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Abstract: In this paper, we study the effect of awareness of population on the spreading of a fractional-order dengue fever model. We

calculate the equilibrium points (free-disease point and endemic point) and study local asymptotic stability by using Routh–Hurwitz

conditions. The global asymptotic stability by using LaSalle’s invariance principle has been studied. The stability analysis show the

relation between reproductive ratio R0 and the local and global stability. To support our theoretical results, we solve this model by using

Adams-type predictor-corrector method. The numerical results show the effect of awareness (represented by σ parameter in model),

also it show that the fractional order model has smaller peak than integer order model which mean better fitting of data.
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1 Introduction

Mathematical models have a great importance in the natural sciences [1–13]. It can be used as an alternative to a biological
system, and so much can be learned about the organism by devising an appropriate mathematical model. These models
can be solved through analysis or numerical methods to know the behavior of the biological model. It is not limited to
the study of the human body, but extends to the surrounding environment. It studied the spread of epidemics through
environmental biology. Dengue fever is one of important bio-mathematical models which caused by four closely related
viruses stereotypes [14–22]. There are many authors studied and developed outdated techniques to have exact, analytic,
and approximate solutions for fractional differential equations arising from a variety of branches of various scientific
fields [23–30]. Dengue fever is endemic in more than hundred nations. As of late, the quantity of dengue cases has been
expanding significantly. Awareness of the infection can change the entire elements of the transmission of the disease.
Because of awareness, individuals can take various types of safety measures towards the disease. Maintaining a strategic
distance from mosquito’s bite is the significant precautionary measure against dengue fever. A portion of the safety
measures that can be taken are to keep home, environment and encompassing cleanliness, to evacuate all stale water
and holders, to cover all compartments appropriately to forestall dengue mosquito reproducing there, to wrap all unused
plastic tires, to utilize mosquito anti-agents to stay away from mosquito chomp, to utilize mist concentrates and mosquito
loops to murder mosquitoes, to wear long sleeve and completely secured garments, to utilize mosquitoes net around bed
while resting. To control the ailment adequately, one ought to comprehend the elements of the disease transmission and
consider the entirety of the relating subtleties [16]. In [16], the authors study mathematical model of dengue fever with
and without awareness in host population as for human population. In this paper, we will use Adams-type predictor-
corrector method [31] to get an accurate solution to time fractional-order model of dengue fever with awareness effect
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which considered in [16] as:

Dα u(t) = µ(1− u(t))−λ u(t)w(t),

Dα v(t) = λ u(t)w(t)−β v(t), (1)

Dα w(t) = γ(1−w(t))v(t)− δw(t),

Dα N(t) = µ − µN(t)− ζv(t),

where u(t) is density of susceptible host individuals, v(t) is density infected host, w(t) is density infected vector, N(t) =

u(t)+v(t) is total population, µ is birth and death rate for host individuals, λ =
(1−σ)cηA

δN
, σ is density of susceptible

host individuals aware of dengue transmission, c is the rate of biting by vector, A is recruitment rate(mosquitoes per
time), η is the probability of transition from vector to human host, δ is death rate for vector, β = µ + ζ , ζ is recovery
rate for human population, γ = (1−σ)cρ , σ is density of infected host individuals aware of dengue transmission and ρ
is the probability of transition from host human to vector. All previous parameters are calculated and found in [16]. The
fractional order 0 < α ≤ 1 and Dα is called Caputo fractional derivative sense [32], which defined, as:

Dα f (x) =
1

Γ(n−α)

∫ x

0
(x− t)n−α−1

f (n) (t)dt,

for n− 1 < α ≤ n , n ∈ N ,x > 0.

2 Asymptotic stability

In this section, we calculate the equilibrium points of system (1) and then study asymptotic stability for each point.

If we put
dα u

dt
= 0,

dα v

dt
= 0,

dαw

dt
= 0, the following equilibrium points exist for system (1) as:

1.Free-disease equilibrium point is
E0(1,0,0).

2.The epidemic equilibrium point is

E1(
γµh + β δ

λ γ + γµh

,
λ γµh − β µhδ

λ β γ + β γµh

,
λ γµh −β µhδ

λ γµh +αβ δ
).

We evaluate the Jacobian matrix J of equilibrium point to study asymptotic stability for each of them. The jacobian matrix
J is computed as J (E) = ji j

where

j11 =−( µ + λ w) , j12 = 0 , j13 =−λ u, j21 = λ w, j22 =−β , j23 = λ u, j31 = 0, j32 = γ− γw and j33 =−( δ + γv).

Theorem 2.1. The equilibrium point E0 is locally asymptotically stable if R2
0 < 1, where R2

0 =
αγ
β δ .

Proof:
The Jacobian matrix of system (1) at equilibrium point E0(1,0,0):

J (E0) =





− µ 0 −λ
0 −β λ
0 γ −δ



 . (2)

The eigenvalues corresponding to the equilibrium E0 are:

ρ1 =−
β

2
−

δ

2
−

√

(

β − δ )2 + 4λ γ
)

2
, ρ2 =−

β

2
−

δ

2
+

√

(

β − δ )2 + 4λ γ
)

2
,and ρ3 =− µ .

If we put ρ2 < 0 then

−
β

2
−

δ

2
+

√

(

β − δ )2 + 4λ γ
)

2
< 0,
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(

β − δ )2 + 4λ γ
)

< (β + δ )2
.

Then we get R2
0 =

λ γ

β δ
< 1. See [16, 18].

It’s shown thatρ2 negative, if and only if R2
0 < 1 and ρ1,ρ3 are negative where all parameters are positive. We conolude

that E0 is locally asymptotic stable if and only if R2
0 < 1. Proof complete

Theorem 2.2. The equilibrium point E1 is locally asymptotically stable if and only if R2
0 > 1.

Proof:

The Jacobian matrix of system (1) at equilibrium point E1(u
∗,v∗,w∗), where u∗ =

γµh + β δ

λ γ + γµh

,v∗ =
λ γµh − β µhδ

λ β γ + β γµh

and

w∗ =
λ γµh −β µhδ

λ γµh +αβ δ
is

J (E1) =















− µh −λ (
λ γµh −β µhδ

λ γµh +λ β δ
) 0 −λ (

γµh + β δ

λ γ + γµh

)

λ (
λ γµh −β µhδ

λ γµh +λ β δ
) −β λ (

γµh + β δ

λ γ + γµh

)

0 γ − γ(
λ γµh −β µhδ

λ γµh +αβ δ
) −δ − γ(

λ γµh − β µhδ

λ β γ + β γµh

)















. (3)

Consider the polynomial of eigenvalues :

ρ3 + a1ρ2 + a2ρ + a3 = 0, (4)

where

a1 = β + µ + δ +λ w∗+ γv∗,

a2 = β µ +β δ + µδ +λ β w
∗
−λ γu∗+β γv∗+ γµv∗+λ δw∗+λ γµw∗+λ δu∗w∗

,

a3 = β µδ −λ γµu∗+ µδ +β γµv∗+λ β δw∗+β γv∗+ γµv∗+λ δw∗+λ β δu∗w∗+λ β γv∗w∗+αδ µu∗w∗
.

It is obvious that as a1,a2 and a3 > 0 if R2
0 > 1. Further, we have a1a2 −a3 > 0, therefore, the Routh-Hurwitz conditions

are satisfied. See [12]. We complete proof

3 Global asymptotic stability

Theorem 3.1. If R2
0<1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof.

For system (1), we get the following Lyapunov function:

L0(t) = v+
β

γ
w,

Dα L0 (t) = λ uw−β v+β (1−w)v−
δβ

γ
w,

Dα L0 (t)< w

(

λ u−
δβ

γ

)

< w
γ

δβ

(

R2
0 − 1

)

< 0 , i f R2
0 < 1.

We have L0(t) > 0, Dα L0(t) = 0 at E0 and Dα L0 < 0, then E0 is globally asymptotically stable according to [30]
when R2

0 < 1, which implies the disease will disappear regardless the initial infected individuals.

Theorem 3.2. If R2
0 > 1, a > 0 where a is positive constant and N = av, then the endemic equilibrium E1 is globally

asymptotically stable.
Proof.

For system (1), we get the following Lyapunov function:

L1 (t) =
1

2
(N −N∗)2

,
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Dα L1 (t) =
1

2
(N −N∗)Dα N =

1

2
(N −N∗)(µ − µN − ζv) =

1

2
(N −N∗)

(

µ − µN −
ζ

a
N

)

=−(µ +
ζ

a
)(N −N∗)2

< 0,

where

N = av, µ =

(

µ +
ζ

a

)

N∗
.

We have L1(t) > 0, Dα L1(t) = 0 at E1 and Dα L1 < 0, t then the unique positive epidemic equilibrium E1 is globally
asymptotically stable if R2

0 > 1.

4 Numerical simulation

To support our theoretical results, we use Adams-type predictor-corrector method which explained in details in [31] to
solve fractional dengue fever model (1) . The initial conditions are: u(0) = 0.9, v(0) = 0.1, w(0) = 0 .The parameters in
figures 1,2 and 3 are λ = 0.8750, β = 0.1429, γ = 0.25, δ = 0.1429, σ = 0.8, σ = 0.9 and R2

0 = 0.46.The parameters

in figures 4,5 and 6 are λ = 0.1750, β = 0.1429, γ = 0.025, δ = 0.1429, σ = σ = 0 and R2
0 = 3.27

Fig. 1: The relation between susceptible host individuals u(t) and time t with different values of fractional orders α.
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Fig. 2: The relation between infected host individuals v(t) and time t with different values of fractional orders α .

Fig. 3: The relation between infected vector w(t) and time t with different values of fractional orders α .
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Fig. 4: The relation between susceptible host individuals u(t) and time t with different values of fractional orders α .

Fig. 5: The relation between infected host individuals v(t) and time t with different values of fractional orders α .

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 2, 267-274 (2022) / www.naturalspublishing.com/Journals.asp 273

Fig. 6: The relation between infected vector w(t) and time t with different values of fractional orders α .

5 Conclusion

We applied Adams-type predictor-corrector method to study fractional dengue fever model. Figures 1,2 and 3 show that
the free disease point E0 is locally asymptotic stable, but epidemic equilibrium point is not. Where R2

0 < 1 . Figure 2
shows that infected host individuals v(t) tend to 0 at t → ∞, the effect of fractional order appears in how much time
curves tends to 0. Actually, we can easily see that fractional order takes much time to reach 0; this in turn helps us to
compare with clinical data. Figures 3 and 6 show that the infected vector w(t), fractional order curve has smaller peak
than integer order which show cases better data fitting. Obviously, figures 4,5 and 6 show that endemic point is local and
global asymptotic is stable with R2

0 > 1. Further, figures 4 and 5 show that integer order tends to 0, showing that we
haven’t any data of susceptible host individuals or infected host individuals. Fractional order, however, does not tend to
0, exposing more data for comparison with clinical data. Figure 2 shows the effect of awareness towards disease if we
take value of awareness of susceptible and infected human as ,σ = 0.8,σ = 0.9 that mean highly awareness of disease
effect of reproductive ratio, we can easily show that the value of R2

0 < 1 and u(t) infected individuals tends to zero.
Meanly, the awareness plays important rule for transition of infection. In Figure 5, the awareness parameter σ = σ = 0 ,
we can see the effect of disappearing the effect of awareness in reproductive ratio R2

0 > 1 and the curve of solution go up
to peak that mean highly infection comparing the curve of figure 2. we Finally, the results show that mathematical
modeling based on fractional order has more advantages than classical integer-order. It could also be concluded that
appropriate fractional order can be taken for the best comparison with clinical data.
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