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Abstract: In this work, the prediction variance characteristics of the Composite Mixed-Resolution Designs (CMRD) were explored

in spherical region using graphical procedures. Three-dimensional Variance Dispersion Graphs (VDG) was proposed and used as a

graphical technique that assesses the designs’ prediction capabilities. The replication of the cube and star portions of the CMRD as well

as the centre point was considered in the evaluation of the designs. Under the spherical design region, the VDGs display the designs’

prediction variances throughout the design region. The results show that replicating the star portion of the composite mixed-resolution

designs for the practical axial distance, in most cases improves the scaled prediction variance property of the design.
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1 Introduction

Composite Mixed-Resolution Design (CMRD) is a response surface design developed by [1]. It allows the estimation of
interaction and quadratic effects among controllable (signal) variables in the presence of noise variables. It is a response
surface design which accommodates two set of factors, namely; the signal factors (x) and noise factors (z). Levels of
signal factors can be easily to controlled in the process, whereas those of the noise factors cannot be controlled easily and
are assumed to randomly vary within the process. In addition, it comprises three components: the factorial portion, the
axial portion and the centre points.

The factorial portion is a 2K−p full (p = 0) or fractional (p > 0) factorial mixed resolution design with c signal and u

noise factors and with levels coded as ±1 (where K is the number of factors and p is a positive integer). The factorial
portion is a mixed-resolution design because it has at least Resolution V among the c signal factors, at least Resolution
III among the u noise factors and none of the c× u signal-by-noise two-factor interactions are aliased with any main
effect or any two-factor interaction. The axial portion consists of 2c star points. For each signal factor, the design
includes two ”star” points, i.e., the signal factor is set at levels ±α and all other factors are set at mid-level 0. This means
that the star points for the noise factors are excluded from the design. The n0 centre points make up the third component
of the design. The two parameters that must be specified for the design are the axial distance, α , of the star points from
the centre of the design and the number of centre points, n0.

The present study adopts response surface methodology (RSM), which is a collection of mathematical and statistical
techniques useful for the modeling and analysis of problems in which a response of interest is influenced by several
variables and the objective is to optimize this response ([2]. Thus, a first-order model with interactions contains main
effects and two-way interactions involving the control and noise factors and is given by

yi jkl = β0 +
c

∑
i=1

βixi +
u

∑
k=1

δkzk +
c−1

∑
i=1

c
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βi jxix j +
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u
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where {xi : i = 1,2, ...,c} and {zk : k = 1,2, ...,u} are, respectively, the signal variables and the noise variables; yi jkl is
the response variable; the β ’s and δ ’s are, respectively, the signal and noise parameters, and eei jkl is the random error
term.

Replication of experimental observations is indispensable for efficient and optimal performance of the second-order
designs. Traditionally, the centre point of the design is replicated to ensure proper estimation of the experimental error
with n0 − 1 degrees-of-freedom because it is assumed that the optimum response is at the centre of the design. However,
studies have shown that for the central composite design (CCD), replicating only at the centre may lead to estimating
errors that may be too small for the correct evaluation of the model. There is no assurance that variability will remain
constant throughout the design region. [3] posits that to replicate at other locations in the design region is sound
experimental strategy. [4] used the variance dispersion graphs (VDG) to investigate the replication of the star component
of the (CCD) for k = 5 and 6 factors. The study revealed that the overall performance of the scaled prediction variance
(SPV) of the CCD is considerably improved by replicating the star points.

[1] developed the composite mixed-resolution designs through redefining Taguchi’s model used in the Taguchi
designs. That is, the designs are at least resolution V among the signal factors (i.e. among the c signal factors, no main
effects or two-factor interactions are aliased with any other main-effect or two-factor interaction) and are at least
resolution III among the noise factors. The experimental design region of interest in [1] is a hypercube. They also
showed that the replication of the star points improves the G-efficiency of composite mixed resolution designs.

[5] addressed the performances of the partially-replicated cube and star (axial) portions of orthogonal central
composite designs (CCD) in spherical regions using the variance dispersion graphs and fraction of design space plots as
the two graphical techniques and the D− and G−efficiencies as the single-value criteria. Their results show that
replicating the star portions of the CCD considerably reduces the prediction variance, thereby improving the G-efficiency
in the spherical region. Hence, it was recommended for prediction with precision.

However, in this study, a function for plotting the variance dispersion graphs for the CMRD has been proposed. The
presnrt study aims to obtain a graphical procedure, a three-dimensional variance dispersion graph, for evaluating the
prediction variance characteristic of the composite mixed-resolution designs in spherical regions. The implications of
replicating the cube and star portions of the CMRD on the distribution of SPV throughout the design region of interest is
facilitated using n0 = 0,1,2,3 and 4 centre points.

2 Preliminaries

The concepts of design resolution and minimum aberration which are very vital in the development of the composite
mixed-resolution designs are concisely discussed in this section.

2.1 Resolution

Resolution is a useful concept associated with 2K−p fractional factorial designs. It is a criterion used in the selection of a
fraction of important effects or effects of interest to the experimenter from a number of factor effects. A design is of
resolution R if no p-factor effect is aliased with another effect containing less than R− p factors ([2]). In general, the
resolution of a two-level fractional factorial design is equal to the number of letters in the shortest word in the defining
relation. However, resolution is sometimes insufficient to distinguish between designs. Since designs with the same
resolution may not be equally good, a more refined criterion, i.e. minimum aberration was introduced by [6].

2.2 Minimum Aberration

Minimum Aberration design is the design which minimizes the number of words in the defining relation of minimum
length: see [6]. Let D1 and D2 be two mK−p designs (where m is the level of the factors, K is the number of factors and
p is the fraction of the factorial required) with ν1u and ν2u words of length u (1 ≤ u ≤ K). Let r be the smallest value of
u for which ν1u 6= ν2u ; then D1 has less aberration than D2 if ν1r < ν2r. If there exists no design with less aberration than
D1, it has minimum aberration.
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2.3 Variance Dispersion Graph

Variance Dispersion Graph (VDG) is a graphical tool introduced by [7] to evaluate the properties of the prediction
variance of a design. It displays the scaled prediction variance (SPV) throughout a multi-dimensional region on a single
two-dimensional graph (see [8]). At a point, x, in the design space, the scaled prediction variance is given by
NVar [ŷ(x)]/σ2 = N f ′(x)(X ′X)−1 f (x), where Var [ŷ(x)] is the variance of predicted response, ŷ(x), σ2 is the unknown
process variance, f ′(x) =

[

1,x1,x2, . . . ,xK ;x2
1, . . . ,x

2
K ;x1x2, . . . ,xK−1xK

]

, (X ′X)−1 is the inverse of the information matrix
and X is the extended design matrix. The SPV is plotted against a radius, r, from the centre of the design space. The
scaling is used to facilitate comparison among competing designs ([?]ontgomery). According to [?]i, desirable designs
are those with the smallest SPV and reasonable stability in the design region. The benefits of SPV in model assessment
have been widely acknowledged: see, for example, [7], [1], [10] and [9]. Often, the standardized or unscaled prediction
variance (UPV), given by Var [ŷ(x)]/σ2 = f ′(x)(X ′X)−1 f (x) is preferred by some experimenters in design assessment
(see, for example, [11]). Note that the difference between equations of the SPV and UPV is the number of runs in the
design, N.

[9]state that the UPV is useful to compare designs of different sizes to define if the additional runs in a larger design
substantially reduce the variance of the predicted response. They also allow for an estimate of the quality of prediction in
absolute terms. SPV, on the other hand, allows the practitioner to measure the variance of the predicted response on a per
observation basis and it penalizes larger designs over small designs. Scaling allows comparison of designs with different

numbers of runs. The radius, r of a concentric ball or sphere is defined by [12] as r = [∑c
i=1 x2

i ]
1/2 ⇒ r2 = ∑c

i=1 x2
i . A

design is considered to be good if it has low and stable SPV throughout the experimental region. A big gap between the
maximum and minimum values implies that the variance function is unstable over the region ([13]). Comparisons among
competing designs can be made easilyas well as the strength and weaknesses of the designs can be assessed using the
VDG. This type of information would be difficult to be captured by single number criterion.

3 Model Development

The second-order model that allows for the estimation of the parameters associated with the CMRD is given by

yi jk = β0 +
c

∑
i=1

βixi +
u

∑
k=1

βiix
2
i +

c−1

∑
i=1

c

∑
j=i+1

βi jxix j +
u−1

∑
k=1

δkzk +
c

∑
i=1

Σu
k=1δikxizk + ei jk, (2)

where yi jk is the response variable, β ’s and δ ’s are the model parameters, xi and zk, respectively, are the signal and
noise variables, and ei jk is the random error term. The CMRD model excludes the interaction and quadratic effects of the
noise variables which reduce the number of runs (because the axial portion of the noise variables is ignored) and thereby
minimizing variability.

At a point, x, in the design space, the prediction variance involving the signal and noise factors is given by

Var [ŷ(x,z)] = σ2x′m(X ′X)−1xm, (3)

where x′m =
[

1;x1, . . . ,xc;x1x2, . . . ,xc−1xc;x2
1, . . . ,x

2
c ;z1, . . . ,zu;x1z1, . . . ,xczu

]

is the vector of design points in the

design space expanded to model form. Multiplying by N (the total number of runs) and dividing by σ2 (the process
variance), the resulting function,

NVar [ŷ(x,z)]

σ2
= Nx′m(X ′X)−1xm, (4)

is the scaled prediction variance (SPV). The closed form of the scaled prediction variance was developed in this study
for evaluating the performances of the CMRD.

4 Methodology

4.1 Design Considerations

The nine designs used in this study were taken from the table of Minimum Aberration Mixed Resolution (MAMR) designs
in [4] for factors K = 4 to 8. Therefore, the generators of the designs used in this work are given in Table 1. The designs
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Table 1: Generators of MAMR Designs

Design K SF NF Fraction SFR NFR Generator(s)/Defining relation(s)

1 4 AB CD 24 — — —

2 5 ABC D(E) 25−1 V V E = ABCD

3 6 ABCD E(F) 26−1 IV IV F = ABCDE

4 7 ABC DE(FG) 27−2 V IV F = ABCE, G = ABCD, DEFG

5 7 ABCD E(FG) 27−2 V III F = ABCD, G = ABCDE, EFG

6 7 ABCDE F(G) 27−1 V II V II G = ABCDEF

7 8 AB CDE(FGH) 28−3 V IV F = ABCE, G = ABCD, H = ABDE

DEFG, CDFH, CEGH, ABFGH

8 8 ABC DE(FGH) 28−3 V III F = ABCE, G = ABCD, H = ABCDE

DEFG, EGH, DFH, ABCFGH

9 8 ABCDEF GH 28−2 V V G =CDEF , H = ABEF, ABCDGH

are labeled according to the total number of design factors, K = 4, . . . , 8 and reference letters, A, B,. . ., H. A generator
(e.g. E = ABCD) is a set of columns (representing some factors) used to generate other factors that are not present in the
fraction. For instance, for design 2, the fractional factorial required for the designs is 25−1. Therefore, 5 – 1 = 4 factors
(ABCD) is generated normally but the remaining factor (E) is generated with the generator (E = ABCD) by multiplying
the ABCD columns together to achieve the E column. The letters in the “Signal factors” and “Noise factors” columns
(excluding the letters in bracket), correspond to the K − p columns generating the full factorial design in K − p factors.
The levels of the remaining p factors (letters in the bracket) are generated using the p generators in the last column of
Table 1. For example, Design 4 has c = 3 signal factors and u = 4 noise factors. The factorial portion of the CMR design
is based on the 27−2 fractional factorial design. The fractional factorial K–p = 5 factors (ABCDE) is generated normally
while the levels of the remaining p = 2 factors (FG) is generated using the two generators (F = ABCE,G = ABCD).
Simply, SF, NF, SFR and NFR in Table 1, respectively, denote Signal Factors, Noise Factors, Signal Factor Resolution
and Noise Factor Resolution.

To facilitate the evaluation of the designs using the graphical method, the cube and star replications of the CMRD
were adopted. For each replication of the cube portion, the star portion is not replicated and for each replication of the
star portion, the cube portion is not replicated. Five versions of the designs are generated through replicating the cube
and star portions by different amount. The first design is where the cube and star were not replicated. This design is
denoted by C1S1. The second is C1S2, where the star is replicated twice and the cube is not replicated. Other designs are
C1S3, C2S1 and C3S1. These designs are generated for each of the second-order CMRD designs for the K = 4 to 8
factors under consideration.

In the spherical design region, the spherical and practical axial distances, α =
√

K and α = K1/4, respectively, were
considered in the evaluation of the CMRD, where K = c+ u is the number of experimental factors. The practical α was
proposed by [14] as compromise between the spherical and cuboidal axial distances. The cuboidal axial distance is given
by α = 1 which defines the cuboidal region. It has been observed by [9] that placing the axial runs at practical α levels
results in stability of the estimated parameters which yields gain in prediction precision. The practical α is very useful
especially when the number of factors is large (K > 5) as it provides design points that are less extreme.

4.2 Prediction Variance for the VDG

An expression for the unscaled prediction variance function, UPV = x′m(X ′X)−1xm , was obtained by determining the
information matrix, X ′X , its inverse, (X ′X)−1, and then pre- and post-multiplying the inverse by x′m and xm , respectively.
Now, for Design 2 in Table 1, with the following properties:

–Number of factors, K = 5
–Fraction=25−1

–Signal/Noise factors Resolution = 5
–Shperical α = 2.236
–Signal factors (c = 3):A,B,C
–Noise factors (u = 2):D,E
–Defining relation: A,B,C,D,E

The extended design matrix of the composite mixed-resolution design obtained from the model in equation (2) is given
by, X , while the information matrix is X ′X . Let t be the number of replication of the star, n, the number of replication of
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the cube and F = n f , where f is the size of the factorial component. Then, taking cue from [4], the block form of the
information matrix is given by







N φ ′
c (F + 2tα2). j′ φ ′

m

φc diag(di) θ ′
1 θ ′

2

(F + 2tα2). j θ1 [(2tα4)Ic +F.Jc] θ ′
2

φm θ2 θ2 F.Im







while the block form of the inverse of the information matrix is given as







λ1 φ ′
c λ2. j

′ φ ′
m

φc diag(1/di) θ ′
1 θ ′

2

λ2. j θ1 − 1
T

{

(2Nα4t).Ic −λ3[c.Ic − Jc]
}

θ ′
2

φm θ2 θ2 (1/F).Im







where φc = c× 1 zero vector, θ ′
1 = c× c zero matrix, θ2 = m× c zero matrix, m = (c

2)u+ cu, j = c× 1 unit vector,

Ic = c× c identity matrix, diag(di) = c× c diagonal matrix such that di = F + 2tα2 for 1 ≤ i ≤ c, Im = m×m diagonal

matrix, T = 8cα8t3 − 8cα6Ft2 − 4Nα8t2 + 2cα4F2t − 2cNα4Ft, λ1 = −(2tα4+cF)
Q

, λ2 = 2tα2+F
Q

,

λ3 = F2 −NF + 4α4t2 + 4α2F ,and Q = cF2 − cNF + 4cα4t2 − 2Nα4t + 4cα2Ft.

Pre- and post-multiplying the information matrix by x′m and xm , the general closed form of the prediction variance
for the composite mixed-resolution design (CMRD) is given by

V (x,z) =

{

(c− 1)λ3−ω

T

}

c

∑
i=1

x4
i +

{

1

F
− 2λ3

T

}

c

∑
i< j

x2
i x2

j +

{

λ2 +
1

∆

}

c

∑
i=1

x2
i +

1

F

[

u

∑
k=1

z2
k +

c

∑
i=1

u

∑
k=1

x2
i z2

k

]

+λ1, (5)

where ∆ = F + 2tα2 and ω = 2Nα4t.
The scaled prediction variance (SPV) is

V (x,z) = N

{

A
c

∑
i

x4
i +B

c

∑
i< j

x2
i x2

j

c

∑
i

x2
i +D[

u

∑
k

z2
k +

c

∑
i

u

∑
k

x2
i z2

k ]+E

}

(6)

where A = (c−1)λ3−ω
T

, B = 1
F
− 2λ3

T
, C = λ2 +

1
∆ , D = 1

F
and E = λ1.

To obtain the prediction variance for the variance dispersion graph, maximize V (x,z) subject to
r2 = ∑c

i=1 x2
i +∑u

k=1 z2
k . Without loss of generality, the constraint can be expressed as r2 = r2

x + r2
z , where r2

x = ∑c
i=1 x2

i

and r2
z = ∑u

k=1 z2
k , corresponding to the signal and noise factors, respectively. Substituting r2

x and r2
z into Equation (6), the

general form of the scaled prediction variance may be simplified to

V (x,z) = N

{

A
c

∑
i

x4
i +Br4

x +Cr2
x +Dr2

z (1+ r2
x)+E

}

(7)

Consequently, the problem of evaluating V (x,z) on a sphere of radius, r, reduces to the problem of evaluating ∑c
i x4

i

subject to ∑c
i x2

i . In order to solve this problem, the principle of Lagrangian multipliers is used to find the critical points

which analytically define the minimum (V minr) value for the prediction variance at radius, r. Therefore, ∑c
i x4

i = r2
x/c (see

[4] and [15]) and the SPV function becomes

V (x,z) = N

{

(A+Bc)
r4

x

c
+Br4

x +Cr2
x +Dr2

z (1+ r2
x)+E

}

(8)

This function was used in plotting the variance dispersion graphs for the evaluation of the prediction variance
performances of the composite mixed resolution designs.
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5 Design Evaluation and Comparison

In this section, variance dispersion graphs were plotted from the scaled prediction variance function developed herein.
The scaled prediction variances were computed and the results were plotted against the radii 0 ≤ rx ≤ 1 and 0 ≤ rz ≤ 1.
The SPV are plotted on the y-axis, while the radii are plotted on the x-axis. The variance dispersion graphs were plotted
for n0 = 0,1,2,3 and 4 centre points, but only the graphs for n0 = 4 were presented for simplicity and clarity for the
spherical and practical axial distances.

With spherical axial distance, star replicated designs with n0 = 0,1 and 2 centre points have the lowest prediction
variances. The exceptions are Design 2 where replicating the cube twice (C2S1) displays the lowest SPV and also Designs
1, 2 and 3 where non-replication of the cube and star (C1S1) reflects the lowest SPV. For the designs with n0 = 3 and
4 centre points, C1S1 reveals the lowest SPV throughout the design region. The graphs for the spherical axial distance
with four centre points are indicated in Figures 1 – 9. Thus, we can conclude that when the axial distance is spherical,
replication of the star with n0 = 0,1 and 2 centre points offers minimum scaled prediction variance. However, with higher
number of centre points, n0 = 3 and 4, C1S1 is superior to the other design options in terms of minimum SPV. On the
other hand, the designs with the largest scaled prediction variance are the designs with their cube portions replicated.
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&

For the practical axial distance, SPV does not exist for C1S1, C1S2 and C1S3 options of Design 1. For the remaining
design options, the variance dispersion graphs are displayed in Figures 10 to 18 for Designs 1 to 9 with practical axial
distances and four centre points. The VDGs reveal that the designs with star replication have the lowest SPV for most of
the designs over the entire design space at different values of the centre points.We note from the plots of designs with
practical α that for all the centre points considered, the designs with the highest prediction variance are the designs where
the cube portion is replicated thrice (C3S1).
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6 Conclusion

The results exhibit that increase in centre points affects the performance of the designs. We can conclude that for designs
with spherical α , the best designs are those without replication of cube or star portion (C1S1). But for the designs with
practical α , most of the VDG plots show that the replication of star portion substantially lead to minimum spread of the
scaled prediction variance throughout the entire design region. Moreover, VDG plots illustrate that replication of the cube
portion of the designs produced the highest prediction variance on most of the graphs. Thus, it is not recommended.
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