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Abstract: The present paper considers Poisson regression model in case of the dataset that contains outliers. The Monte Carlo

simulation study was conducted to compare the robust (Mallows quasi-likelihood, weighted maximum likelihood) estimators with the

nonrobust (maximum likelihood) estimator of this model with outliers. The simulation results showed that the robust estimators give

better performance than maximum likelihood estimator, and the weighted maximum likelihood estimator is more efficient than

Mallows quasi-likelihood estimator.
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1 Introduction

Poisson regression model is a basic count data model in the generalized linear models (GLMs). The maximum likelihood
(ML) estimator for this model has been provided by McCullagh and Nelder [1].

Outliers are one of the significant statistical issues, but most people do not know how to deal with them. Most
parametric statistics (like means, standard deviations, and correlations) are sensitive to outliers. Outliers can mess up
your analysis. It is well known that the ML estimator for GLMs is very sensitive to outliers, see [2,3,4]. In different
regression models, it is necessary to use a robust estimator to detect outliers and to provide resistant stable results in the
presence of outliers, see [5,6,7]. However, despite the fair amount of the present pieces of literature, robust inference for
GLMs seems to be very limited.

Preisser and Qaquish [8] considered a class of robust estimation for Poisson regression models based on
quasi-likelihood in the general framework of generalized estimating equation, but Cantoni and Ronchetti [9] showed that
these estimators are not robust. They also proposed a robust approach based on the natural generalizations of
quasi-likelihood function. Hosseinian and Morgenthaler [10] proposed another robust estimator for Poisson regression
models based on weighted maximum likelihood.

The present paper investigates the efficiency of two robust estimators of Poisson regression model, and compares them
with maximum likelihood estimator.

This paper is organized as follows: Section Two provides Poisson regression model and ML estimator. Section Three
presents the robust estimators for this model. Section Four displays the simulation results. Section Five involves the
concluding remarks.

2 Poisson Regression Model and ML Estimator

The Poisson distribution is discrete probability of count of the events which randomly occur in a given interval of time.
Density function of this distribution is

f (Y = y|µ) = e−µ µy

y!
; y = 0,1,2, . . . (1)
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In this distribution, the mean must equal the variance. Thus, the usual assumption of homoscedasticity would not be
appropriate for Poisson data, see [11]. Based on a sample {y1, ...,yn}, we can write the model in terms of the mean of the
response (E(yi) = µ):

yi = E (yi)+ εi; i = 1,2, . . . ,n. (2)

To describe the relationship between the mean of the response variable and the linear predictor, the log-link function
is used:

µi = exT
i β

, (3)

where xi = (xi1, . . . ,xip) is the covariates vector (independent variables), and β = (β1, . . . ,βp)
T

is a vector of regression
coefficients. The log-likelihood function for n independent Poisson observations with probabilities is given in equation
(1) (Hilbe [12]):

logL(β ) =
n

∑
i=1

{yilog(µi)− µi − log(yi!)} , (4)

where µi is defined in equation (3). However, maximizing the log-likelihood has no closed-form solution, so numerical
search procedures are used to find the ML estimates. Iteratively reweighted least squares can again be used to obtain these
estimates. McCullagh and Nelder [1] showed that this algorithm is equivalent to Fisher scoring and leads to ML estimates.
Using the iterative reweighted least squares algorithm discussed by [13], the weighted least squares (or ML) estimator is

β̂ML =
(

XTŴX
)−1

XTŴ Ẑ, (5)

where Ẑ = (ẑ1, . . . , ẑn)
T

with ẑi = log(µ̂i)+
yi−µ̂i

µ̂i
, Ŵ = diag(µ̂i), and

X =







x11 . . . x1p

...
...

xn1 . . . xnp






.

3 Robust Estimators

This section tackles two robust estimators of the model. These estimators are based on the maximum likelihood method
with different weigh matrices.

3.1 Mallows Quasi-likelihood Estimator

The quasi-likelihood (QL) estimators of GLMs (as in [14,1,15]) share the same nonrobustness properties. The QL
estimator is the solution of the system of estimating equations:

n

∑
i=1

∂

∂β
Q(yi,µi) =

n

∑
i=1

yi − µi

Var (µi)
µ

′
i = 0, (6)

where µ
′
i =

∂
∂β µi and Q(yi,µi) is the QL function. The solution of equation (6) is an M-estimator (Huber [16]) defined by

the scorer function ψ̃ (yi,µi) =
yi−µi

Var(µi)
µ

′
i . Cantoni and Ronchetti [9] developed this estimator based on robust deviances

that are natural generalization of QL functions, considering a general class of M-estimators of Mallows’s type, where
the influence of deviations on y and X are bounded separately. In other words, their robust estimator are based on the
same class of robust estimators similar to what Preisser and Qaqish [8] proposed in the more general setup of generalized
estimating equations. The Mallows quasi-likelihood (MQL) estimator is the solution of the estimating equations:

n

∑
i=1

[

ψc (ri)w(xi)
µ

′
i

[Var (µi)]
1
2

− 1

n

n

∑
i=1

E [ψc (ri)]w(xi)
µ

′
i

[Var (µi)]
1
2

]

= 0, (7)
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where ri =
yi−µi

[Var(µi)]
1
2

are the Pearson residuals, w(xi) =
√

1− hi; where hi is the ith diagonal element of the hat matrix,

and ψc (·) is the Huber function defined by

ψc (ri) =

{

ri |ri| ≤ c;
c sign(ri) |ri|> c.

Cantoni and Ronchetti [9] illustrated that this estimator, which can be explicitly computed, does not require numerical
integration, and the constant c is typically chosen to ensure a given level of asymptotic efficiency.

3.2 Weighted Maximum Likelihood Estimator

Hosseinian and Morgenthaler [10] introduced a robust estimator for the binary regression and generalized this estimator
to Poisson regression based on a weighted maximum likelihood with weights that depend on µi and two constants c1 and
c2. The estimation equation for the weighted maximum likelihood (WML) estimator is given by:

n

∑
i=1

µ
′
i

µi

w(µi)(yi − µi)xi = 0, (8)

where the weight function w(µi) is

w(µi) =















1 υ
c1

< µi < c1υ ;
c1µi

υ µi <
υ
c1

;
c2υ−µi

υ c1υ < µi < c2υ ;

0 otherwies,

where υ is the median of µi values, c1 = 2, and c2 = 3. To solve the system of equations in (8), Hosseinian [17] and
Hosseinian and Morgenthaler [10] used the Newton-Raphson method.

4 Monte Carlo Simulation Study

In this section, we investigate the performance of the above-mentioned estimators through a simulation study. We compare
between the nonrobust estimator (ML) and the robust estimators (MQL and WML). R software is used to perform our
Monte Carlo simulation study. For further information on how to make Monte Carlo simulation studies using R, see [18,
19].

The simulated model is carried out based on equations (2) and (3) with the following simulation settings:

1.The number of independent variables are p = 2 and 6, where the independent variables are generated from uniform
(-1, 1), and the vector of true regression coefficients is β = 1.

2.The values of sample size were chosen to be 75, 100, 200, 300 and 500 to represent moderate and large samples.
3.The percentages of outliers (τ%) in the response variable were chosen to be 5, 10, 20, 30 and 35.

4.The outliers generated from Poisson distribution with mean equal to 4 IQR
(

eXβ
)

; where IQR is the interquartile range.
5.For all experiments, we ran 1000 replications and all the results of all separate experiments are obtained by the same

series of random numbers.

To compare the performance of the three estimators with different n, p, and τ%, we compute the average of mean

squared error (MSE) and mean absolute error (MAE) for β̂ :

MSE =
1

1000

1000

∑
l=1

(

β̂l −β
)2

; MAE =
1

1000

1000

∑
l=1

∣

∣

∣β̂l −β
∣

∣

∣ ,

where β̂l is the vector of estimated values at lth experiment of 1000 Monte Carlo experiments, while β is the vector of
true coefficients.

The results are presented in Tables 1 to 5. Specifically, Table 1 reveals the MSE and MAE for ML, MQL, and WML
estimators in case n = 75, p = 2,6, and different τ%. While in cases n = 100,200,300, and 500, they are presented in
Tables 2 to 5, respectively.

From Tables 1 to 5, we can summarize the effects of the main simulation factors on MSE and MAE values for all
estimators (robust and nonrobust) as follows:

c© 2020 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


282 M. Abonazel, O. Saber : Robust Estimators for Poisson Regression Model

Table 1: MSE and MAE values of the estimators when n = 75.

Estimator τ%

5 10 20 30 35

P=2, MSE

ML 0.1189 0.1927 0.3536 0.5265 0.6406

MQL 0.0533 0.0615 0.1036 0.1802 0.2670

WML 0.0389 0.0400 0.0554 0.0837 0.1089

P=2, MAE

ML 0.2753 0.3420 0.4660 0.5691 0.6327

MQL 0.1851 0.1973 0.2550 0.3412 0.4136

WML 0.1591 0.1594 0.1865 0.2293 0.2559

P=6, MSE

ML 0.1135 0.1873 0.3241 0.4476 0.5171

MQL 0.0372 0.0516 0.0959 0.2242 0.3193

WML 0.0331 0.0376 0.0552 0.1068 0.1649

P=6, MAE

ML 0.2694 0.3477 0.4602 0.5413 0.5836

MQL 0.1534 0.1783 0.2414 0.3634 0.4381

WML 0.1443 0.1528 0.1811 0.2405 0.2920

Table 2: MSE and MAE values of the estimators when n = 100.

Estimator τ%

5 10 20 30 35

P=2, MSE

ML 0.0767 0.1284 0.2395 0.3269 0.3704

MQL 0.0352 0.0453 0.0856 0.1620 0.2240

WML 0.0270 0.0272 0.0389 0.0572 0.0755

P=2, MAE

ML 0.2169 0.2843 0.3840 0.4487 0.4727

MQL 0.1505 0.1706 0.2378 0.3284 0.3851

WML 0.1312 0.1315 0.1572 0.1905 0.2185

P=6, MSE

ML 0.0727 0.1280 0.2325 0.3396 0.3904

MQL 0.0222 0.0278 0.0476 0.1033 0.1573

WML 0.0186 0.0205 0.0264 0.0439 0.0560

P=6, MAE

ML 0.2135 0.2848 0.3846 0.4703 0.5043

MQL 0.1186 0.1320 0.1715 0.2485 0.3033

WML 0.1077 0.1130 0.1271 0.1595 0.1776

• As n increases, MSE and MAE of all estimators reduce.
• As τ% increases, MSE and MAE of all estimators increase.
• As p increases, MSE and MAE of all estimators reduce in the case of small n and low τ%. However, the values of
MSE and MAE increase when n and τ% increase.

In all simulation cases, it is noticeable that the values of MSE and MAE for MQL and WML estimators are smaller
than those of MSE and MAE for ML estimator. In other word, we can conclude that MQL and WML estimators are more
efficient than ML estimator.

Graphically, we illustrate the relative efficiency (RE) of MQL and WML estimators for different τ%. The RE values
are given by dividing the MSE of the estimator by the MSE of ML. The RE values of the estimators for p = 2 and p = 6
are shown in Figures 1 and 2, respectively.

Figure 1 indicates that RE values of WML are smaller than RE values of MQL for all n values. This suggests that the
WML estimator is more efficient than the MQL estimator in different n and τ values. However, when n and τ% increase
(n > 200 and τ = 35%), the efficiency of WML increases. In Figure 2, the efficiency of the two estimators is close, but
the WML estimator is still more efficient than the MQL estimator. Efficiency increases when n < 200 and τ = 35%.
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Fig. 1: Relative efficiency of the robust estimators when p = 2.

Fig. 2: Relative efficiency of the robust estimators when p = 6.

5 Conclusion

The present paper compared ML (nonrobust) with MQL and WML (robust) estimators for Poisson regression model
with outliers. Our Monte Carlo simulation results indicated that the ML estimator is very sensitive to outliers, while
MQL and WML estimators are more effective. In addition, WML is more efficient than MQL.
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Table 3: MSE and MAE values of the estimators when n = 200.

Estimator τ%

5 10 20 30 35

P=2, MSE

ML 0.0402 0.0755 0.1496 0.2583 0.3020

MQL 0.0185 0.0246 0.0487 0.0918 0.1360

WML 0.0138 0.0148 0.0220 0.0377 0.0522

P=2, MAE

ML 0.1599 0.2131 0.3029 0.4015 0.4384

MQL 0.1083 0.1258 0.1794 0.2511 0.3044

WML 0.0937 0.0966 0.1177 0.1554 0.1848

P=6, MSE

ML 0.0495 0.1097 0.2903 0.5347 0.6927

MQL 0.0132 0.0164 0.0266 0.0478 0.0621

WML 0.0109 0.0121 0.0143 0.0199 0.0232

P=6, MAE

ML 0.1764 0.2624 0.4310 0.5887 0.6785

MQL 0.0917 0.1020 0.1296 0.1724 0.1970

WML 0.0831 0.0869 0.0955 0.1109 0.1199

Table 4: MSE and MAE values of the estimators when n = 300.

Estimator τ%

5 10 20 30 35

P=2, MSE

ML 0.0256 0.0451 0.0848 0.1414 0.1711

MQL 0.0118 0.0169 0.0374 0.0732 0.1095

WML 0.0082 0.0096 0.0141 0.0239 0.0354

P=2, MAE

ML 0.1262 0.1673 0.2309 0.2939 0.3306

MQL 0.0868 0.1045 0.1585 0.2266 0.2795

WML 0.0721 0.0780 0.0946 0.1234 0.1545

P=6, MSE

ML 0.0264 0.0526 0.1203 0.2293 0.3103

MQL 0.0084 0.0103 0.0160 0.0264 0.0344

WML 0.0068 0.0076 0.0092 0.0119 0.0140

P=6, MAE

ML 0.1295 0.1809 0.2773 0.3894 0.4583

MQL 0.0731 0.0808 0.1008 0.1291 0.1460

WML 0.0656 0.0693 0.0766 0.0870 0.0932
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Table 5: MSE and MAE values of the estimators when n = 500.

Estimator τ%

5 10 20 30 35

P=2, MSE

ML 0.0163 0.0294 0.0650 0.1070 0.1375

MQL 0.0075 0.0116 0.0318 0.0744 0.1072

WML 0.0052 0.0055 0.0089 0.0185 0.0256

P=2, MAE

ML 0.1019 0.1375 0.2012 0.2599 0.2945

MQL 0.0697 0.0868 0.1494 0.2330 0.2804

WML 0.0575 0.0592 0.0760 0.1124 0.1339

P=6, MSE

ML 0.0135 0.0261 0.0602 0.1134 0.1490

MQL 0.0044 0.0057 0.0084 0.0142 0.0186

WML 0.0036 0.0041 0.0047 0.0063 0.0074

P=6, MAE

ML 0.0917 0.1279 0.1969 0.2731 0.3143

MQL 0.0532 0.0601 0.0728 0.0950 0.1075

WML 0.0483 0.0510 0.0546 0.0630 0.0679
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