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Abstract: In this paper we present separation axioms T0, T1, T2, R0, module a tolerance relation. That is, the separation axioms are

generalized, fixing previously closeness or tolerable level of error. We also investigate their properties and relations between these

axioms and some types of classic separation axioms.
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1 Introduction and preliminaries

In a topological space, it is insufficient to have different
elements. It is also important to know when they are
topologically distinguishable. The separation axioms
allow us to define when they have this characteristic.

Definition 1.([1]) Let X be a nonempty set. A collection

g of subsets of X is called a generalized topology on X if

/0 ∈ g and it is closed under arbitrary unions.

In this article g will always denote a generalized
topology and the members of g are called g−open while
the complement of a g−open set are called g−closed.

Given (X ,g) a generalized topological space, two
points are topologically distinguishable if they do not
exactly have the same neighborhoods.

Definition 2(See [5] ). A binary relation R (i.e. a subset

R⊆ X ×X) which is reflexive and symmetric relation on X,

but not necessarily transitive, is called tolerance relation.

Sossinsky comments in [5] At first glance it seems
dubious that a definition as simple and general as that of
tolerance can give rise to a meaningful theory. But it does
and I, for one, must admit that I haven’t stopped being
surprised by this strange circumstance.

Tolerance relations are useful to describe the brain [4]
and applications to linguistics [6]. Applications also
involve almost-fixed points theorems and

almost-solutions existence theorems [5], rough set
defined by tolerances [7].

A topological space X is Hausdorff if and only its
diagonal is closed. In [3] the authors, in the context of a
generalized topology on a set X , give a characterizations
of some separation axioms between T0 and T2 in terms of
properties of the diagonal in X ×X , where the diagonal of
X ×X is the subset

∆ = {(x,x) ∈ X ×X : x ∈ X}.

Now, if we define a tolerance relation ρ on X , since ρ
is reflexive, it is true that ∆ ⊆ ρ .

At this point is valid to ask, can separation axioms be
established in terms of a tolerance relation defined on X?.
To give an affirmative answer to this question will be the
major objective of this paper.

Let us start by presenting some basic definitions and
notations.

First we present the fundamental separation axioms.
Numbering from 0 to 2 refers to an increasing degree of
separation.

0.-A space X is said to be a T0 space, or it satisfies the
T0 axiom, if for any two distinct points x,y ∈ X , there
exists an open set U ⊆ X that contains only one.

1.-A space X is said to be a T1 space, or that it satisfies the
T1 axiom, if for any two distinct points x,y ∈ X there
exists two open sets U and V such that x∈U and y /∈U ,
and y ∈V and x /∈V .
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Every T1 space is also a T0 space and a T1 spaces preserve
a topological property.

2.-A space X is said to be a T2 space, or that it satisfies
the T2 axiom if for any two distinct points x,y∈X there
exists two open sets U and V such that x∈U , y∈V and
U ∩V = /0.
A T2 spaces is also called a Hausdorff space.

A T2 space preserve a topological property. Every T2 space
is a T1 space.

The three previous axioms allow to distinguish two
points topologically.

Definition 3(See [2,3,1]). Let A ⊆ X, the closure of A,

denoted by kg(A), is the smallest g−closed set such that

A ⊆ kg(A).

If A ⊆ X , then a ∈ kg(A) if and only if U ∩A 6= /0 for every
open neighborhood U of a.

After this, we present two more axioms that
topologically characterize different points.

0.-A space X is said to be a R0 space, or that it satisfies
the R0 axiom, if for all x,y ∈ X and kg(x) 6= kg(y), then
kg(x)∩ kg(y) = /0.

1.-A space X is said to be a R1 space, or that it satisfies
the R1 axiom, if for all x,y ∈ X , and kg(x) 6= kg(y),
then there exist disjoint open sets K and K′ such that
kg(x)⊆ K and kg(y)⊆ K′.

Every R1 space is also a R0 space. Both R0 and R1 spaces
preserve topological properties.

In the study of separation axioms, set operations
similar to the closure operator are frequently used. These
operations are naturally extended to the context of a
generalized topology g.

Definition 4.[2] Let A ⊆ X, the intersection of all g−open

subset of X containing A is called the kernel of A, denoted

by χg(A); this means

χg(A) =
⋂

{H ∈ g : A ⊆ H} .

Definition 5(See [2,3,1]). Let A ⊆ X, the following set is

defined satg(A) =
⋃

x∈A

kg({x}).

It is easy to show that χg(A) = A for all A ∈ g.
Moreover, x ∈ χg(y) if and only if y ∈ kg(x) for any
x,y ∈ X .

g−open sets in the product topology over X ×X have
the form A×B, where A and B are open sets in X .

Proposition 1(See [3]). For any (x,y) ∈ X × X the

following holds:

1.kg(x,y) = kg(x)× kg(y), and

2.χg(x,y) = χg(x)× χg(y).

In [3], the following sets are defined:

Definition 6.Let (X ,g) be a topological space and ρ be a

tolerance relation over X.

1.(x,y) ∈ Lg if and only if ∀A ∈ g[x ∈ A ⇒ y ∈ A],
2.(x,y) ∈ Eg if and only if ∀A ∈ g[x ∈ A ⇔ y ∈ A],

3.L
ρ
g = Lg ∪ρ ,

4.E
ρ
g = Eg ∪ρ ,

5.Qρ(x) = {y ∈ X : (x,y) ∈ ρ}.

Notice that ∆ ⊆ Eg ⊆ L
ρ
g . Moreover, L

ρ
g a is transitive

relation and Eg is an equivalence relation on X .
In [3], the results formulated are denoted by Lemma 1

and Theorem 1

Lemma 1..

1.(x,y) ∈ Lg if and only if y ∈ χg(x) and if and only if

x ∈ kg(y).
2.(x,y) ∈ Eg if and only if kg(x) = kg(y) and if and only

if χg(x) = χg(y).

Theorem 1..

1.g satisfies the T1 separation axiom if and only if

χg(∆) = ∆ , if and only if Lg = ∆ .

2.g satisfies the T0 separation axiom if and only if Eg =
∆ .

2 Main Results

Now, some results that are useful in the development of the
paper are presented:

Lemma 2.(x,y) /∈ satg(ρ) if and only if χg(x,y)∩ρ = /0.

Proof.Let (x,y) /∈ satg(ρ) and (x0,y0) ∈ χg(x,y)∩ρ , then
(x,y)∈ kg((x0,y0)) and (x0,y0)∈ ρ . Thus, (x,y)∈ satg(ρ).
This signifies is a contradiction, so χg(x,y)∩ρ = /0.

Conversely, suppose that χg(x,y) ∩ ρ = /0 and let
(x,y) ∈ satg(ρ) , then (x,y) ∈ kg((x0,y0)) for some
(x0,y0) ∈ ρ . Hence, (x0,y0) ∈ χg(x,y) ∩ ρ . From this
contradiction, we obtain the desired result.

Lemma 3.(x,y) /∈ χg(ρ) if and only if kg(x,y)∩ρ = /0.

Proof.Let (x,y) /∈ χg(ρ) and (x0,y0) ∈ kg(x,y) ∩ ρ , then
(x,y) /∈ χg((x0,y0)). Therefore, (x0,y0) /∈ kg((x,y)), and so
kg(x,y)∩ρ = /0.

Conversely, if (x0,y0) ∈ ρ , then (x0,y0) /∈ kg(x,y),
which means (x,y) /∈ χg((x0,y0)). Consequently
(x,y) /∈ χg(ρ).

Theorem 2.Let (X ,g) be a topological space and ρ be a

tolerance relation over X. Then,

(1)χg(ρ),
(2)kg(ρ), and

(3)sat(ρ)

are tolerance relations.
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Proof. (1)Since ∆ ⊆ ρ ⊆ χg(ρ), then χg(ρ) is reflexive. If
(x,y) ∈ χg(ρ), there exists (a,b) ∈ ρ such that (x,y) ∈
χg(a,b). Therefore (y,x) ∈ χg(b,a), and since (b,a) ∈
ρ , then (y,x) ∈ χg(ρ) and so χg(ρ) is symmetric.

(2)To demonstrate the second part, since ∆ ⊆ ρ ⊆ kg(ρ)
then kg(ρ) is reflexive.
Suppose that (x,y) ∈ kg(ρ) and let C a g−open
neighbourhood of (y,x), then there exists Oy,Ox ∈ g
such that (y,x) ∈ Oy ×Ox ⊆ C. Also (x,y) ∈ Ox ×Oy,
then there exists (c,d) ∈ Ox,Oy and (c,d) ∈ ρ .
Because (d,c) ∈ ρ and (d,c) ∈C then (y,x) ∈ kg(ρ).

(3)Finally ∆ ⊆ ρ ⊆ sat(ρ), then sat(ρ) is reflexive.
If (x,y) ∈ sat(ρ), for some (a,b) ∈ ρ (x,y) ∈ kg(a,b).
And, since (b,a) ∈ ρ and (y,x) ∈ kg(b,a), then (y,x) ∈
sat(ρ), and so sat(ρ) is symmetric.

Now we state the fundamental separation axioms in terms
of a topology (X ,g) modulo a tolerance relation ρ .

T2(mod ρ) space

Definition 7.X is said to be a T2(mod ρ) space if for

every pair of point x,y ∈ X with (x,y) /∈ ρ there exist open

neighbourhoods U of x and V of y such that

(U ×V)∩ρ = /0.

Let’s look at the two examples below.

Example 1. 1.Let (X ,τ) be a topological space such that
x0,y0 are isolated points in X . Let
ρ = X ×X \ {(x0,y0),(y0,x0)} be a tolerance relation,
then (X ,τ) is a T2(mod ρ) space.

2.Let R be the real line with its usual topology and
ρ = R × R \ {(r0,q0),(q0,r0)} with
r0 6= q0 r0,q0 ∈ R. Then, R is not a T2(mod ρ) space.

Theorem 3.X is a T2(mod ρ) space if and only if ρ is a

closed set of X ×X.

Proof.Suppose that X is a T2(mod ρ) space. If
(x,y) ∈ kg(ρ) \ ρ , then there exist open neighbourhoods
U of x and V of y such that (U ×V)∩ρ = /0.

On the other hand, since (x,y) ∈ kg(ρ) for all open set
A in X × X , that contains (x,y), we have A ∩ ρ 6= /0, in
particular (U ×V)∩ρ 6= /0.

From this contradiction we get the needed result.

Conversely, suppose that kg(ρ) = ρ and let x,y ∈ X

with (x,y) /∈ ρ . Then there exists an open set A in X ×X

such that (x,y) ∈ A and A∩ρ = /0. It means that exist open
neighbourhoodsU of x and V of y such that (U ×V )∩ρ =
/0.

Theorem 4.Let {ρi}i∈I be a the family of tolerance

relations. If X is a T2(mod ρi) space for each i ∈ I, then X

is a T2(mod
⋂

i∈I

ρi) space.

Proof.By Theorem 3, if the set {ρi : i ∈ I} is an arbitrary
collection of closed subsets, then

⋂

i∈I

ρi is closed. Hence

kg

(

⋂

i∈I

ρi

)

=
⋂

i∈I

ρi.

It is worth asking whether the reciprocal of this theorem
is fulfilled. To answer this, it is sufficient to consider the
real line R with its usual topology and P the set of all
tolerance relations over R. The intersection of all
tolerance relations over R is ∆ =

⋂

ρi∈P

ρi the identity

relation. Accordingly, R is T2(mod ∆), i.e. the classic T2

axiom. However it was a given example of a tolerance
relation where R is not T2(mod ρi).

Continuity of functions is one of the core concepts of
topology. We establish a relation between the axioms of
separation and a continuous function,

Theorem 5.Let (X ,gX) and (Y,gY ) be topological spaces

and let f ,g : X → Y be continuous, being Y a T2(mod ρ)
space, then {x ∈ X : ( f (x),g(x)) ∈ ρ} is closed.

Proof.Let A = {x ∈ X : ( f (x),g(x)) /∈ ρ} and suppose a ∈
A. Since ( f (a),g(a)) /∈ ρ there exist open sets U,V ⊆ Y ,
such that f (a) ∈U , g(a) ∈V and (U ×V)∩ρ = /0.

Let W = f−1(U)∩ f−1(V ), then W is open in X and
a ∈ W . Moreover, W ⊆ A. Thus A is open, so {x ∈ X :
( f (x),g(x)) ∈ ρ} is closed.

Corollary 1.Let (X ,gX) be a topological space and let f :
X → Y be a continuous map being Y a T2(mod ρ) space,

then {x ∈ X : ( f (x),x) ∈ ρ} is closed.

Note that the reciprocal is untrue. Let f ,g be the
identity functions in R and
ρ = R × R \ {(r0,q0),(q0,r0)}, then
{x : ( f (x),g(x)) ∈ ρ} = {x : (x,x) ∈ ρ} = R is a closed
set but R is not a T2(mod ρ) space.

T1(mod ρ) space

Definition 8.X is said to be a T1(mod ρ) space if for every

pair of points x,y ∈ X and (x,y) /∈ ρ , there exists an open

neighbourhood U of x such that Qρ(y)∩U = /0.

Theorem 6.X is a T1(mod ρ) space if and only if ∀x ∈ X :
Qρ(x) is closed.

Proof.Suppose X is a T1(mod ρ) space. Let x ∈ X and y ∈
X \ Qρ(x), that is (x,y) /∈ ρ . Thus, there exists an open
set U containing y such that U ⊆ X \Qρ(x), therefore X \
Qρ(x) is open.

Conversely, if for all x ∈ X , Qρ(x) is closed then if
y ∈ XQρ(x), there exist an open set U containing y such
that U ⊆ X \Qρ(x). Hence, U and Qρ(x) are disjoint sets.

Lemma 4.Let {ρi}i∈I be an arbitrary family of partial

order relations. Then, Q⋂

i∈I

ρi
(x) =

⋂

i∈I

Qρi
(x).
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Proof.Let x ∈ X .
w ∈ Q⋂

i∈I

ρi
(x) ⇐⇒ (x,w) ∈

⋂

i∈I

ρi ⇐⇒ w ∈ Qρi
(x), ∀i ∈ I

⇐⇒ w ∈
⋂

i∈I

Qρi
(x).

Theorem 7.Let {ρi}i∈I be an arbitrary family of partial

order relations. If X is a T1(modρi) space, for each i ∈ I,

then X is a T1(mod
⋂

i∈I

ρi) space.

Proof.This follows from Theorem 6 and Lemma 4.

Let R be the real line with its usual topology and ρ =
R×R\{(r0,q0),(q0,r0)} with r0 6= q0 r0,q0 ∈R. Let P be
the set of all tolerance relations over R. The intersection of
all elements of P is ∆ =

⋂

ρi∈P

ρi the identity relation. So, R

is T1(mod ∆) because Q∆ (x) = {x} is a closed set, but R is
not a T1(mod ρ) space, because Qρ(r0) =R\{q0} is not a
closed set. This means that the reciprocal of the preceding
theorem is untrue.

Lemma 5.Define Q∗
ρ(x) =

⋂

z∈Qρ (x)

Qρ(z), if (x,y) ∈ ρ then

Q∗
ρ(x)× Q∗

ρ(y)⊆ ρ .

Proof.Let (a,b) ∈ Q∗
ρ(x)× Q∗

ρ(y). So (a,w) ∈ ρ ∀w with

(x,w) ∈ ρ , in particular (a,y) ∈ ρ . By the same argument
(b,z) ∈ ρ ∀z with (z,y), in particular (a,b) because of the
symmetry property of ρ .

Theorem 8.If X is T1(mod ρ), then sat(ρ) = ρ .

Proof.Let x ∈ X , and Q∗
ρ(x) =

⋂

z∈Qρ (x)

(Qρ(z)). By

Theorem 6 Q∗
ρ(x) is a closed set containing x because it is

the intersection of closed sets, so kg(x) ⊆ Q∗
ρ(x). If

(x,y) ∈ ρ then kg(x,y) ∈ Q∗
ρ(x)× Q∗

ρ(y). Therefore, by

Lemma 5, kg(x,y)⊆ ρ .

Note that the real line R with its usual topology and
ρ = R×R \ {(r0,q0),(q0,r0)} with r0 6= q0 r0,q0 ∈ R.
Then sat(ρ) = ρ R is not a T1(mod ρ) space because
Qρ(r0) = R\ {q0} is not a closed set.

Theorem 9.sat(ρ) = ρ if and only if for all x ∈ X, kg(x)⊆
Q∗

ρ(x).

Proof.Let x ∈ X , and a ∈ kg(x). We have kg(a) ∈ kg(x) and
kg(x)×kg(x)⊆ ρ = sat(ρ). Then for all z such that (x,z) ∈
ρ implies kg(a)× kg(z)⊆ kg(x)× kg(z)⊆ ρ , so (a,z) ∈ ρ .
Finally a ∈ Q∗

ρ(x).

To demonstrate the reciprocal, suppose kg(x) ⊆ Q∗
ρ(x)

for every x ∈ X . Let (a,b) ∈ sat(ρ), then there exists
(x,y) ∈ ρ such that (a,b) ∈ kg(x,y). But
kg(x,y) = kg(x)× kg(y) ⊆ Q∗

ρ(x)×Q∗
ρ (y) and by Lemma

5 (a,b) ∈ kg(x,y)⊆ ρ . Finally sat(ρ)⊆ ρ .

T0(mod ρ) spaces

Definition 9.X is said to be a T0(mod ρ) space if for

every pair of points x,y ∈ X, (x,y) /∈ ρ there exists an

open neighbourhood U such that x ∈ U and

Qρ(y)∩U = /0 or y ∈U and Qρ(x)∩U = /0.

Note that all the above T2(mod ρ) spaces are also
T1(mod ρ) spaces.

Furthermore, consider (R,g) with g the generalized
topology generated by the elements of its basis
B = {R − [k,k + 1] : k ∈ Z}. If
ρ =

⋃

k∈Z[k,k + 1] × [k,k + 1], then this space is a
T1(mod ρ) space, but it is not a T1 space.

Theorem 10.X is a T0(mod ρ) space, then E
ρ
g = ρ .

Proof.Let X be a T0(mod ρ) space and (x,y) /∈ ρ , then
without loss of generality we can assume that there exists
a open neighbourhood U such that x ∈ U and y /∈ U . This
implies that, χg(x) 6= χg(y), so it follows that (x,y) /∈ Eg

suggesting that we have proven that E
ρ
g ⊆ ρ .

R0(mod ρ) spaces

Definition 10.X is said to be a R0(mod ρ) space if for

every pair of points x,y ∈ X with (x,y) /∈ ρ and

kg(x) 6= kg(y), then (kg(x)× kg(y))∩ρ = /0.

Theorem 11.X is a R0(mod ρ) space if and only if

χg(ρ)⊆ E
ρ
g .

Proof.Suppose that X is a R0(mod ρ) space and (x,y) ∈
χg(ρ) with (x,y) /∈ ρ .

Two possibilities are considered: First, kg(x) = kg(y).
When applying Lemma 1, we obtain (x,y)∈Eρ , so (x,y)∈
E

ρ
g .

Secondly let suppose that it is not possible that kg(x) 6=
kg(y), indeed if (c,d)∈ ρ then, given that X is a R0(mod ρ)
space, (c,d) /∈ kg(x)× kg(y). So (c,d) /∈ kg((x,y)), then
(x,y) /∈ χg((x,y))∩χg(ρ), which contradicts the choice of
(x,y).

Reciprocally, let χg(ρ)⊆ E
ρ
g and x,y ∈ X with kg(x) 6=

kg(y) and (x,y) /∈ ρ . Under these conditions, if (a,b) ∈
(kg(x)× kg(y)) ∩ ρ , then (a,b) ∈ kg(x,y), Consequently,

(x,y) ∈ χg(a,b) ⊆ χg(ρ) ⊆ E
ρ
g , which means (x,y) ∈ Eg

and it contradicts the choice of (x,y).

ρ = ∆ , (X ,g) is T1(mod ρ) if only if (X ,g) is
T0(mod ρ) and is R0(mod ρ). Is it true for any tolerance
relation ρ 6= ∆?

R1(mod ρ) spaces

Definition 11.X is said to be a R1(mod ρ) space if for

every pair of points x,y ∈ X with (x,y) /∈ ρ and

kg(x) 6= kg(y), there exist sets A,B ∈ g with kg(x) ⊆ A and

kg(y)⊆ B such that (A×B)∩ρ = /0.
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Let R be the real line with its usual topology and
(a1,b1) and (a2,b2) disjoint subsets of the real line.
Define
ρ = R×R\ ((a1,b2)× (a2,b2)∪ (a2,b2)× (a1,b1)), then
R is a R1(mod ρ) space.

Theorem 12.X is a R1(mod ρ) space if and only if kg(ρ)⊆

E
ρ
g .

Proof.Suppose X is a R1(mod ρ) space, and
(x,y) ∈ kg(ρ). We consider three cases: First, if (x,y) ∈ ρ ,

obviously (x,y) ∈ E
ρ
g . Second, we consider that (x,y) /∈ ρ

and kg(x) = kg(y), and in such a case, Lemma 1 indicates

that (x,y) ∈ Eg; therefore, (x,y) ∈ E
ρ
g . Third we consider

that (x,y) /∈ ρ and kg(x) 6= kg(y). Since X is a R1(mod ρ)
space, there exist sets A,B ∈ g with kg(x) ⊆ A and
kg(y) ⊆ B such that (A×B)∩ ρ = /0, which implies that
(x,y) /∈ kg(ρ), from this contradiction with the choice of
(x,y) follows the desired result.

Theorem 13.Let {ρi}i∈I be an arbitrary family of order

relations. If X is a R1(mod ρi) space for each i ∈ I, then X

is a R1(mod
⋂

i∈I

ρi) space.

Proof.For each ρi, we have kg(ρi)⊆ E
ρi
g . Then

kg(
⋂

i∈I

ρi)⊆
⋂

i∈I

kg(ρi)⊆
⋂

i∈I

Eg ∪ρi = Eg ∪
⋂

i∈I

ρi

Accordingly, X is a R1(mod
⋂

i∈I

ρi) space.

Consider the real line R with the usual topology and
the tolerance relation
ρ = R×R\ ([a1,b2]× [a2,b2]∪ [a2,b2]× [a1,b1]). If P is
the set of all tolerance relations, then ∆ =

⋂

ρi∈P ρi, so R

is a R1(mod ∆), but it is not a R1(mod ρ) space.

3 Conclusion

A tolerance on a set is a mathematical structure
formalizing resemblance or the idea of being the same up
to a small error. In this paper, we presented separation
axioms T0, T1, T2, R0, module a tolerance relation. That is,
the separation axioms are generalized, specifying in
advance closeness or tolerable level of error. We also
explored their properties and, relations between these
axioms and some types of classic separation axioms.

4 Applications

While working on a problem involving topological
spaces, it is often necessary to add an extra condition
called separation axiom. Separation axioms give us the
opportunity to topologically identify different sets,
concepts used in both topology and functional analysis,

such as when we want to obtain the uniqueness of the
limit. However, tolerance relationships provide an
opportunity for research to define the level of difference
or tolerable level of error. Thus, since tolerance levels
naturally appear in different branches of mathematics, the
authors consider that the conjunction between separation
axioms and tolerance relationships will allow the use of
other powerful mathematical tools to solve problems,
both in topology as well as functional analysis, and
mathematical applications.
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