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Abstract: The aim of this paper is to demonstrate the extent to which the new iterative Sumudu transform method (NISTM) helps

in solving three fractional KdV–Burgers equations (KdVB). In fact, new explanatory solutions are being obtained by using Caputo

sense, which represents kernels power law type, Caputo–Fabrizio (CF) standing for exponentially with decaying type kernel and the

Atangana–Baleanu (AB) representing the Mittag-Leffler type kernel. It is found that the model consisting of ABC fractional derivatives

are affected more by the past than Caputo fractional derivative and CF fractional derivative. The accuracy and efficiency of the NISTM

has been shown by studying the convergence of this technique.
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1 Introduction

The soliton phenomenon are important natural phenomena, which were established through extensive research [1]. The
KdVB type equation [2–6] has gained considerable attention due to its diverse implementations in shallow water surfaces
and plasma physics. In recent years, there has been a great deal of interest in fractional calculus [7–15] that exhibits
self-organization phenomena, and which introduces a new parameter (fractional derivative) to these systems. There is
a solid reason as to why we have used fractional differential equations (FDEs), viz., a physical phenomenon realistic
modelling depends not only on the instant time, but also on the past that was successfully achieved with the help of
fractional calculus. Some methods have been used for solving non-linear FPDE [16–28]. One of the central methods
for transformation is NISTM, which was implemented by Prakash et al. [29]. It is considered a rather good approach to
solving nonlinear fractio nal differential equations. The original contributions in this paper is to study three fractional
KdVB equations under fractional-order operators with the Caputo [29], the CF [30] and the AB [31] in the Caputo sense
to determine the equation with highest efficiency rate. We propose NISTM to solve these nonlinear fractional differential
equations in the Caputo sense, which take the following forms: The KdVB equation of fractional order under the Caputo
sense is given as

CDα
t v(x, t)+ av

∂v

∂x
+ b

∂ 2v

∂x2
+ c

∂ 3v

∂x3
= 0. (1)

The KdVB equation of fractional order under the CF sense is given as

CF Dα
t v(x, t)+ av

∂v

∂x
+ b

∂ 2v

∂x2
+ c

∂ 3v

∂x3
= 0. (2)
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Finally, the KdVB equation of fractional order under the AB sense is given as

ABCDα
t v(x, t)+ av

∂v

∂x
+ b

∂ 2v

∂x2
+ c

∂ 3v

∂x3
= 0. (3)

Subject to the initial condition

v(x,0) = f0 (x) , (4)

where a, b, c are given constants, and α , is the parameter describing the order of fractional derivative. The sub-sections
that constitute the outline of this paper are presented here. In Section 2, we present a succinct summary of the fractional
derivatives and natural transform. In Section 3, we present the convergence of NISTM. Section 4 contains new
approximate results for the fractional KdVB equations. The paper concludes with a statement of the findings.

2 Mathematical groundwork

In this section, we present some basic definitions of Sumudu transform, which will be used for the purposes of this
paper [32–35].
Definition 1. The Sumudu transform of the function is defined over the set of functions for some positive constant A

U =

{
v(t) : ∃A,τ1,τ2 > 0, |v(t)|< Ae

|t|
τ j , i f t ∈ (−1) j×[0,∞)

}

by

St [v(t)] =

∫ ∞

0
v(u t)e−tdt,u ∈ (−τ1,τ1) , (5)

where St [v(t)] is the time function natural transform and u is the Sumudu transform variable.
Definition 2. The Sumudu transform St [v(x, t)] of Caputo’s fractional derivative Dα

t is defined as:

St

[
CDα

t v(x, t)
]
= u−α (St [v(x, t)]− v(x,0)) , 0 < α ≤ 1 (6)

Definition 3. The Sumudu transform St [v(x, t)] of CF fractional derivative CF Dα
t is defined as:

St

[
CF Dα

t v(x, t)
]
=

C (α)

1−α (1− u)
(St [v(x, t)]− v(x,0)) , 0 < α ≤ 1 (7)

Definition 4. The Sumudu transform St [v(x, t)] of AB fractional derivative in Caputo sense ABCDα
t is defined as:

St

[
ABCDα

t v(x, t)
]
=

AB(α)StEα

(
− αtα

1−α

)

(1−α)
(St [v(x, t)]− v(x,0)) , 0 < α ≤ 1 (8)

3 Convergence of NISTM

In this section, we briefly discuss the convergence of the NISTM series of solutions.

Theorem 1. The infinite series ∑
∞
n=0 vn (x, t) converges to the analytical solution v(x, t) whenever Rn = ‖vn(x,t)‖

‖vn−1(x,t)‖
, R ∈

[0,1) , where the norms are defined as [36]:

‖vn(x, t)‖ =

√√√√√
b∫

a

d∫

c

|vn(x, t)|2dtdx,
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4 Numerical examples

Three examples of fractional KdVB equation have been addressed in this section to illustrate NISTM performance and
efficiency.
Example 1. NISTM for fractional KdVB equation by using Caputo sense

CDα
t v(x, t) =−avvx − bv2x− cv3x. (9)

With a given initial condition

v(x,0) =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

. (10)

According to the NISTM, we apply Sumudu transform on both sides of equation (9), and we have

St

[
CDα

t v(x, t)
]
=−St [avvx + bv2x+ cv3x] . (11)

Using equation (5), equation (6) and equation (10), we have

u−α (ṽ(x,u)− v(x,0)) =−St [avvx + bv2x+ cv3x] . (12)

On simplifying,

ṽ (x,u) = v(x,0)− uαSt [avvx + bv2x+ cv3x] . (13)

We can write equation (13) in the form

ṽ(x,u) = v(x,0)− uαSt [H (v)] ,where H (v) = avvx + bv2x+ cv3x. (14)

By comparing both sides of equation (14), we have

ṽ0 (x,u) = v(x,0) = f0 (x) , (15)

ṽk+1 (x,u) =−uαSt

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)]
. (16)

By taking inverse Sumudu transform to equation (15), and equation (16), we get

v0 (x, t) = v(x,0) = f0 (x) , (17)

vk+1 (x, t) =−S−1
t

(
uαSt

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)])
. (18)

The following iteration is then deduced, as follows:

v0 (x, t) = f0 =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

, (19)

v1 (x, t) =− f1
tα

Γ (α + 1)
, (20)

v2 (x, t) = f2
t2α

Γ (2α + 1)
− f1∂x f1

aΓ (2α + 1)t3α

Γ (3α + 1)Γ (α + 1)2
, (21)

where

f1 = a f0∂ x f0 + b∂x,x f0 + c∂ x,x,x f0,

f2 = a f0∂ x f1 + a f1∂ x f0 + b∂ x,x f1 + c∂ x,x,x f1.
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And so on. Therefore, we get the solution of equation (9) as

v(x, t) = v0 (x, t)+
∞

∑
m=1

vm (x, t) .

See Figures 1, 4(a) and 5.

Fig. 1: Graphs of v(x,t) for example 1 at a = 1, b =−0.1, c = 0.5, t = 60 at various values α .

Table 1: Comparison of the absolute errors between NISTM and HATM [6] at t = 0.1, α = 1.

x Exact [6] |Exact-NISTM| Caputo |Exact-NISTM| CF |Exact-NISTM| ABC |Exact-HATM| [6]

0.1 0.24480 1.540E-05 1.540E-05 1.540E-05 1.921E-05

0.2 0.24480 3.508E-05 3.508E-05 3.508E-05 3.842E-05

0.3 0.24480 5.475E-05 5.475E-05 5.475E-05 5.763E-05

0.4 0.24470 7.443E-05 7.443E-05 7.443E-05 7.684E-05

0.5 0.24470 9.410E-05 9.410E-05 9.410E-05 9.604E-05

0.6 0.24470 1.138E-04 1.138E-04 1.138E-04 1.153E-04

0.7 0.24470 1.334E-04 1.334E-04 1.334E-04 1.345E-04

0.8 0.24470 1.531E-04 1.531E-04 1.531E-04 1.537E-04

0.9 0.24460 1.728E-04 1.728E-04 1.728E-04 1.729E-04

1 0.24460 1.925E-04 1.925E-04 1.925E-04 1.921E-04

Example 2. NISTM for fractional KdVB equation using CF sense

CF Dα
t v(x, t) =−avvx − bv2x− cv3x. (22)

With a given initial condition

v(x,0) =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

. (23)
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According to the NISTM, we apply Sumudu transform on both sides of equation (22), and we have

St

[
CF Dα

t v(x, t)
]
=−St [avvx + bv2x+ cv3x] . (24)

Using equation (6) and equation (7), we have

C (α)

1−α (1− u)
(ṽ(x,u)− v(x,0)) =−St [avvx + bv2x+ cv3x] . (25)

On simplifying,

ṽ(x,u) = v(x,0)+
α (1− u)− 1

C (α)
St [avvx + bv2x+ cv3x] . (26)

We can write equation (26) in the form

ṽ(x,u) = v(x,0)+
α (1− u)− 1

C (α)
St [H (v)] ,whereH (v) = avvx + bv2x + cv3x. (27)

By comparing both sides of equation(27), we have

ṽ0 (x,u) = v(x,0) = f0 (x) (28)

ṽk+1 (x,u) =
α (1− u)− 1

C (α)
St

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)]
. (29)

By taking inverse Sumudu transform to equation(28), and equation(29), we get

v0 (x, t) = v(x,0) = f0 (x) , (30)

vk+1 (x, t) = S−1
t

(
α (1− u)− 1

C (α)
St

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)])
. (31)

The following iteration is then deduced, as follows:

v0 (x, t) = f0 =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

, (32)

v1 (x, t) =
f1

C (α)
(α − 1−αt), (33)

v2 (x, t) =
α − 1

C (α)
f2 +

(
α − 1

C (α)
f3 −

α

C (α)
f2

)
t +

(
a

α2 (1−α)

C (α)3
f1∂x f1 −

α

2C (α)
f3

)
t2 −

aα3Γ (2α + 1)

3 C (α)3
Γ (α + 1)2

f1∂x f1t3
,

(34)
where

f1 = a f0∂x f0 + b∂x,x f0 + c∂x,x,x f0,

f2 =
α − 1

C (α)

(
a f0∂x f1 + a f1∂x f0 + b∂x,x f1 + c∂x,x,x f1 +

a(α − 1)

C (α)
f1∂x f1

)
,

f3 =
−α

C (α)

(
a f0∂x f1 + a f1∂x f0 + b∂x,x f1 + c∂x,x,x f1 +

2a(α − 1)

C (α)
f1∂x f1

)
.

And so on. Therefore, we get the solution of equation(22) as

v(x, t) = v0 (x, t)+
∞

∑
m=1

vm (x, t) .
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See Figures 2, 4(b) and 5.

Fig. 2: Graphs of v(x,t) for example 2 at a = 1, b =−0.1, c = 0.5, C(α) = 1, t = 60 at various values α .

Table 2: The convergence of the NISTM solutions using Caputo, CF and ABC definitions.

α 1 0.9 0.7 0.5

Caputo CF ABC Caputo CF ABC Caputo CF ABC Caputo CF ABC

R1 0.0033 0.0033 0.0033 0.0028 0.0030 0.0026 0.0020 0.0025 0.0016 0.0014 0.0019 0.0010

R2 0.3032 0.3032 0.3032 0.2784 0.2835 0.2607 0.2282 0.2436 0.1874 0.1792 0.2027 0.1314

Example 3. NISTM for fractional KdVB equation using ABC sense

ABCDα
t v(x, t) =−avvx − bv2x− cv3x. (35)

With a given initial condition

v(x,0) =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

. (36)

According to the NISTM, we apply Sumudu transform on both sides of equation (35), and we have

St

[
ABCDα

t v(x, t)
]
=−St [avvx + bv2x + cv3x] . (37)

Using equation (6) and equation (8), we have

AB(α)StEα

(
− αtα

1−α

)

(1−α)
(ṽ (x,u)− v(x,0)) =−St [avvx + bv2x+ cv3x] .. (38)

On simplifying,

ṽ(x,u) = v(x,0)−
(1−α)

AB(α)StEα

(
− αtα

1−α

)St [avvx + bv2x+ cv3x] . (39)

We can write equation (39) in the form

ṽ(x,u) = v(x,0)+
α (1− uα)− 1

AB(α)
St [H (v)] (40)
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where

H (v) = avvx + bv2x + cv3x and StEα

(
−

αtα

1−α

)
=

1−α

1−α +αuα
. See [37]

By comparing both sides of equation (40), we have

ṽ0 (x,u) = v(x,0) = f0 (x) (41)

ṽk+1 (x,u) =
α (1− uα)− 1

AB(α)
St

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)]
. (42)

By taking inverse Sumudu transform to equation (41), and equation (42), we get

v0 (x, t) = v(x,0) = f0 (x) , (43)

vk+1 (x, t) = S−1
t

(
α (1− uα)− 1

AB(α)
St

[
H

(
k

∑
r=0

vk

)
−H

(
k−1

∑
r=0

vk−1

)])
. (44)

The following iteration is then deduced, as follows:

v0 (x, t) = f0 =
12b2

25
−

12b2

25
Tanh

(
bx

5

)
+

6

25

(
Sech

(
bx

5

))2

, (45)

v1 (x, t) =
f1

AB(α)

(
α − 1−α

tα

Γ (α + 1)

)
, (46)

v2 (x, t) =
α − 1

AB(α)
f2 +

(
α − 1

AB(α)
f3 −

α

AB(α)
f2

)
tα

Γ (α + 1)
+

(
a

α2 (1−α)Γ (2α + 1)

AB(α)3
Γ (α + 1)2

f1∂x f1 −
α

AB(α)
f3

)
t2α

Γ (2α + 1)

−
aα3Γ (2α + 1)

AB(α)3
Γ (α + 1)2

f1∂x f1
t3α

Γ (3α + 1)
, (47)

where

f1 = a f0∂x f0 + b∂x,x f0 + c∂x,x,x f0,

f2 =
α − 1

AB(α)

(
a f0∂x f1 + a f1∂x f0 + b∂x,x f1 + c∂x,x,x f1 +

a(α − 1)

AB(α)
f1∂x f1

)
,

f3 =
−α

AB(α)

(
a f0∂x f1 + a f1∂x f0 + b∂x,x f1 + c∂x,x,x f1 +

2a(α − 1)

AB(α)
f1∂x f1

)
.

And so on. Therefore, we get the solution of equation (35) as

v(x, t) = v0 (x, t)+
∞

∑
m=1

vm (x, t) .

See Figures 3, 4(c) and 5.
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Fig. 3: Graphs of v(x,t) for example 3 at a = 1, b =−0.1, c = 0.5, AB(α) = 1, t = 60 at various values α .

(a) (b)

(c)

Fig. 4: Graphs of NISTM solution v(x,t) for examples 1,2,3 at a = 1, b =−0.1, c = 0.5, α = 0.7.
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Table 3: NISTM solutions for fractional KdV-Burgers equation using Caputo, CF and ABC definitions at t = 0.1.

α 0.9 0.8 0.7

x Caputo CF ABC Caputo CF ABC Caputo CF ABC

0.2 0.244779 0.244809 0.244808 0.244779 0.244805 0.244803 0.244780 0.244802 0.244798

0.4 0.244749 0.244818 0.244818 0.244750 0.244815 0.244814 0.244751 0.244813 0.244810

0.6 0.244712 0.244820 0.244820 0.244713 0.244818 0.244817 0.244715 0.244816 0.244814

0.8 0.244667 0.244814 0.244814 0.244669 0.244813 0.244812 0.244671 0.244812 0.244811

1 0.244615 0.244800 0.244800 0.244617 0.244800 0.244800 0.244619 0.244800 0.244800

(a) (b)

(c)

Fig. 5: Graphs of NISTM solution v(x,t) for examples 1,2,3 at a = 1, b =−0.1, c = 0.5, x = 1 at various values α .

5 Analysis and discussion

We investigate the convergence of the solutions of problems (9), (22) and (35) by the NISTM. In view of theorem (1),
then we have,

‖vn (x, t)‖=

√∫ 5

−5

∫ 10

0
|vn (x, t) |2dt dx,

We note that NISTM solutions converge because all the values of R1 and R2 at different values of α are less than 1,
see Table 2. Comparing the values of R1 and R2, we note that the values of R1 and R2 with ABC fractional derivative
are lesser than the values of R1 and R2 for the same value of Caputo and CF fractional derivatives. It is found that the
model representing of Mittag-Leffler type kernel (ABC) has the highest convergence, particularly in comparison with
other fractional derivatives. It is also shown that ABC fractional derivative is helpful for real world applications. For
conventional case α = 1, the comparisons between a NISTM solution, HAM [6] and an equivalent solution are shown
in Table 1. We notice that the three fractional derivatives give the same results. The results obtained through the current
method were found to be very precise. Figures (1-5) and Table 3 show the new fractional KdVB geometric component
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solution at different values α using three fractional derivatives (Caputo-CF-ABC). For fractional case, the ABC fractional
derivatives are affected more by the past than Caputo fractional derivative and CF fractional derivative.

6 Conclusion

As has been quite apparent, we implemented the NISTM to solve fractional KdVB by using three fractional derivatives
(Caputo, CF and ABC). Prior studies arrived at an exact solution to the problem whereas the present study arrived at a
close to the exact solution. It is noted that NISTM is a very effective approach for solving nonlinear fractional problems.
It offers a range of solutions, and therein lies its strength. The present paper offers solutions that are more realistic. It
offers serious solutions that converge in real physical problems very quickly, in general. The findings can certainly be of
great use in situations where an exact solution is not needed, and where complexities in finding one are to be avoided.
Yet, it is to be asserted that further studies on the topic may open new avenues for research, leading to more refined
conclusions and highly productive results.
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