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1 Introduction

Convexity is an important property in mathematics and
economics. Recently, many researchers have developed
new generalizations for the classical convexity and also
established many properties in new generalized cases. For
example, Hanson [1] presented one of the important
generalization of convexity (i.e. invexity) in 1981. The
preinvexity was presented by Ben-Israel and Mond in [2]
which is special case of invex functions. Similarly, some
properties of preinvex and α-preinvex functions was
considered by Jeyakumar [3] and Noor [4,5], respectively.
In 1991, a class of b-vex functions was introduced by
Bector and Singh in [6]. Suneja et al. [7] explored the
generalizations of preinvex functions, i.e b-preinvex
functions. In 2006, a generalization of b-invex function
which is known as semi-b-preinvex was presented in [8].
Furthermore, Chao et al. in [9] defined a new class of
generalized sub-b-convex functions and discussed
sufficient conditions of optimality. s-convex functions of
the first type was first introduced by Orlicz in [10] and the
second type of s-convexity was introduced by Breckner in
[11], then Hudzik and Maligranda in [12] addressed some
properties of these types of s-convexity (s ∈ (0,1)). In
2016, sub-b-s-convex functions were defined using
modulation s-convexity and sub-b-convexity, see [13].

Thus, various properties of convex functions can be
established on Riemannian manifolds. For example,
Rapcsák [14] handled smooth nonlinear optimization in
Rn and Udeişte [15] investigated some generalizations of
convexity as well as optimization problems on
Riemannian Manifolds which differ from the others in the
use of Riemannian manifold. The convexity along curves
and generalizations with applications to duality theory
and optimality conditions on Riemannian manifold were
considered by Pini [16]. The concept of geodesic invexity
in Riemannian manifold was introduced and preinvexity
on a geodesic invex set was defined. Moreover, the
relationship between geodesic invexity and preinvexity on
manifolds was investigated by Barani and Pouryayevali
[17], while geodesic α-invexity and α-preinvex functions
were defined in [18]. In addition, piece of literature
involved more related generalizations of convexity, and
new class of generalized convexity such as strongly
α-invex and strongly geodesic α-preinvex functions, see
[19,20,21,22,23].

Riemannian geometry is considered as generalization of
the Euclidean case and smooth Riemannian manifolds
accommodate curvature using the tangent planes. Thus,
the metric is not trivial and distances need to reconsidered
for this curvature, see Petersen et al. [24]. Now, we recall
some definitions and results related to Riemannian and
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Hadamard manifolds presented in [14,15,18]. In this
work, we extend some of these results on Hadamard
manifold.Moreover, sufficient conditions of optimal
solutions are presented and some new inequalities under
new functions are proved.

Consider W m-dimensional Riemannian manifold,
and TpW tangent space to W at point p, if µp(x1,x2), the
map µ : p −→ µp is called a Riemannian metric where µp

to TpW . Further, a manifold W is equipped with µ known
as a Riemannian manifold, see the details in [14,15,18]
and [25].

The geodesic property is defined as the shortest
possible line between two points on a sphere or another
curved surface, or more generally in a Riemannian
manifold. Thus, we define the length of curve
α : [a1,a2]−→W as:

L(α) =
∫ a2

a1

‖ά(x)‖dx.

Furthermore, if we let

d(p1, p2) = inf{L(α) : α ∈C1 curve p1 → p2}

for any points p1, p2 ∈ W , d is a metric induced by
topology on W . Note that for every Riemannian manifold
W , there exists only one covariant derivation and it is also
known as Levi-Civita connection ▽XY , for X ,Y ∈ W .
Moreover, a geodesic smooth path α has tangent and
satisfies ▽ά(t)ά(t) = 0. Any path α joining p1 and p2 in

W that L(α) = d(p1, p2) is called a minimal geodesic.
Similarly, Hadamard manifold is complete, simply
connected manifolds and has non-positive sectional
curvature on W , i.e having an exponential map
expp : TpW −→ W such that expp(v) = αv(1), on the
whole tangent space of a point then αv is also geodesic
and applied as velocity of α .

Now, we recall the following definition and the details
are found in [18].

Definition 1.Assume that W is a Hadamard manifold, and
η : W ×W −→ TW is a function and while α : W ×W −→
R\{0} defined such that α( j1, j2)η( j1, j2) ∈ Tj2W, for all

j1, j2 ∈W. A non-empty subset Y ⊂W is called a geodesic
α-invex (Gα invex) set with respect to(w.r.t) η if there is a
unique geodesic α j1, j2 : [0,1]−→W such that

α j1, j2(0) = v, ά j1, j2(0) = α( j1, j2)η( j1, j2)

for α j1, j2(t) ∈ Y , and 0 ≤ t ≤ 1.

The set Y is called G.α- invex set on a Hadamard manifold
if

expl (tα( j1, j2)η( j1, j2)) ∈Y,

for j1, j2 ∈ Y and 0 ≤ t ≤ 1.

Remark.If α( j1, j2) = 1, the Definition 1 reduces to
geodesic invex set [17].

2 Main Results

From now on, let W be a Hadamard manifold; TW be the
tangent space of W and Y be a nonempty subset of W . Let
η : W × W −→ TW and α : W × W −→ R\{0} be
functions such that for every j1, j2 ∈ W then
α( j1, j2)η( j1, j2) ∈ Tj2W . Also, let
b( j1, j2, t) : Y ×Y × [0,1]−→ R be a real value function.

Definition 2.Assume that Y is G.α- invex set. The function
h : Y −→ TW is called a geodesic sub-(α,b,s)-preinvex, if
there exists b( j1, j2, t) : Y ×Y × [0,1]−→R such that

h(exp j2
tα( j1, j2)η( j1, j2)) ≤ tsh( j1)+ (1− t)sh( j2)

+b( j1, j2, t),

for j1, j2 ∈ Y, t ∈ [0,1] and s ∈ (0,1 ].

Remark. 1.If s = 1 and b( j1, j2, t) ≤ 0, Definition 2
reduces to geodesic α-preinvex.

2.If s = 1, α( j1, j2) = 1 and b( j1, j2, t)≤ 0, Definition 2
reduces to geodesic convex.

Example 1.Consider h : [0,+∞ )−→R is defined by

h(x) = (x2 + 4x)s
, and b(x,y, t) = tx2 + 4ty2 for s ∈ (0,1).

Now assume that

α(t) = exp j2
(tα( j1, j2)η( j1, j2))

where α( j1, j2) = 1 and η( j1, j2) = exp−1
j2

j1. Then h is a

sub− (α,b,s)-preinvex.

Remark.When α(t) = t j1 + (1 − t) j2 in Example 1, h

becomes the sub-b-s-convex function [13].

Fig. 1: h is sub-b-s-convex function
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Theorem 1.Assume that f1, f2 : Y −→ TW are geodesic
sub-(α,b,s)-preinvex then f1 + f2 and β f1,β ≥ 0 are also

geodesic sub-(α,b,s)-preinvex.

The above-mentioned theorem defines that the geodesic
sub-preinvex property is a linear property. Similarly, we
can extend to above theorem and we have the following
corollary.

Corollary 1.If hι : Y −→ TW,(ι = 1,2, · · · ,n) are
geodesic sub-(α,b,s)-preinvex bι : Y ×Y × [0,1] −→ R,
(i = 1,2, · · · ,n), respectively, then

h =
n

∑
ι=1

λιhι ,λι ≥ 0

is also geodesic sub-(α,b,s)-preinvex where b =
n

∑
ι=1

λιbι .

Theorem 2.Consider h1 : Y −→ TW ⊆ R is a geodesic

sub-(α,b,s)-preinvex function and h2 : K −→ R is a
non-decreasing convex function where rang(h1) ⊆ K,
then h1oh2 is a geodesic sub-(α,b,s)-preinvex function b

where b = h2ob1.

Proof.

(h2oh1)
(

exp j2
tα( j1, j2)η( j1, j2)

)

= h2

(

h1(exp j2
tα( j1, j2)η( j1, j2))

)

≤ h2 (t
sh1( j1)+ (1− t)sh1( j2)+ b1( j1, j2, t))

= tsh2 (h1( j1))+ (1− t)sh2 (h1( j2))+ h2 (b1( j1, j2, t))

= ts (h2oh1) ( j1)+ (1− t)s (h2oh1)( j2)+ b( j1, j2, t)(1)

which means that h2oh1 is a geodesic
sub-(α,b,s)-preinvex function.

The above-mentioned theorem indicates that under
certain conditions the composition is invariant. Next, the
definition of a geodesic sub-(α,b,s)-preinvex set.

Definition 3.A set Y ⊆ W is said to be a geodesic sub-
(α,b,s)-preinvex set, if

(

exp j2
tα( j1, j2)η( j1, j2), t

sβ1 +(1− t)sβ2 +b(u1,u2, t)
)

∈Y,

∀( j1,β1),( j2,β2) ∈ Y , j1, j2 ∈ W, t ∈ [0,1], s ∈ (0,1] and
b defined as b : Y ×Y × [0,1]−→ R.

The epigraph of a geodesic sub-(α,b,s)-preinvex function
h : Y −→ TW can be explained as

ω(h) = {( j,r) : j ∈ Y,β ∈ R,h( j)≤ β} .

Now, in order to prove the sufficient and necessary
rule for h to be a geodesic sub-(α,b,s)-preinvexn we
need to study properties of geodesic
sub-(α,b,s)-preinvex in terms of their epigraph ω(h).

Proposition 1.Assume that hi : Y −→ TW are geodesic
sub-(α,b,s)-preinvex functions with respect to maps

bi : Y × Y × [0,1] −→ R, for (i = 1,2, · · · ,n), then
H = maxhi is also geodesic sub-(α,b,s)-preinvex where
b = maxbi.

Theorem 3.A function h : Y −→ TW is geodesic

sub-(α,b,s)-preinvex if and only if its epigraph is also a
geodesic sub-(α,b,s)-preinvex.

Proof.Assume that h is a geodesic sub-(α,b,s)-preinvex
function and ( j1,β1),( j2,β2) ∈ ω(h), then by hypothesis,
h( j1)≤ β1 and h( j2)≤ β2. Furthermore,

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

≤ tsh( j1)

+ (1− t)sh( j2)+ b( j1, j2, t)

≤ tsβ1 +(1− t)sβ2 + b( j1, j2, t). (2)

Then,

(

exp j2
tα( j1, j2)η( j1, j2), t

sβ1 +(1− t)sβ2 + b( j1, j2, t)
)

is in ω(h). Thus, ω(h) is geodesic sub-(α,b,s)-preinvex
set.
Next, let ω(h) be geodesic sub-(α,b,s)-preinvex set, then

( j1,h( j1)),( j2,h( j2)) ∈ ω(h),

where j1, j2 ∈ Y .
(

exp j2
tα( j1, j2)η( j1, j2), t

sh( j1)+(1− t)sh( j2)+b( j1, j2,δ )
)

is in ω(h) which shows that

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

≤ tsh( j1)+(1−t)sh( j2)+b( j1, j2, t).

Then h is geodesic sub-(α,b,s)-preinvex function.

Proposition 2.If Yi is a family of geodesic

sub-(α,b,s)-preinvex sets, the intersection ∩i∈KYi is also
a geodesic sub-(α,b,s)-preinvex.

Proof.Suppose that ( j1,β1),( j2,β2) ∈ ∩i∈KYi. Then
( j1,β1),( j2,β2) ∈ Yi,∀i ∈ K

(

exp j2
tα( j1, j2)η( j1, j2), t

sβ1 +(1− t)sβ2 +b( j1, j2, t)
)

∈Yi

∀i ∈ K. This implies that

(

exp j2
tα( j1, j2)η( j1, j2), t

sβ1 +(1− t)sβ2 + b( j1, j2, t)
)

is in ∩i∈KYi. Thus, the intersection ∩i∈KYi is a geodesic
sub-(α,b,s)-preinvex set.

The aforementioned proposition indicates that the
arbitrary intersection of geodesic sub-preinvex sets again
is geodesic sub-preinvex. As per Theorem 3 and
Proposition 2, the following proposition holds:

Proposition 3.If hi are geodesic sub-(α,b,s)-preinvex
functions then a function H = supi∈K hi is also geodesic

sub-(α,b,s)-preinvex function.
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Definition 4.For a mapping h : Y −→R, if the next limit

lim
t−→0

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

− h( j2)

t‖α( j1, j2)η( j1, j2)‖
,

exists, h is called a (α,η)-differentiable mapping at j2 ∈
W.

Also, the (α,η)-differentiable mapping of h at j2 is given
by

dα( j1, j2)η( j1, j2)h( j2) = lim
t−→0

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

t‖α( j1, j2)η( j1, j2)‖

− lim
t−→0

h( j2)

t‖α( j1, j2)η( j1, j2)‖
.

Theorem 4.Assume that Y is a G.α-invex set. If h : Y −→
R is (α,η)-differentiable geodesic sub-(α,b,s)-preinvex,

the following holds

dα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖ ≤ ts−1h( j1)

+
h( j2)

2t
+ lim

t−→0+

b( j1, j2, t)

t
.

Proof.Since h is a geodesic sub-(α,b,s)-preinvex, then it
follows that

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

≤ tsh( j1)+ (1− t)sh( j2)

+b( j1, j2, t),

∀ j1, j2 ∈ Y, t ∈ [0,1] and for some s ∈ (0,1 ]. Also, since h
is (α,η)-differentiable, then

dα( j1, j2)η( j1, j2)h( j2) = lim
t−→0

h
(

exp j2
tα( j1, j2)η( j1, j2)

)

t‖α( j1, j2)η( j1, j2)‖

− lim
t−→0

h( j2)

t‖α( j1, j2)η( j1, j2)‖
.

Hence

h( j2)+ tdα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖ + O2(t)

= h
(

exp j2
tα( j1, j2)η( j1, j2)

)

≤ tsh( j1)+ (1− t)sh( j2)+ b( j1, j2, t)

≤ tsh( j1)+ (1+ ts)h( j2)+ b( j1, j2, t).

Then

tdα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖ + O2(t)

≤ ts [h( j1)+ h( j2)]+ b( j1, j2, t).

Since lim
t−→0+

b( j1, j2, t)

t
is the maximum of

b( j1, j2, t)

t
−

O2(t)

t
, then we obtain that

dα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖

≤ ts−1 [h( j1)+ h( j2)]+ lim
t−→0+

b( j1, j2, t)

t
. (3)

On the other hand, because of

h( j2)+ tdα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ tsh( j1)+ (1− t)sh( j2)+ b( j1, j2, t)

= tsh( j1)+ (1− t)sh( j2)− tsh( j2)+ tsh( j2)+ b( j1, j2, t)

= ts (h( j1)− h( j2))+ b( j1, j2, t)+ ((1− t)s+ ts)h( j2).

Hence, ((1− t)s+ ts) ≤ 2 for t ∈ [0,1] and for s ∈ (0,1 ].
Here h is a non-negative function, then we have

h( j2)+ tdα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ ts (h( j1)− h( j2))+ b( j1, j2, t)+ 2h( j2),

which implies that

tdα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ ts (h( j1)− h( j2))+ h( j2)+ b( j1, j2, t),

it follows that

dα( j1, j2)η( j1, j2)h( j2)‖α( j1, j2)η( j1, j2)‖

≤ ts−1 (h( j1)− h( j2))+
h( j2)

t
+ lim

t−→0+

b( j1, j2, t)

t
.(4)

Hence, by adding equations (3) and (4), the result is
obtained.

Theorem 5.Assume that g : Y −→ R is
(α,η)-differentiable geodesic sub-(α,b,s)-preinvex then

dα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖

≤ ts−1 (g( j1)− g( j2))+ lim
t−→0+

b( j1, j2, t)

t
.

Proof.If g is a geodesic sub-(α,b,s)-preinvex and also
(α,η)-differentiable, then

dα( j1, j2)η( j1, j2)g( j2) = lim
t−→0

g
(

exp j2
tα( j1, j2)η( j1, j2)

)

t‖α( j1, j2)η( j1, j2)‖

− lim
t−→0

g( j2)

t‖α( j1, j2)η( j1, j2)‖
,

so

g( j2)+ tdα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ tsg( j1)+ (1− t)sg( j2)+ b( j1, j2, t).

Since t ∈ [0,1] and s ∈ (0,1 ], then (ts +(1− t)s ≥ 1),
which implies that

g( j2)+ tdα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ tsg( j1)+ (1− ts)g( j2)+ b( j1, j2, t),

tdα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖+O2(t)

≤ ts (g( j1)− g( j2))+ b( j1, j2, t),

dα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖

≤ ts−1 (g( j1)− g( j2))+ lim
t−→0+

b( j1, j2, t)

t
.
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Next, we apply the aforementioned associated results to
the non-linear programming. First, the following
unconstrain problem (P) is considered

(P) : min f (x),x ∈Y .

Theorem 6.Assume that g : Y −→ R is a non-negative

(α,η)-differentiable and sub-(α,b,s). If j̃ ∈ Y and the
inequality

dα( j, j̃)η( j, j̃) f ( j̃)‖α( j, j̃)η( j, j̃)‖ ≥
g( j̃)

t
+ lim

t−→0+

b( j, j̃, t)

t
(5)

holds for j ∈ Y , t ∈ (0,1] and s ∈ (0,1] , then j̃ is the
optimal solution for problem (P) w.r.t. g on Y .

Proof.Using (4), we have

dα( j, j̃)η( j, j̃)g( j̃)‖α( j, j̃)η( j, j̃)‖ ≤ ts−1[g( j)− g( j̃)]

+
g( j̃)

t
+ lim

t−→0+

b( j, j̃, t)

t
,

dα( j, j̃)η( j, j̃)g( j̃)‖α( j, j̃)η( j, j̃)‖−
g( j̃)

t

− lim
t−→0+

b( j, j̃, t)

t
≤ ts−1[g( j)− g( j̃)],

holds for t ∈ (0,1] and s ∈ (0,1] On the other hand,

dα( j, j̃)η( j, j̃)g( j̃)‖α( j, j̃)η( j, j̃)‖

≥
g( j̃)

t
+ lim

t−→0+

b( j, j̃, t)

t
,

then get g( j)− g( j̃) ≥ 0. Hence, j̃ is the optimal solution
of g on Y .

Corollary 2.Considering that g : Y −→R is a strictly non-
negative sub-(α,b,s)-preinvex. If j̃ ∈ Y satisfies (5), j̃ is a
unique optimal solution.

Proof.From (4) if g is a strictly non-negative and
sub-(α,b,s)-preinvex,

dα( j1, j2)η( j1, j2)g( j2)‖α( j1, j2)η( j1, j2)‖

≤ ts−1[g( j1)−g( j2)]+
g( j2)

t
+ lim

t−→0+

b( j1, j2, t)

t
.

Assume that u1,v1 ∈ Y are two different optimal solutions
for (P). Then g(u1) = g(v1), so

dα(u1,v1)η(u1,v1)g(v1)‖α(u1,v1)η(u1,v1)‖

−
g(v1)

t
− lim

t−→0+

b(u1,v1, t)

t
≤ ts−1[g(u1)− g(v1)].

Applying 5, we get

ts−1[g(u1)− g(v1)]> 0,

and since g(u1) = g(v1), then it follows that u1 = v1 = j̃.
Therefore, j̃ is the unique optimal solution of g on Y . Thus
the corollary is proved.

Next, the following non-linear programming problem will
be given

(PY ) : min{ f (u) : u ∈W,gi(u)≤ 0, i ∈ I} , I = {1,2, · · · ,m} .

Now assume feasible set of (PY ) is given by
M = {u ∈W : gi(u)≤ 0, i ∈ I}, and f and gi are all
differentiable and W1 is a non-empty set in W . Then we
have the next theorem.

Theorem 7(Karush-Kuhn-Tucher condition). Assume
that f : W −→ R is a non-negative (α,η)-differentiable
sub-(α,b,s)-preinvex, and gi : W −→ R (i ∈ I) are

(α,η)-differentiable sub-(α,b,s)-preinvex and

dα( j1, j
∗)η( j1, j

∗) f ( j∗) +∑
i∈I

zidα( j1, j
∗)η( j1, j

∗)gi( j∗) = 0,

zigi( j∗) = 0, (6)

where j∗ ∈ M and zi ≥ 0(i ∈ I).
If

f ( j∗)

t
+ lim

t−→0+

b( j1, j∗, t)

t
≤−∑

i∈I

lim
t−→0+

b( j1, j∗, t)

t
, (7)

then j∗ is an optimal solution of (PY ).

Proof.Assume that j1 ∈ PY , then

gi( j1)≤ 0 = gi( j∗), i ∈ I( j∗) = {i ∈ I : gi( j∗) = 0} .

Since gi are sub−(α,b,s)-preinvex and by Theorem 5, we
have

dα( j1, j
∗)η( j1, j

∗)gi( j∗)‖α( j1, j∗)η( j1, j∗)‖

≤ ts−1[gi( j1)− gi( j∗)]+ lim
t−→0+

b( j1, j∗, t)

t
,

which means that

dα( j1, j∗)η(u,v∗)gi( j∗)‖α( j1, j∗)η( j1, j∗)‖− lim
t−→0+

b( j1, j∗, t)

t

≤ ts−1[gi( j1)−gi( j∗)]≤ 0.

From 6, we get

dα( j1, j
∗)η( j1, j

∗) f ( j∗)‖α( j1, j∗)η( j1, j∗)‖

=−∑
i∈I

zidα( j1, j
∗)η( j1, j

∗)gi( j∗)‖α( j1, j∗)η( j1, j∗)‖

=− ∑
i∈I( j∗)

zidα( j1, j
∗)η( j1, j

∗)gi( j∗)‖α( j1, j∗)η( j1, j∗)‖.(8)

Using equation 7, then

dα( j1, j
∗)η( j1, j

∗) f ( j∗)‖α( j1, j∗)η( j1, j∗)‖

−
f ( j∗)

t
− lim

t−→0+

b( j1, j∗, t)

t

≥− ∑
i∈I( j∗)

zi

[

dα( j1, j
∗)η( j1, j

∗)gi( j∗)‖α( j1, j∗)η( j1, j∗)‖

− lim
t−→0+

b( j1, j∗, t)

t

]

. (9)
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From equations (8) and (9), we have

dα( j1, j
∗)η( j1, j

∗) f ( j∗)‖α( j1, j∗)η( j1, j∗)‖−
f ( j∗)

t

− lim
t−→0+

b( j1,v
∗, t)

t
≥ 0.

From Theorem 6, we get f ( j1)− f ( j∗) ≥ 0,∀ j1 ∈ M.
Hence, j∗ is an optimal solution of the problem (PY ).

3 Conclusion

In this work, the properties of geodesic
sub-(α,b,s)-preinvex functions on Hadamard manifolds
are presented and some basic properties were studied in
both general and differential cases. Furthere, sufficient
conditions of optimal solutions was also studied and some
new inequalities under geodesic sub-(α,b,s)-preinvexity
such as the invariant of compositions were proved.
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