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Abstract: In this paper, the time-fractional nonlinear Kline-Gordon equations are considered and solved using the adaptive of residual

power series method. The fractional derivative is considered in a conformable sense. Analytical solutions are obtained based on

conformable Taylor series expansion by substituting the truncated conformable series solutions to residual error functions. This

adaptation can be implemented as a novel alternative technique to handle many nonlinear issues occurring in physics and engineering.

Effectiveness, validity, and feasibility of the proposed method are demonstrated by testing some numerical applications. Tabular and

graphic results indicate that the method is superior, accurate and appropriate for solving these fractional partial differential models with

compatible derivatives.
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1 Introduction

The theory of fractional calculus has gained much
attention in various fields of science and engineering due
to vast array of applications and the critical role it plays to
describe the complex dynamic behavior of real-world
problems such as fluid flow, traffic, biological
populations, and diffusion system [[1]-[6]]. The fractional
state has many advantages over the classical order, which
helps simplify control over the modeling of nature
without any lack of genetic characteristics and memory
effort. The fractional operator is a powerful mathematical
tool that plays an important role in simulating many
nonlinear problems, including electrical circuits,
electromagnetic waves, damping laws, signal processing,
and rheology [[7]-[11]].

The Klein-Gordon equation (KGE) is considered one
of the most popular nonlinear partial differential
equations that gained much attention in describing
relativistic electrons, solitons, quantum, fluid dynamics,
and mechanics [[12]-[15]]. It also plays an important role
in many other applications, including optics, plasma ions,

and solid-state problems [[16]-[18]]. On the other hand,
several effective numeric-analytic methods have recently
been used to obtain approximate solutions to nonlinear
fractional Klein-Gordon equations. For instance, the
homotopy perturbation method has been applied for
solving a class of nonlinear FKGEs [15]. In [16], the
homotopy analysis method has been implemented to
approximate solutions of the nonlinear FKGEs. The
Riccati expansion method has been employed for solving
nonlinear space-time FKGEs [17]. In [18], the modified
reduced differential transform method has been
introduced for providing numeric solutions for nonlinear
space-time FKGEs. However, other categories of
advanced numerical methods for different topics can be
found in [[19]-[28]].

In this work, we extend the scope of application of the
residual power series method in the sense of conformable
derivative to construct multiple time-fractional power
series solutions to time-fractional nonlinear
Klein–Gordon equations with conformable derivative in
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the following form:

T α
t ω (x, t)=ωxx (x, t)+λ ω (x, t)+µω2 (x, t)+γω3 (x, t) ,

(1)
subject to the following initial condition

ω (x,0)=ω0 (x) , (2)

where 0 < α≤1, λ ,µ and γ∈R, ω0(x) is given analytical
function of x, ω(x, t) is an unknown analytical function to
be defined, and T α

t denotes the time-conformable
derivative of order α . Here, we assume that FKGEs (1)
and (2) have smooth unique solution in the interval of
interest.

The fractional power series method (FPSM) is an
effective analytical technique for identifying and defining
FPS solutions for many types of ordinary differential
equations, partial differential equations,
integrodifferential equations, fuzzy differential equations,
and integral equations that include different categories of
fractional operators [[29]-[33]]. This method is
characterized as a systematic and easy-to-use alternative
technique for creating FPS solutions for both linear and
nonlinear problems without being linearized, discretized
or exposed to perturbation. Unlike the traditional
technique of the power series, FPSM does not require a
comparison of corresponding coefficients or finding a
recursion relationship, whereas the series coefficients are
calculated by determining the residual error functions
associated with the compatible fractional derivatives and
then producing a system of algebraic equations for one or
more variables.

The remainder of the present work is organized as
follows: In Section 2, the definitions and characteristics of
the conformable derivative and the fractional power series
are presented. The proposed approach is described in
Section 3 to provide a representation of the FPS solution
for both linear and nonlinear FKGEs. In Section 4, some
numerical examples are implemented to show the
versatility, capabilities, and applicability of the FPSM.
Section 5 is devoted to conclusion.

2 Preliminaries

The essentials resulting from conformable fractional
calculus theory are presented briefly, and the most
important definitions and theories of the fractional power
series method are also presented in conformable sense.

Definition 2.1: [34] Let f be n-differentiable at t > s, the
conformable fractional derivative starting from s of a
function f : [s,∞) → R of order α ∈ (n− 1,n], t > s, is
defined by

dα f

dtα
= lim

ε→0

f (⌈α⌉−1)
(

t + ε(t − s)⌈α⌉−α
)

− f (⌈α⌉−1)(t)

ε
(3)

and T α f (s) = limt→s+ T α f (t) provided f (t) is
α-differintiable in some (0,s), s > 0, and
limt→s+ T α f (t) exists, where ⌈α⌉ is the smallest integer
greater than or equal α .

It is worth noting here that f is called α-differentiable
at a point t whenever f has a conformable fractional
derivative of order α at a point t. Some features of the
α-differentiable are provided in [[35]-[38]]. In the next
theorem, we mention some of these features.

Theorem 2.1: [35] Let α ∈ (0, 1] and assume f , g be α-
differentiable at a point t > s. Then

1. dα

dtα (k f + hg) = k f (α)+ h g(α),∀k, h ∈R.

2. dα

dtα (λ ) = 0, λ is a constant.

3. dα

dtα (λ f ) = λ dα

dtα ( f ) .

4. dα

dtα ((t − a)p) = p(t − a)p−α ,∀p ∈ R.
5. If f is differentiable, then

dα

dtα
f (t) = (t − a)1−α d

dt
f (t).

Corollary 2.1: For α ∈ (n− 1,n], if f : [0,∞) → R is
α-differentiable at t > s, then f is continuous at s.

Definition 2.2: [35] The conformable fractional integral
starting from s of order α ∈ (n− 1,n] of f (t) is defined as

Iα
s f (t)=

1

(n−1) !

∫ t

s

(t−τ)n−1
f (τ)

(τ−s)n−α dτ , t>τ≥s≥0. (4)

Theorem 2.2: Let α ∈ (n− 1,n] and assume f be n-times
differentiable function. Then

1. dα

dtα (Iα
s f (t)) = f (t),

2. Iα
s

(
dα

dtα f (t)
)

= f (t)−∑n−1
k=0

f (k)(s)(t−s)k

k!
.

Definition 2.4: [36] Let ∂ ku/∂ tk and ∂ ku/∂xk,
k = 1,2, . . . ,n − 1, be defined on I × [s,∞), then the
conformable time-fractional differential operator of order
α of a function u(x, t) : I× [s,∞)→ R is defined by

T α
t u(x, t) =

∂ α u(x, t)

∂ tα

= lim
ε→0

u
(n−1)
t

(
x, t + ε(t − s)n−α)− u

(n−1)
t (x, t)

ε
,

α ∈ (n− 1,n], t > s ≥ 0,
(5)

and the space-fractional differential operator of order β of
u(x, t) : I× [s,∞)→ R is defined by

T β
x (x, t) =

∂ β u(x, t)

∂xβ

= lim
ε→0

u
(n−1)
x

(

x+ ε(x− s)n−β , t
)

− u
(n−1)
x (x, t)

ε
,

β ∈ (n− 1,n] , x > s ≥ 0.
(6)

c© 2020 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 4, 563-575 (2020) / www.naturalspublishing.com/Journals.asp 565

Definition 2.5: [36] The conformable fractional integral
starting from s of order α ∈ (n−1,n] of a function u(x, t) :
I× [s,∞)→R is defined by

Iα
s u(x, t) =

{
1

(n−1)!

∫ t
s
(t−τ)n−1u(x,τ)

(τ−s)n−α dτ , x ∈ I, t > τ ≥ s ≥ 0,

u(x, t) , α = 0.
(7)

Definition 2.6: [38] For 0 ≤ n−1 < α ≤ n, a power series
(PS) of the form

∞

∑
k=0

fk(x)(t − t0)
kα = f0 (x)+ f1 (x) (t − t0)

α

+ f2 (x)(t − t0)
2α + . . . ,

x ∈ I, t0 ≤ t < t0 +R1/α , R > 0,
(8)

is called a multiple fractional PS at t = t0, where t is a
variable and the function fk(x) is called the coefficients of
the PS.

As the classical power series, it is clear that all terms
of the multiple fractional PS (8) vanish as soon as t = t0
except the first term, which means the multiple fractional
PS is convergent when t = t0. Furthermore, for t ≥ t0 this
multiple fractional series is definitely convergent for

|t − t0| < R1/α , (R > 0), where R1/α is the radius of
convergence of the series.

Theorem 2.3: Let 0 ≤ n− 1 < α ≤ n and assume u(x, t) :

I × [t0, t0 +R1/α) → R can be expressed as the following
multiple fractional PS about t = t0:

u(x, t) =
∞

∑
k=0

fk(x)(t − t0)
kα ,

x ∈ I, t0 ≤ t < t0 +R1/α , R > 0.

(9)

Let u(x, t) be continuous on I × [t0, t0 + R1/α) and
∂ kα

∂ tkα u(x, t) = T kα
t u(x, t)∈C(t0, t0+R1/α), for k= 1,2, . . .,

then the coefficients fk(x) are given by

fk(x)=
T kα

t u(x,t0)

αk(k)!
, where T kα

t stands for sequential

conformable time-fractional derivative of order k that is
defined by T kα u(x, t)=T α ·T α ···T α u(x, t)

︸ ︷︷ ︸

k−times

.

Proof : Let u(x, t) be a function of two variables that can
be expressed as the multiple fractional PS of Eq. (9), i.e.

u(x, t) = f0 (x) + f1 (x)(t − t0)
α + f2 (x)(t − t0)

2α + . . . ,

t0 ≤ t < t0 +R1/α ,R > 0. Then, if we put t = t0, one can
obtain f0 (x) = u(x, t0) .
Applying the operator T α

t once to u(x, t) leads to

T α
t u(x, t) = α f 1(x)+ 2α f2(x)(t − t0)

α + . . . ,

and evaluating the result at t = t0 leads to T kα
t u(x, t0) =

α f1(x). Hence f1(x) =
T α

t u(x,t0)
α .

Again, applying the operator T α
t twice to u(x, t), one can

obtain

T 2α
t u(x, t) = (2α)α f2(x)+(2α)(3α) f3(x)(t − t0)

α + . . . ,

while the substitution of t = t0, it follows f2(x) =
T 2α

t u(x,t)

2α2 .

If we follow this approach; apply the operator T α
t k-times

to u(x, t) and evaluate t = t0 in the resulting formula, we

can easily see that fk (x)=
T kα

t u(x,t0)

αk(k)!
. The proof is

completed.

The nth-partial sum of the multiple fractional PS of Eq.
(9) can be given as

un (x, t) =
n

∑
k=0

fk(x)(t − t0)
kα ,

x ∈ I, t0 ≤ t < t0 +R1/α ,R > 0.

(10)

Theorem 2.4: Let α ∈ (n − 1,n], T kα
t u(x, t) exist at a

neighborhood of a point t0 for k = 0,1,2, . . . ,n+ 1, and
u(x, t) can be expressed by the multiple fractional PS (9)

about t = t0 such that

∣
∣
∣T

(n+1)α
t u(x, t)

∣
∣
∣ ≤ M(x), for some

n ∈N. Then, for all (τ0,τ0 +R1/α), the reminder Rn (t) of
the multiple fractional PS satisfies

|Rn (x, t)| ≤
M(x)

αn+1 (n+1) !
(t − t0)

(n+1)α , (11)

where Rn (x, t) = ∑∞
k=n+1

T kα
t u(x,t0)

αk(k)!
(t − t0)

kα

= u(x, t)−∑n
k=0

T kα
t u(x,t0)

αk(k)!
(t − t0)

kα .

Proof: From the assumption

∣
∣
∣T

(n+1)α
t u(x, t)

∣
∣
∣ ≤ M(x), it

follows

−M(x)≤ T
(n+1)α

t u(x, t)≤ M(x). (12)

Thus, applying the operator I
(n+1)α
t to both sides of the

inequality (11), we can get

−M(x)

αn+1 (n+1) !
(t − t0)

(n+1)α ≤ I
(n+1)α
t T

(n+1)α
t u(x, t)

≤
M(x)

αn+1 (n+1) !
(t − t0)

(n+1)α ,

so we complete the proof.

3 The conformable FPS method

This section aims to construct the fractional power series
solutions for time-fractional KGEs (1) and (2) in terms of
conformable fractional derivatives by substituting the
Taylor series expansion for the truncated residual error
functions.
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Table 1: Numerical results of the 3rd FPS for Example 4.1 at α = 1, x = 1 and t ∈ [0,1].

t Exact solution Approximate solution Absolute Error Relative Error

0.00 1.841470984807897 1.841470984807897 0.0 0.0

0.01 1.851521151892065 1.851521151474563 4.175014×10−10 2.254910×10−10

0.02 1.861672324834652 1.861672318141230 6.693422×10−9 3.595382×10−9

0.03 1.871925518761413 1.871925484807897 3.395352×10−8 1.813828×10−8

0.04 1.882281759000285 1.882281651474563 1.075257×10−7 5.712520×10−8

0.05 1.892742081183921 1.892741818141230 2.630427×10−7 1.389744×10−7

0.06 1.903307531353256 1.903306984807897 5.465454×10−7 2.871556×10−7

0.07 1.913979166062113 1.913978151474563 1.014588×10−6 5.300933×10−7

0.08 1.924758052482855 1.924756318141230 1.734342×10−6 9.010699×10−7

0.09 1.935645268513107 1.935642484807897 2.783705×10−6 1.438128×10−6

0.10 1.946641902883544 1.946637651474563 4251409×10−6 2.183971×10−6

(a) (b)

(c) (d)

Fig. 1: Surface plot of the 3rd CFPS approximation ω3 (x, t) for Example 4.1 with x ∈ [−4,4] and t ∈ [0,0.1] for different
values of fractional order: (a) α = 0.9 (b) α = 0.7 (c) α = 0.5 (d) α = 0.3.

Following the procedure of the FPS method, the
solution for time-fractional KGEs (1) and (2) about
t0 = 0, has a multiple FPS as follows:

ω (x, t)=
∞

∑
n=0

ωn(x)
tnα

αnn!
,0 < α ≤ 1, t ≥ 0 , x ∈ R. (13)

By applying the initial condition ω (x,0) = ω0 (x) to
Eq.(13), the expansion form of the solution can be written
as

ω (x, t) = ω0 (x)+
∞

∑
n=1

ωn(x)
tnα

αnn!
. (14)

To find out the multiple CFPS approximate solutions,
let us assume that ωn (x, t) indicates the nth-truncated

series of ω (x, t), i.e.

ωn (x, t) = ω0 (x)+
k

∑
n=1

ωn(x)
tnα

αnn!
. (15)

Define the nth-residual function as follows

Resn
ω (x, t) = T α

t ωn (x, t)− (ωn (x, t))xx

−λ ωn (x, t)− µω2
n (x, t)− γω3

n (x, t) .
(16)

and the residual error function as follows

Resω (x, t) = lim
n→∞

Resn
ω (x, t)

= T α
t ω (x, t)−ωxx (x, t)−λ ω (x, t)

− µω2 (x, t)− γω3 (x, t) .

(17)
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Fig. 2: The behavior of exact and approximate solutions when α = 1 for Example 4.1 at t = 0.01 and x ∈ [−10,10] : The
exact solution is blue, and the approximate solution is red.

(a) (b)

(c) (d)

Fig. 3: Surface plot of the 3rd CRPS approximation of Example 4.2 with x ∈ [−2,2] and t ∈ [0,0.1] for different values
of fractional order: (a) α = 0.95 (b) α = 0.5 (c) α = 0.1 (d) α = 0.01..

From (17), it can be noted that Resω (x, t) = 0 for each

x ∈ R and 0 < t < R1/α , where R1/α is the convergence
radius for the multiple CFPS (13). Similar to that in [

[38]- [43]], it can be proved that T
jα

t Resω (x, t) = 0. Also,

T
( j−1)α

t Resω(x, t)|t=0 =T
( j−1)α

t Res
j
ω(x, t)|t=0 for each

j = 1,2, . . . ,n because the fractional derivative of a
constant in the conformable sense is zero.

Consequently, the following fractional equation that
can be solved manually

T
( j−1)α

t Res
j
ω (x, t)|t=0 = 0, j = 1,2,3, . . . ,n, (18)

assists us to obtain the desired values of the unknown
coefficients ωn(x) of Eq. (15) for n = 1,2,3, . . . .
Therefore, the approximate solutions ωn (x, t) can be
given respectively.

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


568 R. Amryeen et al.: Adaptation Of Residual Power Series Approach For...

To define the 1st unknown coefficient, ω1(x), let n = 1
in Eq. (15), and substitute the 1st approximation ω1 (x, t) =

ω0 (x) +ω1 (x)
tα

α into the 1st truncated residual function

Res1
ω (x, t) of Eq. (16) as follows

Res1
ω (x, t) = T α

t ω1 (x, t)− (ω1 (x, t))xx −λ ω1 (x, t)

− µω2
1 (x, t)− γω3

1 (x, t)

= ω1 (x)−

(

ω
′′

0 (x)+ω
′′

1 (x)
tα

α

)

−λ

(

ω0 (x)+ω1 (x)
tα

α

)

− µ

(

ω2
0 (x)+ 2ω0 (x)ω1 (x)

tα

α
+ω2

1 (x)
t2α

α2

)

− γ

(

ω0 (x)+ω1 (x)
tα

α

)3

.

(19)

Using the result Res1
ω (x,0) = 0, it gives

ω1 (x) = ω
′′

0 (x)+λ ω0 (x)+ µω2
0 (x)+ γω3

0 (x) . (20)

Thus, the 1st FPS approximate solution of Eqs. (1) and
(2) can be expressed as follows

ω1 (x, t) = ω0 (x)+ (ω
′′

0 (x)+λ ω0 (x)

+ µω2
0 (x)+ γω3

0 (x))
tα

α
. (21)

Similarly, to determine the 2nd coefficient, ω2(x),
substitute the 2nd truncated series solution
ω2 (x, t) = ω0 (x) + ω1 (x)

tα

α + ω2 (x)
t2α

2α2 into the 2nd

truncated residual function Res2
ω (x, t) of Eq. (16) as

follows

Res2
ω (x, t) = T α

t ω2 (x, t)− (ω2 (x, t))xx −λ ω2 (x, t)

− µω2
2 (x, t)− γω3

2 (x, t)

=

(

ω1 (x)+ω2 (x)
tα

α

)

−

(

ω
′′

0 (x)+ω
′′

1 (x)
tα

α
+ω

′′

2 (x)
t2α

2α2

)

−λ

(

ω0 (x)+ω1 (x)
tα

α
+ω2 (x)

t2α

2α2

)

− µ

(

ω0 (x)+ω1 (x)
tα

α
+ω2 (x)

t2α

2α2

)2

− γ

(

ω0 (x)+ω1 (x)
tα

α
+ω2 (x)

t2α

2α2

)3

.

(22)

Operating T α
t on both sides of Eq. (22) and equating

the resulting equation to zero at t = 0 yield

T α
t Res2

ω(x, t)|t=0 =

(ω2 (x)−

(

ω
′′

1 (x)+ω
′′

2 (x)
tα

α

)

−λ

(

ω1 (x)+ω2 (x)
tα

α

)

− µ(2ω0 (x)ω1 (x)+ 2ω2
1 (x)

tα

α

+ · · ·+ω2
2 (x)

t3α

α3
)

− γ(3ω2
0 (x)ω1 (x)+ 3ω3

1 (x)
t2α

α2

+ · · ·+ 3ω3
2 (x)

t5α

4α5
))|t=0 = 0.

(23)

Thus, solving T α
t Res2

ω (x,0)= 0, we have

ω2 (x) =

ω
′′

1 (x)+λ ω1 (x)

+ 2µω0 (x)ω1 (x)

+ 3γω2
0 (x)ω1 (x) .

Therefore, the 2nd FPS approximate solution of Eqs.
(1) and (2) can be expressed as follows

ω2 (x, t) = ω0 (x)

+

(

ω
′′

0 (x)+λ ω0 (x)+ µω2
0 (x)+ γω3

0 (x)

α

)

tα

+
t2α

2α2
(ω

′′

1 (x)+λ ω1 (x)+ 2µω0 (x)ω1 (x)

+ 3γω2
0 (x)ω1 (x)).

(24)

In the same manner, the CRPS procedure can be
applied to find out the 3rd unknown coefficient by
substituting the 3rd approximation

ω3 (x, t) = ω0 (x)+∑3
n=1 ωn (x)

tnα

αnn!
into the 3rd truncated

residual function Res3
ω (x, t) of Eq. (16) as follows

Res3
ω (x, t)(x, t) = T α

t ω3 (x, t)− (ω3 (x, t))xx

−λ ω3 (x, t)− µω2
3 (x, t)− γω3

3 (x, t) ,

and by computing the T 2α
t Res3

ω(x, t) and using the fact in
Eq. (18), the desired coefficient can be obtained as follows

ω3 (x) = ω
′′

2 (x)+λ ω2 (x)

+ 2µ
(
ω2

1 (x)+ω0 (x)ω2 (x)
)

+ 3γ
(

2ω0 (x)ω2
1 (x)+ω2

0 (x)ω2 (x)
)

.

(25)
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Hence, the 3rd FPS approximate solution of Eqs. (1)
and (2) can be expressed as follows

ω3 (x, t) = ω0 (x)+ω
′′

0 (x)+λ ω0 (x)+ µω2
0 (x)+

γω3
0 (x)

tα

α
+(ω

′′

1 (x)+λ ω1 (x)+ 2µω0 (x)ω1 (x)

+ 3γω2
0 (x)ω1 (x))

t2α

2α2
+(ω

′′

2 (x)+λ ω2 (x)

+ 2µ
(
ω2

1 (x)+ω0 (x)ω2 (x)
)

+ 3γ
(

2ω0 (x)ω2
1 (x)+ω2

0 (x)ω2 (x)
)

)
t3α

3!α3
.

(26)

Similarly, the 4th unknown coefficient ω4 (x) can be
given using T 3α

t Res4
ω (x,0) = 0. Continuing in this

approach up to arbitrary order n, the multiple CFPS
solution ωn (x, t) of Eqs. (1) and (2) will be given.
Furthermore, high accuracy can be accomplished by
calculating more components of the CFPS solution.

4 Numerical applications

To demonstrate the behavior, properties, efficiency and
applicability of the proposed new method, three examples
of both linear and nonlinear problems are presented
numerically. All computations are performed using the
Mathematica 10 package.

Example 4.1. Consider the following linear fractional
Klein–Gordon equation [44]

T α
t ω (x, t) = ωxx (x, t)+ω (x, t) , t ≥ 0, x ∈ R, 0 < α ≤ 1

(27)

subject to the initial condition

ω (x,0) = 1+ sin(x). (28)

The exact solution at α = 1 is ω (x, t) = sinx + et .
In particular, Eq. (27) is a special case of the

time-fractional Klein–Gordon equation (1) when λ = 1
and µ = γ = 0.

Following the description of the CRPS algorithm, by
taking ω0 (x) = ω (x,0) = 1 + sin(x), the nth-truncated
series of IVP (27) and (28) can be given as

ωn (x, t) = 1+ sin(x) +
k

∑
n=1

ωn (x)
tnα

αnn!
, (29)

and the nth-residual function can be given as

Resn
ω (x, t) = T α

t ωn (x, t)− (ωn (x, t))xx −ωn (x, t) . (30)

To find the coefficients ωn (x) ,n = 1,2, . . . ,k, of Eq.
(29), substitute the 1st truncated series

ω1 (x, t) = 1 + sin(x) + ω1 (x)
tα

α into Res1
ω (x, t) as

follows

Res1
ω (x, t) = T α

t

(

1+ sin(x) +
ω1 (x)t

α

α

)

−

(

1+ sin(x) +
ω1 (x) t

α

α

)

xx

−

(

1+ sin(x) +
ω1 (x) t

α

α

)

= ω1 (x)−
ω

′′

1 (x)tα

α
−

ω1 (x)tα

α
− 1.

(31)

Now, letting t = 0 in Res1
ω (x, t), we have

Res1
ω (x,0) = ω1 (x) − 1. Thus, for Res1

ω (x,0) = 0, it
follows that ω1 (x) = 1. To define the 2nd unknown
coefficient ω2 (x), substitute the 2nd truncated series

ω2 (x, t) = 1+ sin(x) + tα

α +ω2 (x)
t2α

2α2 into Res2
ω (x, t), as

follows,

Res2
ω (x, t) = T α

t

(

1+ sin(x) +
tα

α
+

ω2 (x)t
2α

2α2

)

−

(

1+ sin(x) +
tα

α
+

ω2 (x)t
2α

2α2

)

xx

−

(

1+ sin(x) +
tα

α
+

ω2 (x)t
2α

2α2

)

=
ω2 (x)tα

α
−

ω
′′

2 (x) t2α

2α2
−

tα

α
−

ω2 (x) t
2α

2α2
.

(32)

Operating T α
t on both sides of Eq. (32), we have

T α
t Res

2
ω (x, t) = T α

t (
ω2 (x) tα

α
−

ω
′′

2 (x)t2α

2α2

−
tα

α
−

ω2 (x) t
2α

2α2
)

= ω2 (x)−
ω

′′

2 (x) tα

α
−

ω2 (x) tα

α
− 1,

(33)

and equating T α
t Res2

ω (x, t) to 0 for t = 0, it follows
ω2 (x) =1. Therefore, the 2nd CFPS approximate solution
of IVP (27) and (28) is

ω2 (x, t) = 1+ sin(x) +
tα

α
+

t2α

2α2
.

Applying the same procedure for n = 3, the 3rd FPS
approximation for Eqs. (27) and (28) can be given as

ω3 (x, t) = 1+ sin(x) +
tα

α
+

t2α

2α2
+

t3α

6α3
. (34)
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(a) (b)

Fig. 4: The CRPS solutions of Example 4.2 for different values of α: (a) when t = 0.04, (b) when t = 0.1 such that blue
for α = 0.95, red for α = 0.9, green for α = 0.8, orange for α = 0.7, and gray for α = 0.6.

(a) (b)

Fig. 5: Comparison between the CRPS and HPM for Example 4.2 when t = 0.9, and x ∈ [−25,25], where blue and green
are used for CRPS and HPM [44] solutions, respectively: (a) α = 0.5 (b) α = 1.

(a) (b)

(c) (d)

Fig. 6: The Phase schema of the CPS approximation ω3 (x, t) for Example 4.3 with x ∈[−2,2] and t ∈[0,0.1] at different
values of fractional order: (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, (d) α = 1.
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Similarly, the multiple CFPS solution ω (x, t) in terms
of infinite series is obtained as

ω (x, t) = 1+ sin(x) +
tα

α
+

t2α

(2)!α2
+

t3α

(3)!α3

+ · · ·+
tkα

(k)!αk
+ . . .

= sin(x) +
∞

∑
n=0

tnα

(n)!αn
,

(35)

which is consistent with the results contained in [44].
Furthermore, for α = 1, the CFPS solution will be
ω (x, t) = sinx + et , which is fully compatible with the
exact solution.

For numerical simulation, Table 1 shows the
approximate solution ω3 (x, t), absolute error and relative
error of Example 4.1 when α = 1 for x = 1 and some
selected grid points t with step size 0.01. To show the
geometric behaviors of the 3rd CFPS approximation of
IVPs (27) and (28), the third dimensional surface plots of
ω3 (x, t) are illustrated in Figure 1 for x ∈ [−4,4] and
t ∈ [0,0.1] for different values of fractional order α such
that α = {0.3,0.5,0.7,0.9}. It manifests that the behavior
of the CRPS approximate solutions depends continuously
on the value of conformable derivative α . Thus, we
conclude that the graphs almost have similar behaviors,
and are consistent with each other, especially when
considering the integer-order derivative.

While Figure 2 shows the comparison of surface plots
between the exact solution ω (x, t) and CFPS solution
ω3 (x, t) at α = 1, for t = 0.01 and each x ∈ [−10,10],
where blue and red are used for the exact and
approximate solutions, respectively. It exhibits that the
approximate solution matches the exact solution during
the spatial interval, which indicates efficiency of the
proposed method.

Example 4.2. Consider the following nonlinear fractional
Klein–Gordon equation [44]:

T α
t ω (x, t) = ωxx (x, t)−ω2 (x, t) , 0 < α ≤ 1, (36)

subject to the initial condition

ω (x,0) = 1+ sin(x). (37)

In particular, Eq. (36) is a special case of the
time-fractional Klein–Gordon equation (1) when
λ = γ = 0 and µ =−1.

In view of the CRPS approach, the nth-truncated series
of IVPs (36) and (37) is given as

ωn (x, t) = 1+ sin(x) +
k

∑
n=1

ωn (x)
tnα

αnn!
, (38)

and the nth-residual function of IVPs (36) and (37) is given
as

Resn
ω (x, t) = T α

t ωn (x, t)− (ωn (x, t))xx +ω2
n (x, t) . (39)

To determine the 1st unknown coefficient ω1 (x) of
Eq. (38), substitute the 1st truncated series

ω1 (x, t) = 1 + sin (x) + ω1 (x)
tα

α into the 1st residual
function as follows

Res1
ω (x, t) =ω1 (x)+ sin(x)−

ω
′′

1 (x) tα

α

+

(

1+ sin(x)+
ω1 (x) tα

α

)2

. (40)

Now, by letting t = 0 in Res1
ω (x, t) such that

Res1
ω (x,0) = ω1 (x)+ 1+ 3sin(x) + sin2 (x) and making

use of Res1
ω (x,0) = 0, we observe

ω1 (x) =−1− 3sin(x) − sin2 (x) .

Therefore, the 1st approximate CFPS solution is

ω1 (x, t) = 1+ sin(x) −
(
1+ 3sin(x) + sin2 (x)

) tα

α
.

Similarly, to define the 2nd unknown coefficient
ω2 (x), substitute the 2nd truncated series

ω2 (x, t) = 1 + sin(x) −
(1+3sin(x) +sin2(x)) tα

α + ω2 (x)
t2α

2α2

into Res2
ω (x, t) such that

Res2
ω (x, t) = T α

t (1+ sin(x) −
(1+ 3sin(x) + sin2 (x)) tα

α

+
ω2 (x) t2α

2α2
)− (1+ sin(x)

−
(1+ 3sin(x) + sin2 (x)) tα

α
+

ω2 (x)t2α

2α2
)

xx

+(1+ sin(x) −
(1+ 3sin(x) + sin2 (x)) tα

α

+
ω2 (x) t2α

2α2
)

2

=

(

−(1+ 3sin(x) + sin2 (x)) +
ω2 (x)tα

α

)

+(sin(x) − (3sin(x) + 2
(
sin2 (x) − cos2 (x)

)

tα

α
−

ω
′′

2 (x)t2α

2α2
)+ (1+ 2sin(x) + sin2 (x)

− 2

(

(1+ sin(x) )

(
1+ 3sin(x) + sin2 (x)

)
tα

α

)

+ · · ·+
ω2

2 (x) t4α

4α4
).

(41)
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Operating T α
t on both sides of Eq. (41) and equating

to 0 for t = 0, we have

T α
t Res

2
ω (x, t)|t=0

= T α
t (

ω2 (x) tα

α

−

(
3sin(x) + 2

(
sin2 (x) − cos2 (x)

))
tα

α

−
ω

′′

2 (x) t2α

2α2
− 2((1+ sin(x) )

(
1+ 3sin(x) + sin2 (x)

)
tα

α
)

+ · · ·+
ω2

2 (x)t4α

4α4
)t=0

= (ω2 (x)− (3sin(x) + 2(sin2 (x)

− cos2 (x) ))−
ω

′′

2 (x) tα

α

− 2(1+ sin(x) )(1+ 3sin(x) + sin2 (x) )

+ · · ·+
ω2

2 (x)t3α

α3
)t=0

= ω2 (x)− 11sin(x) − 12sin2 (x)

− 2sin3 (x) = 0.
(42)

Thus, the 2nd unknown coefficient is

ω2 (x) = 11sin(x) + 12sin2 (x) + 2sin3 (x) .

Therefore, the 2nd CFPS approximate solution of IVP
(36) and (37) is

ω2 (x, t) = 1+ sin(x) −
(1+ 3sin(x) + sin2 (x)) tα

α

+
11sin(x) + 12sin2 (x) + 2sin3 (x) t2α

2α2
.

By applying the same procedure for n = 3, the 3rd
unknown coefficient can be given as

ω2 (x) = 22− 33sin(x) − 116sin2 (x)− 58sin3 (x)

−6sin4 (x),

then the 3rd CFPS approximation for Eqs. (36) and (37)
can be given as

ω3 (x, t) = 1+ sin(x) −
(1+ 3sin(x) + sin2 (x)) tα

α

+
11sin(x) + 12sin2 (x) + 2sin3 (x) t2α

2α2

+
t3α

6α3
(22− 33sin(x) − 116sin2 (x)

− 58sin3 (x) − 6sin4 (x) ),
(43)

which is consistent with the results in [44].

To show the accuracy of the CRPS algorithm in
handling Example 4.2, the 3-dimension surface plots of
the CFPS approximate solutions are given in Figure 3
when x ∈ [−2,2] and t ∈ [0,0.01] for different levels of
fractional order α such that α = {0.01,0.1,0.5,0.95}.
From these graphs, the solution behavior indicates that an
increase of the fractional parameter changes the nature of
the solution with a smooth sense. The curves of the CRPS
approximate solutions at different levels of the fractional
order of α was drawn in Figure 4 when t = 0.4 and
t = 0.1. Here we notice that the solution curves are
consistent with each other and approach the exact curve
with increasing fractional values to the integer-order
value α = 1.

For further analysis, the comparison of the curves of
CRPS and HPM [44] solutions are plotted in Figure 5 for
t = 0.9, x ∈ [−25,25] when (a) α = 0.5 and (b) α = 1,
where blue and green are used for CRPS and HPM
solutions, respectively. From these curves, it can be noted
that the approximate solutions obtained by CRPS and
HPM are consistent with each other for different values of
the fractional order α but the CRPS curve excels and
similar to the closed solution more than HP solution.

Example 4.3. Consider the following nonlinear fractional
Klein–Gordon equation [44]:

T α
t ω (x, t) = ωxx (x, t)−ω (x, t)+ω3 (x, t) , 0 < α ≤ 1,

(44)

subject to the initial condition

ω (x,0) =−sech(x). (45)

In this example, we consider λ =−1, µ = 0 and γ = 1.
In view of the CRPS algorithm, the nth-truncated series of
IVPs (44) and (45) can be given as

ωn (x, t) =−sech(x)+
k

∑
n=1

ωn (x)
tnα

αnn!
, (46)

and the nth-residual function can be given as

Resn
ω (x, t) = T α

t ωn (x, t)−ωn (x, t)xx +ωn (x, t)−ω3
n (x, t) .

(47)

By applying the former iteration process, the first few
terms of the RPS (46) are given as follows

ω1 (x) = sech3 (x) ,

ω2 (x) = (−5+ 4cosh(2x)) sech5(x),

ω3 (x) = (117− 112cosh(2x)+ 8cosh(4x))sech7(x),

...
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Therefore, the CFPS approximation of IVPs (44) and
(45) is

ω (x, t) =−sech(x) +
1

α
sech3 (x)tα

+

(
(4cosh(2x) − 5)

2α2

)

sech5 (x) t2α

+

(
(117− 112cosh(2x) + 8cosh(4x) )

6α3

)

sech7 (x) t3α + . . . .

(48)

To demonstrate the efficacy of the proposed algorithm
in solving Example 4.3, approximate behaviors of CRPS
are plotted in Figure 6 with 3D-space graphs when n = 3,
x ∈ [−2,2] and t ∈ [0,0.1] for different values of α such
that α = {0.25,0.5,0.75,1}. From these graphs, one can
see that the fractional order has strong geometrical effects
on the model surface profiles, which tend to lead to
unusual behaviors if they move away from the integer
value as is evident from the drawing when α = 0.25.

5 Conclusion

In this paper, the application of the conformable residual
power series method has been successfully extended to
obtain approximate analytical solutions to time-fractional
nonlinear Kline-Gordon equations associated with
conformable fractional derivative. The proposed method
was used directly to solve these nonlinear fractional
models without being linearized, discretized, or
perturbation. Meanwhile, theoretical predictions and error
analysis of the method have been discussed. To
demonstrate consistency with the theoretical framework,
three illustrative examples were presented. The
approximate solutions are compared with the exact
solutions and those in the literature to show validity and
reliability of the CRPS method. Accurate solutions were
introduced with the help of shapes and tables, which
showed consistency with each other for different values of
the fractional-order. Therefore, we can conclude that this
method is an effective and simple tool for treating
fractional partial differential equations with great
potential in scientific applications.

Conflicts of Interest: The authors declare that they have
no conflicts of interest.

Data Availability: The data used to support the findings
of this study are available from the corresponding author
upon request.

References

[1] K.S. Miller, B. Ross, An Introduction to the Fractional

Calculus and Fractional Differential Equations, Wiley, New

York, (1993).

[2] D. Baleanu, J.A.T. Machado, A.-C. Luo, Fractional

Dynamics and Control, Springer Science and Business

Media, New York, (2011).

[3] D. Baleanu. K. Diethelm, E. Scalas, J.J. Trujillo, Fractional

Calculus Models and Numerical Methods, World Scientific,

Singapore, (2009).

[4] B. Bira, T.R. Sekhar, D. Zeidan, Exact solutions for some

time-fractional evolution equations using Lie group theory,

Mathematical Methods in the Applied Sciences, 41 (16),

6717-6725 (2018).

[5] M. Al-Smadi, O. Abu Arqub, Computational algorithm for

solving fredholm time-fractional partial integrodifferential

equations of dirichlet functions type with error estimates,

Applied Mathematics and Computation, 342, 280-294

(2019).

[6] M. Al-Smadi, A. Freihat, H. Khalil, S. Momani, R.A.

Khan, Numerical multistep approach for solving fractional

partial differential equations, International Journal of

Computational Methods, 14, 1750029 (2017).

[7] D. Baleanu, A. K. Golmankhaneh, M.C. Baleanu,

Fractional electromagnetic equations using fractional

forms, International Journal of Theoretical Physics 48,

3114-3123 (2009).

[8] M. Al-Smadi, Simplified iterative reproducing kernel

method for handling time-fractional BVPs with error

estimation, Ain Shams Engineering Journal, 9 (4), 2517-

2525 (2018).

[9] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, A. Ateiwi,

Numerical Solutions of Fractional Systems of Two-Point

BVPs by Using the Iterative Reproducing Kernel Algorithm,

Ukrainian Mathematical Journal, 70 (5), 687–701 (2018).

[10] O. Abu Arqub, M. Al-Smadi, An adaptive numerical

approach for the solutions of fractional advection–diffusion

and dispersion equations in singular case under Riesz’s

derivative operator, Physica A: Statistical Mechanics

and its Applications, 540, 123257, 1-13, (2020).

https://doi.org/10.1016/j.physa.2019.123257

[11] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani,

Atangana-Baleanu fractional framework of reproducing

kernel technique in solving fractional population dynamics

system, Chaos, Solitons and Fractals, 133, 109624 (2020).

https://doi.org/10.1016/j.chaos.2020.109624

[12] A.M. Wazwaz, New travelling wave solutions to

the Boussinesq and the Klein-Gordon equations,

Communications in Nonlinear Science and Numerical

Simulation, 13(5), 889–901, (2008).

[13] E. Abuteen, A. Freihat, M. Al-Smadi, H. Khalil, R.A. Khan,

Approximate Series Solution of Nonlinear, Fractional

Klein-Gordon Equations Using Fractional Reduced

Differential Transform Method, Journal of Mathematics

and Statistics, 12, 23-33, (2016).

[14] M. Al-Smadi, Solving fractional system of partial

differential equations with parameters derivative by

combining the GDTM and RDTM, Nonlinear Studies,

26(3), 587-601 (2019).

[15] A.M.A. El-Sayed, A. Elsaid, D. Hammad, A reliable

treatment of homotopy perturbation method for solving the

nonlinear Klein-Gordon equation of arbitrary (fractional)

orders, Journal of Applied Mathematics, 2012, 581481,

(2012).

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


574 R. Amryeen et al.: Adaptation Of Residual Power Series Approach For...

[16] K.A. Gepreel, M.S. Mohamed, Analytical approximate

solution for nonlinear space-time fractional Klein Gordon

equation, Chinese Physics B, 22, 010201, (2013).
[17] E.A.B. Abdel-Salam, E.A. Yousif, Solution of nonlinear

space-time fractional differential equations using the

fractional Riccati expansion method, Mathematical

Problems in Engineering, 2013, 846283, (2013).
[18] M. Al-Smadi, O. Abu Arqub, S. Momani, Numerical

computations of coupled fractional resonant Schrödinger

equations arising in quantum mechanics under conformable

fractional derivative sense, Physica Scripta, 95, 075218

(2020). https://doi.org/10.1088/1402-4896/ab96e0
[19] M. Al-Smadi, O. Abu Arqub, S. Momani, A computational

method for two-point boundary value problems of fourth-

order mixed integrodifferential equations, Mathematical

Problems in Engineering, 2013, 832074, (2013).

https://doi.org/10.1155/2013/832074
[20] E. Goncalves, D. Zeidan, Numerical study of turbulent

cavitating flows in thermal regime, International Journal of

Numerical Methods for Heat and Fluid, 27 (7), 1487-1503,

(2017).
[21] G. Gumah, M. Naser, M. Al-Smadi, S.K.Q. Al-Omari,

D. Baleanu, Numerical solutions of hybrid fuzzy

differential equations in a hilbert space, Applied Numerical

Mathematics, 151, 402-412 (2020).
[22] M. Al-Smadi, O. Abu Arqub, N. Shawagfeh, S. Momani,

Numerical investigations for systems of second-order

periodic boundary value problems using reproducing kernel

method, Applied Mathematics and Computation, 291, 137-

148 (2016).
[23] D. Zeidan, R. Touma, On the Computations of Gas-Solid

Mixture Two-Phase Flow, Advances in Applied Mathematics

and Mechanics, 6, 49-74, (2014).
[24] E. Goncalves, D. Zeidan, Simulation of compressible

two-phase flows using a void ratio transport equation,

Communications in Computational Physics, 24, 167-203,

(2018).
[25] G.N. Gumah, M.F.M. Naser, M. Al-Smadi, S.K. Al-Omari,

Application of reproducing kernel Hilbert space method

for solving second-order fuzzy Volterra integro-differential

equations, Advances in Difference Equations, 2018, 475

(2018). https://doi.org/10.1186/s13662-018-1937-8
[26] M. Al-Smadi, Reliable Numerical Algorithm for Handling

Fuzzy Integral Equations of Second Kind in Hilbert Spaces,

Filomat, 33, 583-597 (2019).
[27] D. Zeidan, A. Slaouti, E. Romenski, E.F. Toro, Numerical

solution for hyperbolic conservative two-phase flow

equations, International Journal of Computational Methods,

4 (2), 299-333, (2007).
[28] E. Goncalves, Y. Hoarau, D. Zeidan, Simulation of shock-

induced bubble collapse using a four-equation model, Shock

Waves, 29, 221–234, (2019).
[29] A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith, S. Momani,

Construction of fractional power series solutions to

fractional stiff system using residual functions algorithm,

Advances in Difference Equations, 2019, 95, (2019).

https://doi.org/10.1186/s13662-019-2042-3
[30] S. Hasan, M. Al-Smadi, A. Freihet, S. Momani, Two

computational approaches for solving a fractional obstacle

system in Hilbert space, Advances in Difference Equations,

2019, 55, (2019). https://doi.org/10.1186/s13662-019-1996-

5

[31] S. Alshammari, M. Al-Smadi, M. Al Shammari, I.

Hashim, M.A. Alias, Advanced analytical treatment

of fractional logistic equations based on residual

error functions, International Journal of Differential

Equations, 2019, Art. ID 7609879, 1-11 (2019).

https://doi.org/10.1155/2019/7609879

[32] R. Saadeh, M. Alaroud, M. Al-Smadi, R.R. Ahmad, U.K.

Salma Din, Application of fractional residual power series

algorithm to solve Newell–Whitehead–Segel equation of

fractional order, Symmetry, 11 (12), 1431, (2019).

[33] A. Freihet, S. Hasan, M. Alaroud, M. Al-Smadi, R.R.

Ahmad, U.K. Salma Din, Toward computational algorithm

for time-fractional Fokker Planck models, Advances in

Mechanical Engineering, 11 (10), 1-10, (2019).

[34] A. Atangana, D. Baleanu, A. Alsaedi, New properties of

conformable derivative, Open Mathematics, 13, 889–898,

(2015).

[35] T. Abdeljawad, On conformable fractional calculus, Journal

of Computational and Applied Mathematics, 279, 57–66,

(2015).

[36] O. Abu Arqub, M. Al-Smadi, Fuzzy conformable fractional

differential equations: novel extended approach and new

numerical solutions, Soft Computing, 2020, 1-22 (2020).

https://doi.org/10.1007/s00500-020-04687-0

[37] M. Shqair, M. Al-Smadi, S. Momani, E. El-Zahar,

Adaptation of Conformable Residual Power Series Scheme

in Solving Nonlinear Fractional Quantum Mechanics

Problems, Applied Sciences, 10 (3), 890, (2020).

[38] O. Abu Arqub, R. Edwan, M. Al-Smadi, S.

Momani, Solving space-fractional Cauchy problem

by modified finite-difference discretization scheme,

Alexandria Engineering Journal, (2020) In Press.

https://doi.org/10.1016/j.aej.2020.03.003

[39] M. Alshammari, M. Al-Smadi, O. Abu Arqub, I. Hashim,

M.A. Alias, Residual Series Representation Algorithm for

Solving Fuzzy Duffing Oscillator Equations, Symmetry, 12

(4), 572, (2020). https://doi.org/10.3390/sym12040572

[40] S. Alshammari, M. Al-Smadi, I. Hashim, M.A. Alias,

Residual Power Series Technique for Simulating

Fractional Bagley Torvik Problems Emerging in

Applied Physics, Applied Sciences, 9 (23), 5029, (2019).

https://doi.org/10.3390/app9235029

[41] O. Abu Arqub, M. Al-Smadi, Atangana–Baleanu fractional

approach to the solutions of Bagley–Torvik and Painlevé
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