i ≥ j, let A
(m)
i, j (x) be the (i, j)-th entry

of the matrix product S(m)P[x], then

A
(m)
i, j (x) =

i

∑
k= j

S
(m)
i,k

pk, j(x)

=
i

∑
k= j

(
i

k

)(
k

j

)[
i−k

∑
r=0

s(i−k,r)(−m)r

]

xk− j

=
i

∑
k= j

(
i

j

)(
i− j

k− j

)

2 j−i

[
i−k

∑
r=0

s(i−k,r)(−m)r

]

(2x)k− j

=

(
i
j

)

2i− j

i− j

∑
k=0

(
i− j

k

)[
i− j−k

∑
r=0

s(i− j−k,r)(−m)r

]

(2x)k

=

(
i

j

)

E
(m)
i− j (x),

The last equality is an immediate consequence of (41),
and (42) follows from the previous chain of equalities.

Remark.Notice that using (40) and putting m = 1 into (42),
we get

(
i

j

)

Ei− j(x) = A
(1)
i, j (x) = (−1)i− j

(
i

j

) i− j

∑
k=0

(−1)k

(
i− j

k

)

×

[
i− j−k

∑
r=0

(

−
1

2

)r

r!S(i− j− k+ 1,r+ 1)

]

xk
.

Definition 6.The (n + 1) × (n + 1) shifted Euler

polynomial matrix Ẽ (x) is given by

Ẽi, j(x) = Ei( j+ x), 0 ≤ i, j ≤ n.

Let us consider the Vandermonde matrix:

V (x) :=









1 1 1 · · · 1
x 1+ x 2+ x · · · n+ x

x2 (1+ x)2 (2+ x)2 · · · (n+ x)2

...
...

...
. . .

...
xn (1+ x)n (2+ x)n · · · (n+ x)n









.

In [31, Theorem 2.1], the following factorization for
the Vandermonde matrix V (x) was stated.

V (x) = ([1]⊕ S̃n+1)∆n+1(x)P
T

:= ([1]⊕ S̃n+1)∆n+1(x)(P[1])
T
, (43)

where S̃n+1 is the factorial Stirling matrix, i.e. the
(n+ 1)× (n+ 1) matrix whose (i, j)-th entry is given by
S̃i, j,n+1 := j!Si, j, i ≥ j and otherwise 0, and

∆n+1(x)(P[1])
T represents the LU-factorization of a lower

triangular matrix whose (i, j)-th entry is
(

x
i− j

)
, if i ≥ j and

otherwise 0.

The relation between the shifted Euler polynomial
matrix Ẽ (x) and the matrices V (x) and S̃n+1 is contained
in the following result.

Theorem 11.The shifted Euler polynomial matrix Ẽ (x)
can be factorized in terms of the Vandermonde matrix

V (x), and thereby in terms of the factorial Stirling matrix

S̃n+1, as follows:

Ẽ (x) = E V (x), (44)

Ẽ (x) = E ([1]⊕ S̃n+1)∆n+1(x)P
T
. (45)

Proof.Let Ẽi, j(x) be the (i, j)-th entry of the shifted Euler

polynomial matrix Ẽ (x). Then, using (9), we get

Ẽi, j(x)= Ei( j+x)=
i

∑
k=0

(
i

k

)

Ei−k( j+x)k =
i

∑
k=0

Ei,kVk, j(x).

Hence, (44) follows from this chain of equalities. The
relation (45) is a straightforward consequence of (43).

�

Remark.Note that the relations (44) and (45) are the
analogous of [19, Eqs. (37), (38)], respectively, in the
context of Euler polynomial matrices.

In the present paper, all matrix identities have been
expressed using finite matrices. Since such matrix
identities involve lower triangular matrices, they have a
resemblance for infinite matrices. For instance, let
E∞

(
x+ 1

2

)
, P∞[x] and E∞ be the infinite cases of the

matrices E
(
x+ 1

2

)
, P[x] and E, respectively. Then, the

following identity holds

E∞

(

x+
1

2

)

= P∞[x]E∞.

We leave the formulation of the other analogous
identities to the reader.

Finally, in addition to Theorem 11, we would like to
state that an interesting application in connection with the
subjects treated in the present paper is its use in the
LU-factorization of certain class of matrices, whose
components can be represented by a Wronskian of some
function set (cf., for instance [32] for the case of
generalized Pascal functional matrices).
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6 Perspective

We have showed some new algebraic properties of the

generalized Euler polynomial matrix E (α)(x) and the
Euler matrix E . Taking into account some properties of
Euler polynomials and numbers, we have deduced

product formulae for E (α)(x) and defined the inverse
matrix of E . Also, we have established some explicit
expressions for the Euler polynomial matrix E (x), which
involves the generalized Pascal, Fibonacci and Lucas
matrices, respectively.

The paper [25] addressed an explicit formula to the
inverse matrix of the q-Pascal matrix plus one in terms of
the q-analogue of the Euler matrix E . Thus, combining
some results of the present paper helps define the inverse
matrix of the q-analogue of the specialized Euler matrix
E. This inverse matrix allows us to establish the
analogous of Theorem 3 in the framework of the class of
generalized q-Pascal matrices.

A future work has to address the exploration of
similar matrix identities in the setting of the q-umbral
calculus. The notion of commutativity with respect to the
parameter q appears when R is endowed with some
structure of alphabet and its elements are called letters or
umbrae (see e.g. [28, Section 4.1], for the details). If R is
regarded as a set generated by itself together with the
operations of NWA q-addition, NWA q-subtraction, JHC
q-addition and JHC q-subtraction, then the algebraic
structure of R as such an alphabet is different from the
usual algebraic structure of R as real number field.
Moreover, R has structure of commutative semigroup
with each one of these q-operations (see [28, Definition
25]).

For instance, the version of the generalized Pascal
matrix of first type in this context was introduced in [33],
as follows: Let x be any nonzero real number. The
q-Pascal matrix P[x] is an (n+1)× (n+1) matrix whose
(i, j)-entries are given by:

pi, j,q(x) =







[
i
j

]

q
xi− j, i ≥ j,

0, otherwise,

where
[

i
j

]

q
denotes the q-binomial coefficient.

In [25,33], some properties of the q-Pascal matrix are
shown, for example, its matrix factorization by special
summation matrices, the factorization of its inverse
matrix, and its relation with the q-analogue of the
generalized Bernoulli matrix.

The q-Euler polynomials En,q(x) and the generalized

q-Euler polynomials E
(α)
n,q (x) of (real or complex) order α ,

are defined, as follows (see [25,34]):

(
2

eq(z)+ 1

)α

eq(xz) =
∞

∑
n=0

E
(α)
n,q (x)

zn

[n]q!
, (46)

where |z|< π , 1α := 1, and

En,q(x) := E
(1)
n (x), n ∈N0. (47)

As usual, the numbers E
(α)
n,q := E

(α)
n,q (0) and

En,q := En,q(0) are called the generalized q-Euler
numbers of order α and the generalized q-Euler numbers,
respectively. We introduce the q-analogue of the classical
Euler numbers by means of the following generating
function

2

eq(z)+ eq(−z)
=

∞

∑
n=0

εn,q
zn

[n]q!
. (48)

From (47) and (48), it is possible to check that if 1
commutes with −1, the connection between the
q-analogue of the classical Euler numbers and the q-Euler
polynomials is given by the formula

εn,q = 2nEn,q

(
1

2

)

, n ∈N0.

Finally:

(a)The q-Euler polynomials En,q(x) are different from
those defined by Srivastava and Choi in [3, Section
6.7].

(b)For α = m ∈ N, the generalized q-Euler polynomials

E
(α)
n,q (x) coincide with the so-called

Nalli-Ward-Al-Salam q-Euler polynomials (in short,

NWA q-Euler polynomials), F
(m)
NWA,n,q(x) (see for

instance, [28, Eq. (4.196)]).
(c)From the generating relation (46), it is fairly

straightforward to deduce the addition formula:

E
(α+β )
n,q (x+ y) =

n

∑
k=0

[
n

k

]

q

E
(α)
k,q (x)E

(β )
n−k,q(y), (49)

provided that x commutes with y (cf., [28, Eq. (4.7)]).
(d)Making the substitution β = 0 into (49) and

interchanging x and y, we get

E
(α)
n,q (x+ y) =

n

∑
k=0

[
n

k

]

q

E
(α)
k,q (y)xn−k

.
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