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Abstract: It is essential for financial institutions and regulators to implement an effective risk management system against market risk.

Value-at-Risk (VaR) is the most popular tool to measure such risk. It is thus important to model the volatility of precious metal prices

and develop more robust approaches in the estimation of VaR. There is a gap in literature in terms of VaR models that can capture all

the empirical properties of precious metals. The main aim of the study was to propose a modelling framework using Long memory

models coupled with normal-inverse Gaussian (NIG), the variance-gamma (VG) and the Pearson type-IV (PIV) distributions which

can be used in precious metal market for carrying out accurate risk management or assessment. In this study, we evaluate the relative

performances of long memory (LM) generalized autoregressive conditional heteroscedasticity (GARCH) models, under a number of

conditional assumptions, in estimating VaR for daily returns from three precious metal (platinum, gold, silver) prices. Such models aim

at jointly capturing the volatility clustering, unconditional and conditional heavy-tailed, asymmetrical distributions and LM inherent in

the data series. In particular, the conditional variance and LM are modeled by nonlinear GARCH models, while the NIG, the VG and the

PIV distributions are applied to the extracted standardized residuals so as to capture the heavy tail behavior in metal returns. Anderson-

Darling (AD) test is utilized to check for model adequacy while Kupiec likelihood ratio test is used in this study to objectively compare

relative performances of the VaR models. The backtesting results confirm that the LM GARCH-heavy-tailed distribution models are

adequate methods in improving risk management assessments and hedging strategies in the highly volatile metals market. The main

findings indicate that ARFIMA-FIGARCH, ARFIMA-HYGARCH and ARFIMA-FIAPARCH models with PIV, VG and NIG error

distributions are suitable for depicting the extreme risk of precious metal prices and can be used for the estimation of VaR. The

accuracy of the volatility model is essential in forecasting volatility of future returns in which the predictability of volatility plays an

integral role in risk management and portfolio management.
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1 Introduction

Major precious metals such as gold, palladium, platinum and silver emerged as natural desirable classes eligible for
portfolio diversification. Investigating the price dynamics of precious metals is of great interest to investors, traders and
policy makers. Recent studies have examined the issue of price volatility modeling and information transmission for a
broader set of precious metals, oil and industrial commodities.

There has been a growing interest in precious metal markets by agents that incorporate metals in production
processes, such as metallurgic companies, and the jewelry industry where metals such as gold, platinum and silver are
clearly dominant. These characteristics imply that there has been a strong demand in these markets. Most research in
literature focused on the analysis of the gold market. The main interest has been the role of this precious metal as a hedge
against inflation. Little research has been done in regard to other precious metals (e.g., silver, platinum, palladium).
Hiller et al. [1] found financial portfolios that contain precious metals to perform significantly better than standard equity
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portfolios. They also found that precious metals exhibit some hedging capability during periods of abnormal volatility.
Sari et al. [2] examined the co-movements and information transmission among the spot prices of four precious metals
(gold, silver, platinum and palladium), oil price and the US Dollar/Euro exchange rate. They found evidence of a weak
long-run equilibrium relationship and strong feedbacks in the short run.

Various modelling methodologies have been employed in literature. Krężłek [3] used stable distributions to measure
the investment risk of precious non-ferrous metals. Their results confirmed the validity in using stable distributions to
assess the risk on the precious non-ferrous metals market. Precious metal return series exhibit volatility clustering,
heavy-tails and the dependence amongst distant observations, a phenomenon referred to as long-range dependence or
long memory (LM). LM GARCH models have been applied to modelling precious metal returns. Extensive work on the
application of nonlinear GARCH models (LM models) in modelling precious metals were carried out by Arouri et al.

[4], Cochran et al. [5], Chkili et al. [6], Bentes [7], and Ranganai and Khubeka [8], among others. According to Chkili et

al. [6], the FIGARCH model is best suited for estimating Value-at-Risk (VaR) forecasts of commodity prices which
included daily spot and three-month futures of gold and silver. Cochran et al. [5] found that the FIGARCH (1,d,1)
appropriately describes the volatility processes of metal returns. They used daily log returns of prices of gold, silver,
platinum and palladium from January 2000 to June 2011. Bentes [7] compared the relative performances of GARCH,
IGARCH and FIGARCH on daily gold price returns. Using daily price returns from 2 August 1976 to 6 February 2015
her results were similar to Cochran et al. [5].

LM has been observed in both the mean and volatility of precious metal returns, i.e. the dual LM phenomenon.
Arouri et al. [4], Diaz [9] and Ranganai and Khubeka [8] have accomplished commendable research on the dual LM
phenomenon. The LM in the mean is handled by the autoregressive fractional integrated moving average (ARFIMA)
models and the LM inherent in volatility by nonlinear GARCH models. Arouri et al. [4]) found that
ARFIMA-FIGARCH is the best model for describing daily spot and 3-month futures prices of gold, silver, platinum and
palladium. However, they did not address the issue of heavy-tailed error distributions. Diaz [9] addressed the issue of
dual LM and asymmetry phenomena. Ranganai and Khubeka [8] addressed the issue of structural breaks and
heavy-tailed error distributions. Their results suggest that platinum returns are mean reverting while its volatility
exhibited strong LM. They also found that for platinum returns, ARFIMA-FIEGARCH model under the Skewed
Student-t distribution (SSTD) and ARFIMA-HYGARCH under the normal distribution were able to capture the
ARCH-effect. The best model for platinum return was the AFRIMA-FIAPARCH under the Student-t distribution (STD),
based on the Alkaike information criterion (AIC).

The development of a more robust approach in estimating VaR is crucial, since regulators accept it as a basis for
setting capital requirements for market risk exposure. We extend the work of Arouri et al. [4], Ranganai and Khubeka
[8], Youssef et al. [10], Mabrouk and Saadi [11], Cochran et al. [5], McNeil and Frey [12], Bhattacharyya et al. [13],
Bhattacharyya and Madhav [14] by evaluating the relative performances of LM GARCH models in estimating VaR of
three precious metal prices using a number of conditional assumptions. We intend to improve LM models by relaxing the
normality assumption of the return innovations by allowing negative skewness and heavy-tails. Since all precious metal
return series exhibit volatility clustering and long-range dependence (LM), we propose the LM GARCH models under
Pearson type-IV (PIV), normal-inverse Gaussian (NIG) and variance-gamma (VG) error distributions. The aim of the
study was to improve estimations using appropriate underlying distributions to capture extreme tails of the profit and loss
distribution and, as a result, improve the estimation of VaR, a suitable measure of market risk. The main contribution is
to improve the existing models for precious metals by coupling long memory models with heavy-tailed distributions
(NIG, VG and PIV).

We fit ARFIMA-FIGARCH, ARFIMA-HYGARCH and ARFIMA-FIAPARCH in the presence of three alternative
innovation distributions, namely normal, Student-t and skewed Student-t. We further propose three other innovation
distributions: PIV, VG and NIG. Thus we compute VaR for the three models, FIGARCH, FIAPARCH and HYGARCH,
with six different innovation distributions.

The rest of the paper is organized as follows: in Section 2, the basic definitions and theoretical properties of long
memory " LM" models and heavy-tailed distributions are presented. The Anderson-Darling (AD) test and backtesting
methods are also discussed in this Section. Section 3 discusses precious metal data sets and their properties. The empirical
results of model estimation and backtesting results are summarized in Section 4. Section 5 concludes the study.

c© 2022 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 11, No. 1, 89-107 (2022) / www.naturalspublishing.com/Journals.asp 91

2 Methodology

In this section, the long memory processes and the long memory-GARCH-type models are discussed. We also discuss the
heavy tailed distributions used to account for conditional heavy tails of the precious metal returns.

2.1 Long Memory (LM) processes

A stationary process Xt is a LM process if there exists a real number 0 < H < 1, such that the ACF ρ(k) has the
following hyperbolic decay: lim

k→∞
ρ(k) = C2H−1, C > 0, where C is a finite constant and H is the well-known Hurst

exponent. Such a process has auto-covariance function γ(k) which is not summable, i.e., ∑∀k |γ(k)|= ∞.

The long-range dependence parameter d of a stationary LM process has the following relationship with the Hurst
exponent: d = H − 1

2
. Thus we can deduce the equivalent interval for the Hurst exponent as 1

2
< H < 1.

Equivalently, in the frequency domain LM can be defined in terms of the behavior of the spectrum:

f (ω)≈C|ω |−2d , 0 < d <
1

2
; for d > 0, (1)

the ACF decays very slowly and the spectrum typically diverges to infinity at frequency ω = 0, i.e., limω→0 f (ω) = ∞
indicating strong long-range dependence; for d < 0, the spectrum of the series is equal to zero at ω = 0 indicating
intermediate-range dependence.

A simple example of LM is a fractionally integrated noise process, I(d) with 0 < d < 1, given by

(1−L)dr2
t = µt (2)

for a precious metal return series rt, where L is the lag operator and µt → iid(0,σ2). Thus this model includes the
traditional extremes of a stationary process, I(0) and generalizes the I(1) process to include fractional values of d.

LM Mean and Volatility Models

We shall model the metal price returns using ARFIMA-FIGARCH, ARFIMA-HYGARCH and ARFIMA-FIAPARCH
processes, starting with ARFIMA model for the mean. Without loss of generality we denote the LM parameters for the
mean and volatility models as dm and dv, respectively.

Consider an ARFIMA(p,d,q) model of the form

φ(L)(1−L)dmr2
t = θ (L)εt , (3)

where εt is a white noise process, φ(L) = φ1L+φ2L2 + . . .+φpLp and θ (L) = θ1L+θ2L2 + . . .+θqLq.

The ARFIMA model is said to be stationary when −0.5 < dm < 0.5, where the effect of shocks to εt decays at a gradual
rate to zero. The model becomes nonstationary when dm ≥ 0.5 and is a stationary but noninvertible process when
dm ≤ −0.5, implying that the data time series is impossible to be modelled by any AR process. The ARFIMA(p,d,q)
model has a positive dependence among distant observations (i.e. LM process) when 0 < dm < 0.5. It has an
anti-persistent property (an intermediate memory) if −0.5 < dm < 0.

Baillie et al. [15] introduced a new class of models called the fractional integrated GARCH model i.e., the FIGARCH.
The FIGARCH(p,d,q) model allows us to model a slow decay of volatility (LM behavior), as well as to distinguish the
LM and short memory in conditional variance. The FIGARCH(p,d,q) can be expressed as

[φ(L)(1−L)dv ]a2
t = ω +[1−β (L)](a2

t −σ2
t ), (4)

where d represents a fractional integration parameter, at is a white noise residual process; (1−L)dv represents fractional
differencing operator; φ(L) denotes an infinite summation which has to be truncated. This model provides greater
flexibility for modelling the conditional variance, since it accommodates the covariance stationary GARCH(p,q) model
when dv = 0 and the integrated generalised autoregressive conditional heteroscedasticity (IGARCH) model when dv = 1,
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as special cases. That is, If dv = 0, the model has a short memory and reduces to the GARCH(p,q) model. If dv = 1,
model becomes an IGARCH(p,q).

It has a LM when 0 < dv < 1 and this allows more flexibility in modelling conditional variance rather than the mean. For
the FIGARCH(p,d,q) process the persistence of shocks to the conditional variance or the degree of LM is measured by
the fractional differencing parameter dv. The advantage of this methodology is that for 0 < dv < 1 , it is sufficiently
flexible to allow for an intermediate range of LM because the shocks in variance decrease at a hyperbolic rate [16].

Tse [17] extended the FIGARCH(p,d,q) model to take into account of asymmetry and the LM feature of the process of the
conditional variance. He proposed the fractional integrated asymmetric power ARCH (FIAPARCH) model to explicitly

accommodate for both LM and asymmetric effects in the conditional volatility. He introduced the function (|at |− γat)
δ

of the APARCH process. The FIAPARCH(p,d,q) model can be written as:

σδ
t = ω [1−β (L)]−1 + {1− [1−β (L)]−1φ(L)(1−L)dv}(|at |− γat)

δ , (5)

where ω > 0, δ > 0, β < 1. The parameter γ refers to the asymmetric parameter satisfying the condition −1 < γ < 1.
The FIAPARCH process can explain various stylized facts inherent in the volatility of financial and commodity prices. If
γ > 0, negative shocks will have more impact on the commodity return volatility than positive shocks of equal
magnitude. If 0 < dv < 1, the FIAPARCH model captures the patterns of LM property in the conditional variance
process. i.e. volatility exhibits LM property. The FIAPARCH process nests the FIGARCH process when γ = 0 and
δ = 2. As a result, the FIAPARCH process is superior to the FIGARCH as it takes into account the asymmetry and LM
in the conditional variance behavior. The parameter δ is a power term in the volatility structure and should be specified
by the data.

The HYGARCH model by Davidson [18] is obtained by extending the conditional variance of the FIGARCH model by
introducing weights in the difference operator. The conditional variance of the HYGARCH is expressed as follows:

σ2
t = ω [1−β (L)]−1 + {1− [1−β (L)]−1ρ [1+α{(1−L)dv}]}a2

t , (6)

where L is the log operator, ω > 0, δ > 0, β < 1, and 0 < dv < 1. Davidson [18] showed that the HYGARCH permits
the existence of the second moment at more extreme magnitudes than the simple IGARCH and FIGARCH models do.
According to Conrad [19], the HYGARCH process can obtained by modifying equation (6) to

φ(L)[(1−α)+α(1−L)d]a2
t = ω +β (L)(a2

t −σ2
t ), (7)

by incorporating additional parameter α ≥ 0. Clearly, the HYGARCH model nests the stable GARCH and FIGARCH
when α = 0 and α = 1, respectively. When d = 1 the parameter α becomes an autoregressive root and the HYGARCH
reduces to either a stationary GARCH(α < 1), an IGARCH(α = 1) or an explosive GARCH(α > 1).

In our methodology, the parameters of the volatility models are estimated using an approximate quasi-maximum likelihood
estimation technique, as advocated by Bollerslev and Woodridge [20].

2.2 Heavy-tailed distributions

The Generalized Hyperbolic Distribution and its subclasses

The generalized hyperbolic distribution (GHD) and its subclasses are continuous probability distributions defined as
variance-mean mixtures of generalized inverse Gaussian distributions. The class owes its name to the fact that the
logarithm of the densities is of the hyperbolic shape, whereas the logarithmic values of the normal distribution are
parabolic. GHDs are five parameter continuous distributions and are useful in modeling a variety of data mainly due to
the fact that they cater for asymmetry, heavy and semi-heavy tailed properties [21,22,23].

We follow Prause [22] for the parameterization of the univariate GHD. Suppose X is a random variable following the
GHD, then its probability density function (pdf) can be defined as

fGHD(x) =
(α2 −β 2)λ/2Kλ−1/2(α

√

δ 2 +(x− µ)2)exp(β (x− µ))
√

2παλ−1/2δ λ Kλ (δ
√

α2 −β 2)(
√

δ 2 +(x− µ)2)1/2−λ
, (8)
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where K j is the modified Bessel function of the third kind of order j [24] and the following conditions apply to the
parameters: δ ≥ 0, |β | < α , if λ > 0; δ > 0, |β | < α , if λ = 0; δ > 0, |β | ≤ α , if λ < 0. Sub-classes of the GHDs are
obtained via different parameter choices, some of which arise as limiting distributions. The special cases used in this
study are given below.

The NIG distribution is a subclass of the GHD with λ =−1/2. Its pdf is

fNIG(x) =
αδ

π
eδ
√

α2−β 2+β (x−µ) K1(α
√

δ 2 +(x− µ)2)
√

δ 2 +(x− µ)2
, (9)

where K1 denotes the Bessel function of the third kind with index 1. The two tails of NIG are semi-heavy and
non-identical. This makes the NIG attractive for financial applications. However, it is only appropriate when the two tails
are not too heavy [22].

For λ > 0 and δ → 0 in equation (8), we obtain the pdf of the VG distribution,

fV G(x) =
(α2 −β 2)λ |x− µ |λ−1/2Kλ−1/2(α|x− µ |)

√
πΓ (λ )(2α)λ−1/2

eβ (x−µ), (10)

where Kλ−1/2 denotes the Bessel function of the third kind with index λ − 1/2. The tails of VG decreases more slowly
than that of the normal distribution, making it a suitable model for phenomena where extreme values are more probable
than in the case of the normal distribution. Returns from financial assets exhibit this phenomenon. We utilize the
maximum likelihood estimation (MLE) for parameter estimates of the GHDs.

Pearson type-IV (PIV) distribution

The pdf of the PIV distribution is given by

fPIV (x) = k

[

1+

(

x−λ

a

)2
]−m

× exp

[

−υ tan−1

(

x−λ

a

)]

, (11)

where m > 1
2
, υ , a > 0, −∞ < x < ∞, λ are real valued parameters and k =

[

Γ (m+ υ
2

i)
]2

aB
(

m− 1
2
, 1

2

) is a normalization constant

that depends on m,υ and a. The pdf of the PIV distribution is invariant under simultaneous change (a to −a, υ to −υ).
We specify a > 0 so that the curve is always bell-shaped. λ and a are the location and scale parameters respectively and
υ is the skewness parameter. If υ > 0 then the distribution is positive while if υ < 0, then the distribution is negative.
Parameter m controls the tail thickness and can thus be regarded as a kurtosis parameter. If m is decreased, the kurtosis is
increased and for smaller values of m, the tails of PIV distribution are much heavier than those of a Gaussian distribution.
The PIV distribution is essentially an asymmetric version of the STD, i.e. when υ = 0.

2.3 Anderson Darling (AD) Goodness-of-fit Test (GoF)

In this study, we use the AD statistic which is a tail-weighted statistic, i.e. a statistic that gives more weight to the tails
and less weight to the center of the distribution. The AD test is a general test to compare the fit of an observed cumulative
distribution function to an expected cumulative distribution function [25]. This test gives more weight to the tails than the
Kolmogorov-Smirnov test. Further, the AD test assumes that there are no parameters to be estimated in the distribution
being tested. The test statistic is given by:

A2 =−n− 1

n

n

∑
i=1

(2i− 1) · [lnF(Xi)+ ln(1−F(Xn−i+1))] (12)

(Stephens, 1974).
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2.4 Value-at-Risk (VaR) and Backtesting Procedures

The amount of asset risk capital, reserved by financial institutions as per the Basel agreement, is directly associated to the
portfolio risk level and two of the most common benchmark measures for evaluating such risk are value-at-risk (VaR)
and expected shortfall (ES). VaR is intended to assess the maximum possible loss of a portfolio over a given time period,
given a certain risk level, and its calculations focus on the tails of a distribution. Hence, the accuracies of VaR estimation
depend on how well a selected model portrays the extreme data observations [26].

Value-at-Risk

Value-at-Risk (VaR) has become a benchmark for evaluating market risks. There are two main approaches to calculating
VaR for financial data series: the parametric method and the non-parametric method [27]. For a random variable X (usually
for modeling the return distribution of some risky financial portfolio) with distribution function F over a specified time
period, the VaR (for a given probability p) can be defined as the p-th quantile of F , i.e.

VaRp = F−1(1− p), (13)

where F−1 is the quantile function.

Having estimated the unknown parameters of a model, the VaR for the p−quantile of the assumed distribution can be
calculated using the equation

VaR(p) = µ +F−1(1− p)σ (14)

[28].

The VaR of the p−quantile for long and short trading positions are computed as follows;

VaRlong = µ +F−1(1− p)σ ,

VaRshort = µ +F−1(p)σ . (15)

Backtesting

Financial risk model evaluation or backtesting is a key part of the internal model’s approach to market risk management
as laid out by the Basel Committee on Banking Supervision [29]. VaR models are useful only if they predict future risks
accurately. In order to evaluate the quality of the estimates, the models should always be backtested with appropriate
methods. Backtesting is a statistical procedure where actual profits and losses are systematically compared to
corresponding VaR estimates. In the backtesting process, we could statistically examine whether the frequency of
exceptions over some specified time interval is in line with the selected confidence level.

To examine the adequacy and to evaluate the performance of model-based VaR estimates, we utilize the Kupiec LR
unconditional coverage test [30]. The Kupiec test exploits the fact that an adequate model ought to have its proportion
of violations of VaR estimates close to the corresponding tail probability level. The method consists of calculating the
number of times xp the observed returns fall below (for long positions) or above (for short positions) the VaR estimate
at level p, i.e., rt < VaRp or rt > VaRp, and compare the corresponding failure rates to p. The null hypothesis is that the
expected proportion of violations is equal to p. Under this null hypothesis, the Kupiec statistic, which is given by

LRUC = 2ln

(

(

xp

N

)xp(

1− xp

N

)N−xp
)

− 2ln
(

αxp

(1− p)N−xp
)

, (16)

is asymptotically distributed according to a chi-square distribution with one degree of freedom.
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3 Data

We make use of daily data for three major precious metal prices (i.e., gold, silver and platinum) from 2 April 1990
to 18 September 2014. All of these prices are internationally regarded as pricing mechanism for a variety of precious
metals transactions and products. We downloaded daily gold, platinum and silver P.M. fixing prices from London Bullion
Market Association (LBMA) database quandl.com. The return series for each index are calculated as the first backward-
differences of the natural logarithm of the index values. For day t, the daily log return rt is defined as

rt = ln(Pt)− ln(Pt−1), (17)

where Pt is the price at day t.

Descriptive statistics, correlation, normality, heteroscedasticity, unit root and stationary tests are reported in Table 1.
From Panel A, it is observed that all returns have a positive mean, i.e., indicating that the overall returns were increasing
over the period under investigation. We can also see that all precious metal returns are skewed towards the left. The
excess kurtosis value indicates the leptokurtotic behaviour of these return series. This implies that the empirical
distribution of the daily precious metal returns are much heavier than the normal distribution.

From Panel B, the AD GoF test and Jarque-Bera test for normality give p-values less than 0.001 for all three precious
metals returns, i.e., rejecting the normality assumption at all levels of significance. The Ljung-Box test, at Q(5), Q(10)
and Q2(5), Q2(10) indicates that autocorrelation is insignificant for returns but highly significant in squared returns.
These results show signs of high degree of persistence in the volatility process of precious metals. The ARCH-LM test
shows the presence of conditional heteroscedasticity in all daily precious metal return series. Therefore, the
GARCH-type models are appropriate for modeling and forecasting their time varying conditional volatility.

In Panel C, we present the results of the augmented Dickey-Fuller (ADF) Test [31], the Phillips and Perron [32] unit root
(PP) tests and the Kwiatkowski et al. [33] stationarity test. The ADF and the PP tests reject the hypothesis of unit root for
all precious metal return series studied. The KPSS test reveals that we cannot reject the stationarity null hypothesis for all
precious metal return time series. We can conclude that precious metal price returns are stationary in mean.

Table 1: Descriptive statistics and unit root tests of precious metal price returns

Gold Platinum Silver

Panel A: Descriptive Statistics

Minimum -0.0797 -0.1728 -0.1869

Maximum 0.07001 0.1178 0.1828

Mean 0.0003 0.0002 0.0003

Std.dev 0.0101 0.0138 0.0196

Skewness -0.1052 -0.5253 -0.3643

Excess Kurtosis 6.2030 10.1959 9.6716

Panel B: Testing for correlation, normality and heteroscedasticity

Statistic p-value Statistic p-value Statistic p-value

Q(5) 5.4356 0.3651 9.9475 0.07674 42.252 <0.0001

Q(10) 12.987 0.2244 10.954 0.3611 47.054 <0.0001

Jarque-Bera test 9670.8 <0.0001 22686 <0.0001 21165 <0.0001

Anderson Darling test 80.093 <0.0001 67.823 <0.0001 71.102 <0.0001

Q2(5) 489.95 <0.0001 554.012 <0.0001 721.953 <0.0001

Q2(10) 796.36 <0.0001 799.762 <0.0001 1055.31 <0.0001

ARCH LM test 421.56 <0.0001 504.85 <0.0001 607.1 <0.0001

Panel C :Unit root and stationary tests

ADF test
Statistic p-value Statistic p-value Statistic p-value

-17.274 <0.01 -15.5335 <0.01 -17.4005 <0.01

PP test
Statistic p-value Statistic p-value Statistic p-value

-5166.2 <0.01 -4923.12 <0.01 -5597.22 <0.01

KPSS test
Statistic p-value Statistic p-value Statistic p-value

0.3119 >0.1 0.0815 > 0.1 0.1122 >0.1

Further analysis was done using Q-Q and box plots of returns and the results are reported in Figures 1-3.
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Fig. 1: Q-Q plot and Box plot for the daily gold returns

Fig. 2: Q-Q plot and Box plot for the daily platinum returns

Fig. 3: Q-Q plot and Box plot for the daily silver returns

Figures 1, 2 and 3 show the Q-Q plots and box plots for gold, platinum and silver returns. The Q-Q plots illustrate that the
tails of daily precious metal returns are heavier than the normal distribution. The negative skewness as well as the heavy
tails are mirrored from their quantitative values in this graph. It can be seen from the box plots that daily precious metal
returns are skewed to the left and heavy-tails are evident.

3.1 Testing LM in metal price volatility

In LM testing, we firstly carried out LM tests to the squared log returns of gold, platinum and silver returns based on
the heuristic hurst estimator. The Hurst exponent results of the LM tests are shown in Table 2 for precious metal squared
returns.
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Table 2: LM tests R/S method

Returns Hurst Standard Error t-value p-value

Gold 0.6246 0.03272 19.0909 < 0.0001

Platinum 0.5511 0.02025 27.2105 < 0.0001

Silver 0.5435 0.02589 20.9978 < 0.0001

For all precious metal squared returns, the test suggests LM and all p-values are less than 0.0001, rejecting the null
hypothesis of no persistence. Secondly, the GPH test was also carried out over the in-sample period and results are shown
in Table 3. Based on d-values for m = T 0.5, the GPH test confirms the existence of LM in the squared returns.

Table 3: GPH LM test for returns and squared returns

Returns Squared returns

Gold -0.1345 0.5363

Platinum 0.0074 0.2291

Silver -0.0686 0.3626

4 Empirical Results

4.1 Estimating GARCH-type models

Tables 4 to 12 provide the parameter estimation results of ARFIMA-FIGARCH, ARFIMA-HYGARCH and
ARFIMA-FIAPARCH models assuming normal (N), STD and SSTD innovation distributions for all three precious metal
returns. For all models, the long range dependence parameter of the ARFIMA model (dm) is negative for silver and
platinum returns, indicating anti-persistence. This shows that the log returns of both platinum and silver are mean
revering. However for gold returns dm was statistically insignificant for all models.

As shown in Tables 4 to 12, all ARFIMA-FIGARCH models under different innovation distributions are able to capture
LM phenomenon for gold, platinum and silver returns volatilities. We used several diagnostic tests to evaluate the
adequacy of model specifications. The Ljung-Box test on both standardized and squared standardized residuals show no
serial correlation and no ARCH effect. The insignificance of ARCH LM(10) and Q2(10) statistics show that no ARCH
effect are observed in the residuals. All ARFIMA-HYGARCH and all ARFIMA-FIAPARCH models under different
error distributions are adequate for all three precious metals as show by diagnostics test in Tables 4 to 12.

Finally, we employ Akaike information criterion (AIC) and Schwartz information criterion (SIC) to select the best model
to describe the conditional dependence in the volatility process. The most appropriate model to describe the data is the
one that minimizes SIC and AIC criteria. Based on the AIC and SIC, the best model to capture the dependence in the
conditional variance for gold returns is the FIGARCH under the STD. For platinum returns, both AIC and SIC selected
the ARFIMA-HYGARCH under the STD as the best model. In the case of silver, both AIC and SIC selected the
ARFIMA-HYGARCH under the STD. Since ARFIMA-FIGARCH and ARFIMA-FIAPARCH were adequate for all
precious metals, our results agree with the results of Arouri et al. [4] and Diaz [9].
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ARFIMA-FIGARCH models

Table 4: ARFIMA-FIGARCH parameter estimation with different error distributions and Diagnostic tests (Gold returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - - -

d-ARFIMA (dm) - - -

AR(1) 0.9414 <0.0001 - -

MA(1) -0.9482 <0.0001 - -

Cst(V) - - 0.3070 0.0031 0.3071 0.0030

d-FIGARCH (dv) 0.4551 <0.0001 0.4359 <0.0001 0.4342 <0.0001

ARCH(α1) 0.3757 <0.0001 0.2950 <0.0001 0.2948 0.0419

GARCH(β1) 0.7144 <0.0001 0.6662 <0.0001 0.6647 0.0542

Q (10) 13.2902 0.1022 9.1882 0.5150 9.1733 0.5157

Q(15) 17.4321 0.1803 14.8394 0.4630 14.8337 0.4635

Q(20) 37.0810 0.0051 30.0215 0.0695 30.0125 0.0697

Q2(10) 5.7269 0.6778 13.9073 0.0842 13.9726 0.0825

Q2(15) 9.4998 0.7342 18.0398 0.1560 18.0824 0.1544

Q2(20) 13.3652 0.7694 21.4726 0.2562 21.5023 0.2548

ARCH LM(5) 0.5151 0.7651 2.1576 0.0559 2.1737 0.0542

ARCH LM (10) 0.5591 0.8482 1.3437 0.2006 1.3503 0.1972

AIC 2.6402 2.5330 2.5330

Table 5: ARFIMA-FIGARCH parameter estimation with different error distributions and Diagnostic tests (Platinum
returns

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - 0.0201 0.0814 0.0272 0.0122

d-ARFIMA (dm) - -0.03268 0.0244 -0.0333 0.0221

AR(1) - -0.5561 0.0084 -0.5667 0.0087

MA(1) - 0.5947 0.0030 0.6061 0.0031

Cst(V) 1.2430 0.0009 1.0931 0.0020 1.1089 0.0002

d-FIGARCH (dv) 0.4050 <0.0001 0.3823 <0.0001 0.3801 <0.0001

ARCH(α1) 0.3378 0.0001 0.2600 0.0002 0.2626 0.0003

GARCH(β1) 0.5885 <0.0001 0.5391 <0.0001 0.5365 <0.0001

Q (10) 13.6255 0.1908 11.9830 0.1520 12.1821 0.1433

Q(15) 17.3142 0.3004 16.3808 0.2292 16.5966 0.2184

Q(20) 28.6010 0.0959 29.0951 0.0472 29.4207 0.0435

Q2(10) 7.3393 0.5005 9.6251 0.2923 9.3193 0.3161

Q2(15) 13.8802 0.3823 18.0289 0.1564 17.7681 0.1665

Q2(20) 16.0976 0.5857 20.3276 0.3147 20.0317 0.3310

ARCH LM(5) 0.7775 0.5658 1.1099 0.3527 1.0445 0.3895

ARCH LM (10) 0.7441 0.6833 0.9788 0.4594 0.9476 0.4878

AIC 3.2147 3.1598 3.1601
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Table 6: FIGARCH parameter estimation with different error distributions and Diagnostic tests (Silver returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - - -

d-ARFIMA (dm) -0.062379 <0.0001 0.0642 <0.0001 -0.0639 <0.0001

AR(1) - - -

MA(1) - - -

Cst(V) 3.539744 0.0113 - 2.869921 0.0023

d-FIGARCH (dv) 0.452067 <0.0001 0.491001 <0.0001 0.450248 <0.0001

ARCH(α1) 0.349151 <0.0001 0.399324 <0.0001 0.425372 <0.0001

GARCH(β1) 0.696679 <0.0001 0.774474 <0.0001 0.752825 <0.0001

Q (10) 31.5091 0.0004 32.1970 0.0004 31.8889 0.0004

Q(15) 36.2849 0.0017 37.5668 0.0010 36.8180 0.0013

Q(20) 42.9962 0.0021 44.5951 0.0013 43.6307 0.0017

Q2(10) 4.4048 0.8189 8.03816 0.4298 6.5431 0.5866

Q2(15) 5.9916 0.9465 10.0508 0.6898 8.2025 0.8302

Q2(20) 10.1211 0.9279 14.0482 0.7259 12.5310 0.8186

ARCH LM(5) 0.6016 0.6988 1.3592 0.2365 1.0521 0.3851

ARCH LM (10) 0.4411 0.9268 0.8126 0.6166 0.6506 0.7710

AIC 3.9204 3.8390 3.8347

ARFIMA-HYGARCH models

Table 7: ARFIMA-HYGARCH parameter estimation with different error distributions and Diagnostic tests (Gold returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - - -

d-ARFIMA (dm) - - -

AR(1) -0.700426 <0.0001 - -

MA(1) 0.694912 <0.0001 - -

Cst(V) - - -

d-FIGARCH (dv) 0.4245 <0.0001 0.5762 <0.0001 0.5724 <0.0001

ARCH(α1) 0.3223 0.0186 0.2444 <0.0001 0.2448 <0.0001

GARCH(β1) 0.6337 <0.0001 0.7631 <0.0001 0.7607 <0.0001

Q (10) 10.5705 0.2272 10.2080 0.4224 10.1961 0.4235

Q(15) 16.8240 0.2075 15.4740 0.4178 15.4682 0.4182

Q(20) 32.9035 0.0171 30.1939 0.0668 30.1897 0.0668

Q2(10) 3.9160 0.8646 14.8211 0.0627 14.8370 0.0624

Q2(15) 7.1238 0.8957 20.4539 0.0845 20.4292 0.0850

Q2(20) 10.9321 0.8972 24.5492 0.1378 24.4969 0.1394

ARCH LM(5) 0.3228 0.8995 2.1800 0.0536 2.1875 0.0522

ARCH LM (10) 0.3908 0.9513 1.4199 0.1645 1.4221 0.1635

AIC 2.6332 2.5348 2.5346
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Table 8: ARFIMA-HYGARCH parameter estimation with different error distributions and Diagnostic tests (Platinum
returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - -

d-ARFIMA (dm) -0.0367 0.0553 -0.0274 0.0403 -0.02403 0.0678

AR(1) 0.0650 0.0080 -0.5845 0.0048 -0.6049 0.0054

MA(1) - 0.6196 0.0017 0.6382 0.0021

Cst(V) - -

d-FIGARCH (dv) 0.4002 <0.0001 0.3737 <0.0001 0.3770 <0.0001

ARCH(α1) 0.3059 0.0008 0.2651 0.0002 0.2691 0.0002

GARCH(β1) 0.57777 <0.0001 0.5487 <0.0001 0.5520 <0.0001

Q (10) 7.3660 0.5991 11.0008 0.2017 10.4932 0.2321

Q(15) 11.0353 0.6833 15.0318 0.3054 14.5651 0.3353

Q(20) 23.3377 0.2228 26.8208 0.0824 26.0900 0.0977

Q2(10) 6.8445 0.5535 8.7407 0.3646 8.7124 0.3671

Q2(15) 13.2234 0.4307 16.8605 0.2058 16.9849 0.1999

Q2(20) 15.3730 0.6362 18.8428 0.4016 19.0697 0.3875

ARCH LM(5) 0.7914 0.5557 1.0293 0.3984 0.9993 0.4165

ARCH LM (10) 0.6878 0.7369 0.8763 0.5548 0.8746 0.5564

AIC 3.2023 3.1605 3.1494

Table 9: HYGARCH parameter estimation with different error distributions and Diagnostic tests (Silver returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - - -

d-ARFIMA (dm) - - -

AR(1) -0.1038 <0.0001 - -0.1161 <0.0001

MA(1) - -0.1166 <0.0001 -

Cst(V) - - -

d-FIGARCH (dv) 0.4105 <0.0001 0.4382 <0.0001 0.4386 <0.0001

ARCH(α1) 0.3889 <0.0001 0.4611 <0.0001 0.4609 <0.0001

GARCH(β1) 0.6997 <0.0001 0.7767 <0.0001 0.7762 <0.0001

Q (10) 14.6218 0.1019 19.3259 0.0226 16.2763 0.0613

Q(15) 20.8588 0.1053 25.6994 0.0283 22.7416 0.0646

Q(20) 26.9518 0.1058 31.6694 0.0340 28.8287 0.0687

Q2(10) 4.4855 0.8109 6.4937 0.5921 6.5187 0.5893

Q2(15) 6.1174 0.9418 8.2545 0.8266 8.2755 0.8252

Q2(20) 9.9368 0.9339 11.7819 0.8583 11.7768 0.8585

ARCH LM(5) 0.5832 0.7129 1.0161 0.4063 1.0159 0.4064

ARCH LM (10) 0.4483 0.9229 0.6433 0.7776 0.6436 0.7773

AIC 3.9166 3.8294 3.8291
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ARFIMA-FIAPARCH models

Table 10: ARFIMA-FIAPARCH parameter estimation with different error distributions and Diagnostic tests (Gold
returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(V) - - -

d-ARFIMA (dm) - - -

AR(1) - - -

MA(1) - - -

Cst(V) - - -

d-FIGARCH (dv) 0.4609 <0.0001 0.5758 <0.0001 0.5721 <0.0001

ARCH(α1) 0.3041 0.0090 0.2330 <0.0001 0.2336 <0.0001

GARCH(β1) 0.6461 <0.0001 0.7456 <0.0001 0.7427 <0.0001

APARCH(γ1) -0.0741 0.0305 -0.1087 0.0215 -0.1118 0.0185

APARCH (δ ) 2.1436 <0.0001 2.0663 <0.0001 2.0667 <0.0001

Q (10) 9.2958 0.5043 9.9909 0.4413 9.9682 0.4433

Q(15) 15.4851 0.4171 15.3839 0.4241 15.3733 0.4249

Q(20) 30.9463 0.0559 29.7761 0.0736 29.7603 0.0738

Q2(10) 4.0528 0.8523 13.5152 0.0953 13.4541 0.09715

Q2(15) 7.4254 0.8789 18.8831 0.1268 18.7631 0.1306

Q2(20) 10.9112 0.8981 22.2555 0.2008 22.0963 0.2277

ARCH LM(5) 0.3009 0.9126 1.9109 0.0891 1.9039 0.0903

ARCH LM (10) 0.4049 0.9451 1.3116 0.2176 1.3066 0.2204

AIC 2.6331 2.5350 2.5349

Table 11: ARFIMA-FIAPARCH parameter estimation with different error distributions and Diagnostic tests (Platinum
returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) 0.02740 0.0125 0.0294 0.0056 -

d-ARFIMA (dm) -0.04845 0.0255 -0.0387 0.0255 -0.0272 0.0444

AR(1) 0.0766 0.0038 0.0411 0.0604 -0.5738 0.0059

MA(1) - 0.6084 0.0022

Cst(V) - -

d-FIGARCH (dv) 0.3971 <0.0001 0.3818 <0.0001 0.4396 <0.0001

ARCH(α1) 0.2900 0.0013 0.2528 0.0002 0.2509 <0.0001

GARCH(β1) 0.5615 <0.0001 0.5397 <0.0001 0.5946 <0.0001

APARCH(γ1) -0.1023 0.0159 -0.1133 <0.0001 -0.1059 0.0096

APARCH (δ ) 2.0876 <0.0001 2.0771 <0.0001 1.9691 <0.0001

Q (10) 9.2291 0.4164 15.6247 0.0751 11.3782 0.1812

Q(15) 13.0386 0.5235 19.5533 0.1448 15.4569 0.2797

Q(20) 26.3605 0.1205 32.4107 0.0281 27.1830 0.0756

Q2(10) 6.1708 0.6281 8.0896 0.4248 9.5857 0.2953

Q2(15) 12.1931 0.5119 14.8650 0.3159 15.6586 0.2681

Q2(20) 14.1883 0.7167 16.8046 0.5366 17.5727 0.4841

ARCH LM(5) 0.6485 0.6627 0.9423 0.4522 1.2714 0.2732

ARCH LM (10) 0.6191 0.7988 0.8055 0.6235 0.9633 0.4734

AIC 3.2131 3.1608 3.1601
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Table 12: ARFIMA-FIAPARCH parameter estimation with different error distributions and Diagnostic tests (Silver
returns)

Parameters Normal Student-t Skewed Student-t

Statistic p-value Statistic p-value Statistic p-value

Cst(M) - - -

d-ARFIMA (dm) - - -

AR(1) -0.1037 <0.0001 -0.1181 <0.0001 -0.1195 <0.0001

MA(1) - - -

Cst(V) - - -

d-FIGARCH (dv) 0.4047 <0.0001 0.4334 <0.0001 0.4336 <0.0001

ARCH(α1) 0.3715 <0.0001 0.4241 <0.0001 0.4233 <0.0001

GARCH(β1) 0.6731 <0.0001 0.7467 <0.0001 0.7468 <0.0001

APARCH(γ1) -0.1117 0.0569 -0.2169 0.0001 -0.2219 0.0001

APARCH (δ ) 2.1424 <0.0001 2.0610 <0.0001 2.0596 <0.0001

Q (10) 14.2518 0.1136 17.2202 0.0454 17.6880 0.0390

Q(15) 20.4800 0.1157 23.6739 0.0501 24.1527 0.0439

Q(20) 26.2276 0.1240 29.3005 0.0614 29.7740 0.0547

Q2(10) 4.3861 0.8207 4.7997 0.7788 4.8727 0.7711

Q2(15) 6.1014 0.9423 6.8469 0.9099 6.9328 0.9056

Q2(20) 10.1379 0.9273 10.5919 0.9109 10.6802 0.9074

ARCH LM(5) 0.5613 0.7298 0.6491 0.6622 0.6616 0.6527

ARCH LM (10) 0.4387 0.9281 0.4743 0.9076 0.4815 0.9030

AIC 3.9227 3.8330 3.8328

4.2 Long memory-GARCH models with heavy-tailed distribution (VG, NIG, PIV)

We now incorporate LM GARCH models where the innovation process follows VG, NIG and PIV. These distributions
depict the tail distribution of the standardized residual series. The PIV distribution is fitted to the standardized residuals
extracted from the ARFIMA-FIGARCH, ARFIMA-HYGARCH, ARFIMA-FIAPARCH with normal innovations. The
parameters are estimated using the method of maximum likelihood. The maximum likelihood procedure is carried out
using R package PearsonDS. Tables 13, 15 and 17 show the maximum likelihood estimates of PIV distribution fitted to
the ARFIMA-FIGARCH, ARFIMA-HYGARCH, ARFIMA-FIAPARCH models with normal innovations respectively.

From table 13, 15 and 17, the values of m > 0.5 for all PIV models, thus satisfying the condition for PIV distribution.
The AD statistics are significant, thus the PIV distribution is a good fit of the extracted standardized residuals from the
ARFIMA-FIGARCH, ARFIMA-HYGARCH, ARFIMA-FIAPARCH models.

We fit NIG and VG to the standardized residuals extracted from the ARFIMA-FIGARCH, ARFIMA-HYGARCH,
ARFIMA-FIAPARCH models. The MLE parameter estimates are shown in Tables 14, 16 and 18. The AD test results
suggest that the extracted standardized residuals follow the fitted distributions. The high p-values indicate that we cannot
reject the null hypothesis that the standardized residuals follow NIG and VG distributions. Table 13 shows that, for silver
returns, VG is a good fit of the standardized residuals at 1% level of significance.

Table 13: ML estimates of the Pearson type-IV distribution for the ARFIMA-FIGARCH-PIV model

Returns m̂ υ̂ λ̂ â
AD Test

Statistic p-value

Gold 1.8768 0.0118 0.0354 1.0610 2.1259 0.0784

Platinum 2.1325 0.1195 0.1156 1.6507 0.4068 0.842

Silver 2.0702 0.0131 0.0700 2.2458 0.9380 0.3915
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Table 14: ML estimates of the GHDs for the ARFIMA-FIGARCH -GHDs model

Returns Distr â β̂ δ̂ µ̂ λ̂
AD Test

Statistic p-value

Gold
NIG 0.6146 -0.0052 0.6938 0.03161 -0.5 0.87056 0.4328

VG 1.2749 0.0068 0 0.0185 0.8610 0.7535 0.5158

Platinum
NIG 0.5605 -0.0313 1.0731 0.0857 -0.5 0.4164 0.8324

VG 1.0736 0.0133 0 0.0011 1.0655 3.3649 0.0179

Silver
NIG 0.3783 -0.0071 1.4601 0.0682 -0.5 1.071 0.3221

VG 0.7452 0.0120 0 -0.0028 1.0218 2.6452 0.0416

Table 15: ML estimates of the Pearson type-IV distribution for the ARFIRMA-HYGARCH-PIV model

Returns m̂ υ̂ λ̂ â
AD Test

Statistic p-value

Gold 1.8752 0.0224 0.0403 1.0593 2.12 0.0790

Platinum 2.1372 0.1042 0.1097 1.6480 0.2676 0.9603

Silver 2.0699 0.0639 0.1073 2.2416 0.7554 0.5143

Table 16: ML estimates of the GHDs for the ARFIMA-HYGARCH -GHDs model

Returns Distr â β̂ δ̂ µ̂ λ̂
AD Test

Statistic p-value

Gold
NIG 0.6144 -0.0080 0.6933 0.0335 -0.5 0.8846 0.4239

VG 1.2791 0.00142 0 0.0233 0.8650 0.7603 0.5105

Platinum
NIG 0.5648 -0.0283 1.0723 0.0843 -0.5 0.2933 0.9431

VG 1.1191 -0.0197 0 0.0661 1.1329 1.5968 0.1550

Silver
NIG 0.3788 -0.0151 1.4567 0.0851 -0.5 0.8215 0.4658

VG 0.7517 -0.0013 0 0.0319 1.0346 2.3783 0.0574

Table 17: ML estimates of the Pearson type-IV distribution for the ARFIRMA-FIAPARCH-PIV model

Returns m̂ υ̂ λ̂ â
AD Test

Statistic p-value

Gold 1.8804 0.0224 0.0402 1.0634 2.0747 0.0836

Platinum 2.1452 0.1134 0.0840 1.6628 0.252 0.9693

Silver 2.0702 0.0653 0.1091 2.2506 0.8003 0.4808

Table 18: ML estimates of the GHDs for the ARFIMA-FIAPARCH -GHDs model

Returns Distr â β̂ δ̂ µ̂ λ̂
AD Test

Statistic p-value

Gold
NIG 0.6170 -0.0078 0.6959 0.0334 -0.5000 0.8581 0.4410

VG 1.2556 0.0232 <0.0001 <0.0001 0.8396 1.4082 0.2000

Platinum
NIG 0.5650 -0.0302 1.0809 0.0559 -0.5000 0.2864 0.9480

VG 1.1183 -0.0279 <0.0001 0.0488 1.1406 1.503 0.1758

Silver
NIG 0.3774 -0.0154 1.4618 0.0867 -0.5000 0.8421 0.4516

VG 0.7474 -0.0003 <0.0001 0.0280 1.0309 2.3916 0.0564
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4.3 VAR estimation and Backtesting of models

VaR is calculated at 1%, 2.5%, 5%, 95%, 97.5% and 99% for each model. The estimates are then backtested using the
Kupiec LR test. The p-values of the Kupiec test for in-sample are summarized in Tables 19, 20 and 21.

ARFIMA-FIGARCH models

For gold returns, ARFIMA-FIGARCH-NIG gives the largest p -value at 1% VaR level and FIGARCH-VG at 2.5% level.
ARFIMA-FIGARCH-STD is not a suitable model at 2.5%, 5%, 95% and 97.5% VaR levels. The VaR estimates from the
ARFIMA-FIGARCH-N produced the lowest p-values at most VaR levels. However, the model is adequate at 5% and 95%
VaR levels. It is interesting to note that ARFIMA-FIGARCH-PIV, ARFIMA-FIGARCH-NIG, ARFIMA-FIGARCH-VG
models are all suitable at all VaR levels. For silver and platinum the three models are also suitable at all VaR levels.

Table 19: In-Sample VaR Backtesting: ARFIMA-FIGARCH models

Returns Model

p-values of Kupiec LR test

Long positions Short positions

1% 2.5% 5% 95% 97.5% 99%

Gold

ARFMA-FIGARCH-N < 0.0001 0.0002 0.1631 0.1828 < 0.0001 < 0.0001

ARFIMA-FIGARCH-STD 0.5783 0.0495 0.0437 0.0101 0.0023 0.8877

ARFIMA-FIGARCH-SSTD 0.7797 0.0603 0.0878 0.0040 0.0005 0.4072

ARFIMA-FIGARCH-PIV 0.7769 0.2696 0.2526 0.1285 0.8932 0.1451

ARFIMA-FIGARCH-NIG 0.9998 0.7525 0.7473 0.9998 0.4970 0.1914

ARFIMA-FIGARCH-VG 0.1722 0.8932 0.2166 0.1931 0.4408 0.6758

Platinum

ARFMA-FIGARCH-N 0.0001 0.2014 0.6988 0.5180 0.2337 0.0001

ARFIMA-FIGARCH-STD 0.2179 0.3092 0.1136 0.9998 0.8231 0.4885

ARFIMA-FIGARCH-SSTD 0.8884 0.6882 0.4073 0.4827 0.2014 0.2179

ARFIMA-FIGARCH-PIV 0.5783 0.6882 0.7488 0.9998 0.9642 0.5684

ARFIMA-FIGARCH-NIG 0.6758 0.6193 0.2421 0.2421 0.3883 0.5684

ARFIMA-FIGARCH-VG 0.0434 0.6882 0.2421 0.0029 0.0726 0.5684

Silver

ARFMA-FIGARCH-N 0.0006 0.1316 0.0064 0.0546 0.7727 0.0006

ARFIMA-FIGARCH-STD 0.3046 0.3220 0.7242 0.7260 0.8756 0.4489

ARFIMA-FIGARCH-SSTD 0.0692 0.0355 0.4277 0.0096 0.05313 0.0276

ARFIMA-FIGARCH-PIV 0.6278 0.0932 0.6331 0.9745 0.9466 0.3522

ARFIMA-FIGARCH-NIG 0.7283 0.6697 0.2069 0.2579 0.4296 0.4328

ARFIMA-FIGARCH-VG 0.0276 0.4661 0.1272 0.0014 0.2115 0.7241

ARFIMA-HYGARCH models

For gold and platinum returns, ARFIMA-HYGARCH-STD, ARFIMA-HYGARCH-SSTD, ARFIMA-HYGARCH-PIV,
ARFIMA-HYGARCH-NIG, ARFIMA-HYGARCH-VG are all suitable at all VaR levels. ARFIMA-HYGARCH-NIG is
the overall best model for gold returns at it has highest p-values at all VaR levels, except at 99% VaR level. ARFIMA-
HYGARCH-PIV, ARFIMA-HYGARCH-NIG compete favorably for the overall best model for platinum returns. For
silver, ARFIMA-HYGARCH-STD, ARFIMA-HYGARCH-SSTD, ARFIMA-HYGARCH-PIV, ARFIMA-HYGARCH-
NIG are suitable at all VAR levels. It is interesting to note that ARFIMA-HYGARCH-VG is not suitable at 1%, 5% and
95% VaR levels. i.e. ARFIMA-HYGARCH-VG did not perform well for silver returns.
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Table 20: In-Sample VaR Backtesting: ARFIMA-HYGARCH models

Returns Model

p-values of Kupiec LR test

Long positions Short positions

1% 2.5% 5% 95% 97.5% 99%

Gold

ARFMA-HYGARCH-N 0.0004 0.5051 0.1931 0.1931 0.0404 0.0024

ARFIMA-HYGARCH-STD 0.3889 0.9442 0.3725 0.3396 0.1470 0.0554

ARFIMA-HYGARCH-SSTD 0.2472 0.4970 0.7977 0.1450 0.0329 0.1914

ARFIMA-HYGARCH-PIV 0.6698 0.3998 0.2042 0.1630 0.7546 0.1451

ARFIMA-HYGARCH-NIG 0.9998 0.9642 0.8469 0.9487 0.4970 0.1451

ARFIMA-HYGARCH-VG 0.2179 0.8231 0.3642 0.1715 0.4970 0.6758

Platinum

ARFMA-HYGARCH-N 0.0009 0.5213 0.3170 0.2069 0.3220 0.0004

ARFIMA-HYGARCH-STD 0.9441 0.8413 0.7260 0.9264 0.9113 0.4489

ARFIMA-HYGARCH-SSTD 0.1914 0.3397 0.5179 0.3725 0.2014 0.2720

ARFIMA-HYGARCH-PIV 0.6278 0.5799 0.9745 0.8225 0.6052 0.8328

ARFIMA-HYGARCH-NIG 0.7283 0.6697 0.0849 0.2069 0.2115 0.9441

ARFIMA-HYGARCH-VG 0.0916 0.7727 0.0546 0.0635 0.2114 0.6278

Silver

ARFMA-HYGARCH-N 0.0002 0.2446 0.0202 0.0052 0.8413 0.0098

ARFIMA-HYGARCH-STD 0.5343 0.4661 0.7242 0.5848 0.4848 0.9441

ARFIMA-HYGARCH-SSTD 0.9440 0.8756 0.2580 0.7742 0.8413 0.5343

ARFIMA-HYGARCH-PIV 0.7283 0.1550 0.7260 0.6331 0.9822 0.3522

ARFIMA-HYGARCH-NIG 0.8344 0.8054 0.1635 0.7242 0.3306 0.4328

ARFIMA-HYGARCH-VG 0.0380 0.5799 0.0468 0.0116 0.3306 0.8328

ARFIMA-FIAPARCH models

For gold and platinum returns, ARFIMA-FIAPARCH-STD, ARFIMA-FIAPARCH-SSTD, ARFIMA-FIAPARCH-PIV,
ARFIMA-FIAPARCH-NIG, ARFIMA-FIAPARCH-VG are all suitable at all VaR levels. For silver,
ARFIMA-FIAPARCH-STD, ARFIMA-FIAPARCH-SSTD, ARFIMA-FIAPARCH-PIV, ARFIMA-FIAPARCH-NIG are
suitable at all VAR levels. ARFIMA-HYGARCH-VG did not perform well for silver returns at 1% and 95% VaR levels.
For gold, ARFIMA-FIAPARCH-NIG produced highest p-values at 1%, 2.5%, 5% and 95%. It is clearly the best model
for gold returns. For platinum, ARFIMA-FIAPARCH-SSTD produced highest p-value at 1% VaR level and,
ARFIMA-FIAPARCH-VG at 2.5% VaR level. ARFIMA-FIAPARCH-PIV has the largest p-values at 5%, 95% and
97.5% VaR levels. At 5% and 97.5% VaR levels, ARFIMA-FIAPARCH-PIV is the most robust model for estimating
VaR for silver returns. While at 1% ARFIMA-FIAPARCH-NIG produce largest p-value. For silver returns,
ARFIMA-FIAPARCH-SSTD produced highest p-values at 2.5% and 95% VaR levels.

5 Conclusion

In this study, we extended the work of Arouri et al [4], Diaz [9], Ranganai and Khubeka [8], Youssef et al. [10],
Mabrouk and Saadi [11], Cochran et al. [5], McNeil and Frey [12], Bhattacharyya et al. [13] and Bhattacharyya and
Madhav [14]. Our findings revealed that precious metal markets are characterized by asymmetry, heavy-tail and LM
(long-range dependence). We examined the LM GARCH models under the GHDs, the SSTD and PIV assumptions. The
conditional variance and LM in mean and volatility were modeled by ARFIMA-FIGARCH, ARFIMA-HYGARCH and
ARFIMA-FIAPARCH models with pseudo-normal assumptions. The NIG, VG and PIV distributions are applied to
capture the heavy-tail behavior for the extracted standardized residuals and VaR is calculated at different levels.
Adequacy of the resulting VaR estimates were tested using the Kupiec LR test. Backtesting results have shown that
ARFIMA-FIGARCH, ARFIMA-HYGARCH and ARFIMA-FIAPARCH models with PIV, NIG and VG governing the
innovations are suitable for depicting VaR in gold, platinum and silver returns. However, for silver returns the
ARFIMA-HYGARCH model with VG governing the innovations is not suitable at 1%, 5% and 95% VaR levels. The
ARFIMA-HYGARCH with NIG governing the innovations is the overall best model for gold returns. For platinum, the
ARFIMA-FIAPARCH with PIV governing the innovations is the best model. Our results are consistent with the results
of Arouri et al, [4], however, our models incorporated heavy-tailedness exhibited by precious metals returns. With
forecasted volatility, absolute magnitude of returns and quantiles may be predicted for risk management and portfolio
management purposes. The volatility of a stock generally exhibits either a positive or negative shock which have
different implications to the portfolio manager and risk management. For instance, the declining stock prices tend to
increase the firm’s leverage (debt-to-equity) ratio making the stock a riskier asset. This results in increased volatility of
returns to stockholders and reduced demand for the stock due to investors’ risk aversion. Thus, the results of this study
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Table 21: In-Sample VaR Backtesting: ARFIMA-FIAPARCH models

Returns Model

p-values of Kupiec LR test

Long positions Short positions

1% 2.5% 5% 95% 97.5% 99%

Gold

ARFMA-FIAPARCH-N <0.0001 0.3526 0.1715 0.2696 0.0169 0.0007

ARFIMA- FIAPARCH -STD 0.9998 0.5052 0.0878 0.1828 0.0603 0.8877

ARFIMA- FIAPARCH SSTD 0.6698 0.9642. 0.1631 0.0437 0.0265 0.6758

ARFIMA-FIAPARCH-PIV 0.6698 0.4507 0.1450 0.1136 0.8231 0.1451

ARFIMA-FIAPARCH-NIG 0.9998 0.9642 0.8469 0.9998 0.6193 0.1913

ARFIMA-FIAPARCH -VG 0.1722 0.6882 0.5179 0.0421 0.2950 0.8877

Platinum

ARFMA-FIAPARCH-N <0.0001 0.0729 0.3725 0.1174 0.4507 0.0007

ARFIMA- FIAPARCH -STD 0.4072 0.2696 0.1003 0.76667 0.7525 0.6758

ARFIMA- FIAPARCH SSTD 0.7769 0.3883 0.8976 0.1003 0.2696 0.0784

ARFIMA-FIAPARCH-PIV 0.6758 0.5631 0.9488 0.8469 0.6848 0.7769

ARFIMA-FIAPARCH-NIG 0.6758 0.7525 0.0893 0.2166 0.2177 0.8877

ARFIMA-FIAPARCH -VG 0.0434 0.8231 0.0214 0.0670 0.2177 0.5783

Silver

ARFMA-FIAPARCH-N 0.0001 0.0729 0.0068 0.0255 0.8231 0.0114

ARFIMA- FIAPARCH -STD 0.4884 0.3998 0.6054 0.6515 0.6193 0.8884

ARFIMA- FIAPARCH SSTD 0.7797 0.7546 0.2991 0.8979 0.8231 0.4885

ARFIMA-FIAPARCH-PIV 0.6758 0.2337 0.6543 0.6090 0.9642 0.3031

ARFIMA-FIAPARCH-NIG 0.9998 0.6193 0.1715 0.6515 0.3883 0.3889

ARFIMA-FIAPARCH -VG 0.04344 0.5052 0.0576 0.0055 0.2177 0.8877

provide an impetus for investors and the risk management community to consider a holistic, yet more accurate, measure
of stock volatility on the gold, platinum and silver prices.

Further recommendations would be:

–Comparing the results of this study with the Generalised Autoregressive Score(GAS) models.
–Investigating the relative performance of the proposed models in VaR estimation of cryptocurrencies.

The main objective of the study was to propose a modelling framework which can be used in precious metal market
for carrying out accurate risk management or assessment. The scope of the study was well defined and had no visible
limitations in achieving the main objective of the study.
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