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Abstract: In this paper, we consider the existence and uniqueness of solutions to the nonlocal boundary value problem for pantograph
equations involving ψ-type fractional derivative. With the help of properties of ψ-type fractional calculus, and fixed point methods, we
derive existence and uniqueness results. Finally, an example is given to illustrate our theoretical results.
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1 Introduction

In this paper, we go on intending to study the existence and uniqueness of solutions for the boundary value problems
(BVP for short), for ψ-type fractional order pantograph equations and nonlocal boundary conditions of the form

cDα;ψ u(t) = f (t,u(t),u(λ t)), for each t ∈ J := [0,T ], 1 < α ≤ 2, (1)
u(0) = g(u), u(T ) = uT , (2)

where cDα;ψ is the ψ-type Caputo fractional derivative, 0 < λ < 1, f : J×R×R→ R, is a continuous function, g :
C(J,R)→ R a continuous function and xT ∈ R.

In the past decades, fractional differential equations (FDEs) have been widely used in the fields of physics, biology
and engineering. There are many interesting results for qualitative analysis and applications. For more details on the
development of this issue, one can refer to monographs [5,6,7,8] and the references therein.

As remarked by Byszewski [4], the nonlocal condition can be more useful than standard initial condition to describe
some physical phenomena. For example, g(u) may be given by

g(u) =
p

∑
i=1

ciu(ti)

where ci, i = 1, ..., p, are given constants and 0 < t1 < ... < tp ≤ T .
Delay systems were widely applied to characterize propagation and transport development or population gestures.

Also, since in economical system some choices such as investment plan and the evolution of commodity markets are
divided over time intervals, delays appear in a natural way. In a mathematical area, such process is described by differential
equations on functional spaces. It is shown that FDEs may be held as a possible choice to nonlinear differential equations,
so recently fractional delay differential equations (DDEs) have been considered by some researchers. The application of
fractional DDEs is seen in different technical systems, such as long communication lines, biology, automatic control and
economy. Pantograph equation is one of the main types of DDEs arisen from the work for an electric locomotive. The
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pantograph DDEs are found in large numbers of fields, namely electro-dynamic, so several numerical methods have been
introduced for solving the integer pantograph DDEs, for more information, see [2,9,10,11].

2 Prerequisites

In this section we present some definitions and lemmas which will be used in our results later.
By C(J,R) we denote the Banach space of all continuous functions from J into R with the norm

‖u‖
∞

:= sup{|u(t)| : t ∈ J} .

Definition 1.[1] The ψ-type fractional order integral of the function h ∈ L1 ([a,b],R+) of order α ∈ R+ is defined by

I α;ψ
a h(t) =

1
Γ (α)

∫ t

a
ψ
′
(s)(ψ(t)−ψ(s))α−1 h(s)ds,

where Γ is the Gamma function.

Definition 2.[1] For a function h given on the interval [a,b], the αth Riemann-Liouville fractional order derivative of h,
is defined by(
Dα;ψ

a+ h
)
(t) =

1
Γ (n−α)

(
d
dt

)n ∫ t

a
ψ
′
(s)(ψ(t)−ψ(s))n−α−1 h(s)ds.

Here n = [α]+1 and [α] denotes the integer part of α .

Definition 3.[1] For a function h given on the interval [a,b], the ψ-type Caputo fractional order derivative of order α of
h, is defined by(cDα;ψ

a+ h
)
(t) =

1
Γ (n−α)

∫ t

a
ψ
′
(s)(ψ(t)−ψ(s))n−α−1 h(n)(s)ds,

where n = [α]+1.

3 Existence of solutions

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 4.A function u ∈C2 ([0,T ],R) with its ψ-type α-derivative exists on [0,T ] is said to be a solution of (1)-(2) if
u satisfies the equation cDα;ψ u(t) = f (t,u(t),u(λ t)) on J, and conditions u(0) = g(u) and u(T ) = uT .

For the existence of solutions for the problem (1)-(2), we need the following lemma. We adopt some ideas from [3].

Lemma 1.Let 1 < α ≤ 2 and let h : [0,T ]×R×R→R be continuous. A function u is a solution of the following integral
equation

u(t) =


1

Γ (α)

∫ t
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

− ψ(t)
ψ(T )Γ (α)

∫ T
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

−
(

ψ(t)
ψ(T ) −1

)
g(u)+ ψ(t)

ψ(T )uT

(3)

if and only if u is a solution of the ψ-fractional pantograph equation

cDα;ψ u(t) = f (t,u(t),u(λ t)), t ∈ [0,T ], 0 < λ < 1, (4)
u(0) = g(u), u(T ) = uT . (5)

At beginning, we give the following assumptions:

(A1)The function f : [0,T ]×R×R→ R is continuous.
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(A2)There exists a constant k > 0 such that

| f (t,x1,x2)− f (t,y1,y2)| ≤ k (|x1− y1|+ |x2− y2|)

for all t ∈ J, and all x1,x2,y1,y2 ∈ R.
(A3)There exists a constant k∗ > 0 such that

|g(x)−g(x)| ≤ k∗ |x− x| ,

for each t ∈ J, and all x,x ∈C([0,T ],R).
(A4)There exists a constant M > 0 such that

| f (t,x1,x2)| ≤M

for each t ∈ J and all x1,x2 ∈ R.
(A5)There exists a constant M1 > 0 such that

|g(x)| ≤M1 for all x ∈C([0,T ],R).

Our first result based on Banach fixed point theorem.

Theorem 1.Assume that (A2)-(A3) are satisfied. If

4k(ψ(T ))α

Γ (α +1)
+ k∗ < 1 (6)

then the BVP (1)-(2) has a unique solution on [0,T ].

Proof.Transform the problem (1)-(2) into a fixed point problem. Consider the operator

N : C([0,T ],R)→C([0,T ],R)

defined by

N(u)(t) =


1

Γ (α)

∫ t
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

− ψ(t)
ψ(T )Γ (α)

∫ T
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

−
(

ψ(t)
ψ(T ) −1

)
g(u)+ ψ(t)

ψ(T )uT .

Clearly, the fixed points of the operator N are solution of the problem (1)-(2). We shall use the Banach contraction principle
to prove that N has fixed point. We shall show that N is a contraction.

Let u,v ∈C([0,T ],R). Then, for each t ∈ J we have

|N(u)(t)−N(v)(t)| ≤ 1
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 | f (s,u(s),u(λ s))− f (s,v(s),v(λ s))|ds

+
1

Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 | f (s,u(s),u(λ s))− f (s,v(s),v(λ s))|ds+ |g(u)−g(v)|

≤2k‖u− v‖
∞

Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 ds

+
2k‖u− v‖

∞

Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 ds+ k∗ ‖u− v‖

∞

≤4k(ψ(T )α)

αΓ (α)
‖u− v‖

∞
+ k∗ ‖u− v‖

∞
.

Thus

|N(u)−N(v)| ≤
[

4k(ψ(T )α)

Γ (α +1)
+ k∗

]
‖u− v‖

∞
.

Consequently, N is a contraction. As a consequence of Banach fixed point theorem, we deduce that N has a fixed point
which is a solution of the problem (1)-(2).

The second result is based on Schaefer’s fixed point theorem.
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Theorem 2.Assume that (A1), (A4)-(A5) are satisfied. Then the BVP (1)-(2) has at least one solution on [0,T ].

Proof.We shall use Schaefer’s fixed point theorem to prove that N has a fixed point. The proof will be given in several
steps.
Claim 1. N is continuous.

Let {un} be a sequence such that un→ u in C([0,T ],R). Then for each t ∈ [0,T ]

|N(un)(t)−N(u)(t)| ≤ 1
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 | f (s,un(s),un(λ s))− f (s,u(s),u(λ s))|ds

+
1

Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 | f (s,un(s),un(λ s))− f (s,u(s),u(λ s))|ds+ |g(un)−g(u)|

≤ 1
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 sup

s∈[0,T ]
| f (s,un(s),un(λ s))− f (s,u(s),u(λ s))|ds

+
1

Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 sup

s∈[0,T ]
| f (s,un(s),un(λ s))− f (s,u(s),u(λ s))|ds

+ |g(un)−g(u)| .

Since f and g are continuous functions, then we have

‖N(un)−N(u)‖
∞
→ 0 as n→ ∞.

Claim 2. N maps bounded sets into bounded sets in C([0,T ],R).
Indeed, it is enough to show that for any η∗ > 0, there exists a poitive constant l such that for each u ∈ Bη∗ =

{u ∈C([0,T ],R) : ‖u‖
∞
≤ η∗}, we have ‖N(u)‖

∞
≤ l. By (A4) and (A5) we have for each t ∈ [0,T ],

|N(u)(t)| ≤ 1
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 | f (s,u(s),u(λ s))|ds

+
1

Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 | f (s,u(s),u(λ s))|ds+2 |g(u)|+ |uT |

≤ M
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 ds+

M
Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 ds+2M1 + |uT |

≤ M
αΓ (α)

(ψ(T ))α +
M

αΓ (α)
(ψ(T ))α +2M1 + |uT | .

Thus

‖N(u)‖
∞
≤ 2M

αΓ (α)
(ψ(T ))α +2M1 + |uT | := l.

Claim 3. N maps bounded sets into equicontinuous sets of C([0,T ],R).
Let t1, t2 ∈ (0,T ], t1 < t2, Bη∗ be a bounded set of C([0,T ],R) as in Claim 2, and u ∈ Bη∗ . Then

|N(u)(t2)−N(u)(t1)|=
∣∣∣∣ 1
Γ (α)

∫ t1

0

[
ψ
′
(s)(ψ(t2)−ψ(s))α−1−ψ

′
(s)(ψ(t1)−ψ(s))α−1

]
f (s,u(s),u(λ s))ds

+
1

Γ (α)

∫ t2

t1
f (s,u(s),u(λ s))ds

∣∣∣∣
+

(ψ(t2)− (ψ(t1)))
(ψ(T ))Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 | f (s,u(s),u(λ s))|ds

+
(ψ(t2)− (ψ(t1)))

(ψ(T ))
|g(u)|+ (ψ(t2)− (ψ(t1)))

(ψ(T ))
|uT |

≤ M
Γ (α +1)

[(ψ(t2)− (ψ(t1)))α +(ψ(t1))α − (ψ(t2))α ]+
M

Γ (α +1)
(ψ(t2)− (ψ(t1)))α

+M
(ψ(t2)−ψ(t1))
(ψ(T ))Γ (α)

(ψ(T ))α +
(ψ(t2)−ψ(t1))

(ψ(T ))
M1 +

(ψ(t2)−ψ(t1))
(ψ(T ))

|uT | .
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As t1→ t2, the right-hand side of the above inequality tends to zero. As a consequence of Claim 1 to Claim 3 together
with the Arzela-Ascoli theorem, we can conclude that N : C([0,T ],R)→C([0,T ],R) is completely continuous.
Claim 4. A priori bounds.

Now it remains to show that the set

ζ = {u ∈C(J,R) : u ∈ δN(u) for some 0 < δ < 1}

is bounded.
Let u ∈ ζ , then u ∈ δN(u) for some 0 < δ < 1. Thus, for each t ∈ J we have

N(u)(t) =


δ

Γ (α)

∫ t
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

− δψ(t)
ψ(T )Γ (α)

∫ T
0 ψ

′
(s)(ψ(t)−ψ(s))α−1 f (s,u(s),u(λ s))ds

−δ

(
ψ(t)
ψ(T ) −1

)
g(u)+δ

ψ(t)
ψ(T )uT .

This implies by (A4) and (A5) that for each t ∈ J we have

|N(u)(t)| ≤ M
Γ (α)

∫ t

0
ψ
′
(s)(ψ(t)−ψ(s))α−1 ds+

M
Γ (α)

∫ T

0
ψ
′
(s)(ψ(T )−ψ(s))α−1 ds+2M1 + |uT |

≤ 2M(ψ(T ))α

Γ (α +1)
+2M1 + |uT | .

Thus for every t ∈ [0,T ], we have

‖N(y)‖
∞
≤ 2M(ψ(T ))α

Γ (α +1)
+2M1 + |uT | := R.

This shows that the set ζ is bounded. As a consequence of Schaefer’s fixed point theorem, we deduce that N has a
fixed point which is a solution of the problem (1)-(2).

4 An example
In this section, we give an example to illustrate our main results derived in Sect.3.

cDα;ψ u(t) =
1
5
+

1
10

u(t)+
1

10
u(λ t), t ∈ J := [0,1], 1 < α ≤ 2, (7)

u(0) =
n

∑
i=1

ciu(ti), u(1) = 0, (8)

where λ ∈ (0,1), 0 < t1 < t2 < ... < tn < 1, ci, i = 1, ...,n are given positive constants with ∑
n
i=1 ci <

4
5 . Set

f (t,x1,x2) =
1
5
+

1
10

x1(t)+
1
10

x2(λ t), (t,x1,x2) ∈ J× [0,∞),

and

g(u) =
n

∑
i=1

ciu(ti).

Let u,v,u,v ∈ [0,∞) and t ∈ J. Then we have

| f (t,u,v)− f (t,u,v)| ≤ 1
10

(|u−u|+ |v− v|) .

Hence the condition (A2) holds with k = 1
10 . Also we have

|g(u)−g(v)| ≤
n

∑
i=1

ci |u− v| .

Hence (A3) is satified with k∗ = ∑
n
i=1 ci. We shall check that condition (6) is satified with ψ(T ) = 1. Indeed,

4k(ψ(T ))α

Γ (α +1)
+ k∗ =

2
5Γ (α +1)

+
n

∑
i=1

ci < 1,

which satisfies for α ∈ (1,2]. Then by Theorem 1 the problem (7)-(8) has a unique solution on [0,1].
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