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We present an evolutionary algorithm based on a local search scheme for convex 
quadratic bilevel programming problems. At first, based on Karush-Kuhn-Tucher 
conditions, the follower’s problem is replaced by its linear complementarity systems, 
and the bases of the linear systems are encoded as individuals of populations. For 
each fixed individual l, we can obtain the follower’s optimal solution y(x). In 
addition, we replace the follower vector y in the leader’s problem by the solution 
function y(x), and then the leader’s problem is converted to a convex quadratic 
problem which only involves x. At last, we solve the problem using a classical local 
search technique and obtain an optimal objective value F, which is taken as the 
fitness of l. The distinct characteristic of the algorithm is that the bases of the 
follower’s complementarity systems are searched instead of the variable values, 
which makes the search space become finite. In order to illustrate the efficiency of 
the proposed algorithm, 10 test problems selected from literature are solved, and the 
results show that the proposed algorithm is efficient and robust. 
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1 Introduction 

Bilevel programming problem (BLPP) involves two players at different levels, the 
leader and the follower. Both the leader and the follower have own decision variables and 
objectives, and make an attempt to optimize their own objectives in sequence. The 
general bilevel programming problem can be formulated as follows 
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Where x and y are called leader’s and follower’s vectors, whereas F and f are called 
leader’s and follower’s objective functions, respectively. In BLPP (1.1), the leader moves 
first by choosing a vector x to optimize F. For each fixed x, the follower optimizes his/her 
objective function f  by selecting a vector y which is an optimal solution to the follower 
programming.  

BLPP exists in the area of engineering and economic management extensively, it is 
important to design effective and efficient algorithms to solve kinds of BLPPs. In spite of 
the fact that a variety of exact algorithmic approaches have been developed for dealing 
with linear and nonlinear BLPPs[1-2,4-10], due to the nonconvexity of BLPPs, the most 
of existing algorithms are very time consuming and can't deal with large-scale problems 
in a reasonable time of computation. In order to overcome these shortcomings, the paper 
is devoted to designing an evolutionary algorithm (EA) which can reduce the 
computational complexity caused by solving follower's problems. We consider convex 
quadratic BLPPs, that is, the objectives are convex quadratic functions, whereas the 
constraints are linear with respect to (x, y). In order to solve this class of nonlinear bilevel 
programming problems efficiently, some special techniques are used in the proposed 
algorithm. At first, based on Karush-Kuhn-Tucher (K-K-T) conditions, the follower’s 
problem is replaced by its linear complementarity systems, and the bases of the linear 
systems are encoded as individuals in populations. For each fixed individual l which 
corresponds to a base B, we can obtain the follower’s optimal solution y(x) when B is 
regarded as an optimal base for some x. In addition, we replace all follower variables y in 
the leader’s problem by the solution function y(x) and take 0≥y  into account; as a 

result, the leader’s problem is converted to a convex quadratic problem only involving x. 
At last, we solve the problem using a classical search technique and obtain an optimal 
objective value which is taken as the fitness of l. The distinct characteristic of the 
algorithm is that the bases of the follower’s complementarity systems are searched 
instead of the variable values, which makes the search space finite. 

This paper is organized as follows. The convex quadratic bilevel programming 
problem with transformation is presented in Section 2, and an evolutionary algorithm is 
given based on a local search technique in Section 3. Experimental results and 
comparison are presented in Section 4. We finally conclude our paper in Section 5. 
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2  Preliminaries 

Consider the following nonlinear BLPP 
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Where iQ  are symmetric positive semidefinite matrices, n
i Rc ∈ , m

i Rd ∈ ( 2,1=i ); 
qp RbRb ∈∈ 21 , ； 211 ,, ABA , and 2B  are matrices with corresponding orders. For 

convenience, we assume the follower has only one solution for each selected x and the 
rank of 2B  is q. 

  In problem (2.1), let 
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xy RQ ×∈ ( 2,1=i ). Then the follower’s objective can 

be transformed into  
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Since for any fixed x, xQxxc x
TT 2

2 +  is constant when ),( yxf  is optimized, and so we 

ignore these two terms in the follower’s objective function. Further, the follower’s 
problem can be re-written as  
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Where xQdxc T
xy

T 2
2 2)( +=  and xAbxb 22)( −= . Obviously, each component of both )(xc  

and )(xb  is a linear function of x. Since for x fixed, the follower's problem is a convex 

quadratic programming with respect to y, K-K-T stationary point problem of the 
follower's programming can be written as 
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Where u and v are Langrangian multipliers and qRy ∈0 is a slack vector. (2.4) is also 

called the linear complementarity systems of the follower's programming. Further, let 
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Then (2.4) can be rewritten as  
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For problem (2.5), if (w, z) satisfying (c3) is a basic feasible solution of (c1-c2), then 
it is called the complementary basic feasible solution (CBFS) of (2.5)[3]. For fixed x, if 
one wants to obtain the optimal solution y of the follower's problem, all that needs to do 
is to solve problem (2.5) for a CBFS. In fact, it is computation-expensive to solve (2.5) 
directly. Considering the characteristics of solutions to (2.5), there exists at least one 
optimal base B for each selected x, which consists of some columns of the coefficient 
matrix (I, -M), and for each variable pair ( ii zw , ), qmi += ,...,2,1 , only one variable 

can be selected as basic variable according to (c3). 

3  Solution Method 

In this section, we present an EA for solving (2.1). At first, we encode each individual 
by considering the bases of (c1-c2) on condition that (c3) is satisfied. Then a new fitness 
function is given, which provides a local search for the variable values of the leader. Next 
we describe each step of the algorithm in more detail. 

3.1 Chromosome Encoding 

In this section the bases B of (2.5) are encoded as individuals, and each individual can 
be represented as a binary string 0...01001001=l (the string length is 2(m+q)), where 

the total number of 1’s is m+q, and each 1 in l  corresponds to a column of (I,-M) which 
is selected into B. But in the binary string the selection of some genes can be determined 
completely by the other genes when the constraint (c3) is considered, hence the genes of 

l can be reduced further. The matrix B can be taken as follows: At first, k (0≤ k≤ m+q ) 

columns are chosen randomly from I, and let the k column indices be kiii ...,,, 21 . Then the 

remaining m+q-k columns can be taken from all columns of -M except for the kii −1 th 

columns. Noted that due to (c3), only m+q-k columns remain in –M which can be 
selected into B. It follows that the total m+q indices are completely determined by 

kiii ...,,, 21 . Therefore, it is enough to represent B only using the columns selected from I. 



An Evolutionary Algorithm with Local ……………                                                                       143      
According to the scheme, a chromosome can be denoted by a binary string 

0...01001001=l  (m+q gene bits), where 1’s represent the columns in I which belong to 
B, whereas 0’s stands for the columns not in B. If B corresponding to l is singular, the 
chromosome is called an infeasible individual; otherwise, it is feasible.  

3.2 Fitness Evaluation 

For each individual l , if it is a feasible individual, the fitness R(l) of l is given as 
following steps: At first, according to l, we solve (2.5) and get a CBFS, in which the 
follower’s solution y(x), as a linear function of x, can be obtained. Then we replace y in 
(2.1) by the y(x) and take 0)( ≥xy , as a result, the leader problem can be converted to an 

optimization problem only involving x. At last, the problem is solved to obtain the 
optimal value F and the value is taken as the fitness of l. If the feasible region of the 
problem is empty, we take R(l)=M, where M is large enough. The solving process, in fact, 
is a local search, which can find the “best” one in all values of x for which y(x) is the 
optimal solution to the follower’s problem. If the individual l  is infeasible, we also 
let MlR =)( . After doing so, it is convenient for us to encode all individuals. 

3.3 Crossover and Mutation Operators 

The crossover operator is given as follows. Let l′  and l ′′  are parents for crossover 
and an offspring is denoted by o′ . At first, we label all gene bits with the same values, 
then copy these values to the same gene bits of o′ and let the amount of 1’s in o′ be d. 
We select randomly m+q-d genes in the remaining bits and set the related values be 1, 
whereas other values are taken as 0.  

The bit mutation operator is adopted in the proposed algorithm.  

3.4 Evolutionary Algorithm with Local Search (EA/LS) 

In this subsection, we present an evolutionary algorithm with local search based on 
the encoding scheme, fitness function and evolutionary operators described above. 

Step 1 (Initialization) Randomly generate N initial points, which form the initial 
population )0(pop with population size N. Let k =0. 

Step 2 (Fitness) Evaluate the fitness value of each point in )(kpop ; 

Step 3 (Crossover) Execute the crossover and get offspring set cO ; 

Sept 4 (Mutation) Execute the mutation and get its offspring set mO ; 
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Step 5 (Selection) Evaluate the fitness values of all points in mc OO ∪ . Select the best 

1N  points from the set mc OOkpop ∪∪)(  and randomly select 1NN −  points from the 

remaining points of the set. These selected points form the next population )1( +kpop . 

Step 6 If the termination condition is satisfied, then stop; otherwise, let 1+= kk , go 
to Step 3. 

 

4 Simulation Results 

We select 10 test problems from the references，which are convex and quadric 
except for T06 (linear-quadric BLPP). We use the active-set method (the simplex method 
for T06) to solve the resulting problems. The parameters are chosen as follows: the 
population size N=30, the crossover probability 8.0=cp , the mutation probability 1.0=mp , 

,201 =N  10000=M . The algorithm stops when the maximum of 50 generations is 

achieved. We execute EA/LS in 20 independent runs on each problem on a PC(Intel 
Pentium IV-2.66GHz), and record the following data: Leader's objective value *)*,( yxF  

at the best solutions; leader's objective value yxF ,( ) at the worst solutions; mean value 

meanF  of the leader's objective values in 20 runs as well as median medianF  and standard 

deviation STD. 

All results are shown in Table 4.1. Table 4.1 provides the comparison of the results 
found by EA/LS in 20 runs and by the compared algorithms for T01-T10. Ref stands for 
the related algorithms in the references. 

It can be seen from Table 4.1 that for problems T06[1] and T09[9], all results found 
by EA/LS in 20 runs are better than the best results given by the compared algorithms. 
For other problems, the best results found by EA/LS are as good as those by the 
compared algorithms. In all 20 runs, EA/LS found the best results of all problems except 

Table 4.1:  Comparison of the results found by EA/LS and by the compared algorithms. 

No. 
),(/ yxFLSEA −  Ref－ 

*)*,( yxF  *)*,( yxF  meanF  medianF  yxF ,( ) STD 

T01[5] 17 17 17 17 0 17 
T02[10] -11.999 -11.999 -11.999 -11.999 0 -11.999 
T03[7] 231.25 231.25 231.25 231.25 2.4e-9 231.25 
T04[7] 0.6389 0.6389 0.6389 0.6389 1.1e-8 0.6389 
T05[10] 225 225 225 225 0 225 

T06[1,10] 0 0 0 0 0 0[10], 5[1] 
T07[10] -7.58 -7.58 -7.58 -7.58 0 -7.58 
T08[10] -8.92 -8.92 -8.92 -8.92 0 -8.92 

T09[9,10] -3.92 -3.92 -3.92 -3.92 0 -3.92[10], -3.15[9] 
T10[10] -3.6 -3.6 -3.6 -3.6 0 -3.6 
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for T03 and T04. For these two problems, we can find the standard deviations are very 
small, which means that EA/LS is stable and robust. 

5  Conclusion 

For convex quadric bilevel programming problems, the paper develops an 
evolutionary algorithm based on a local search method. The technique avoids solving the 
follower's programming directly, and so the amount of computation is reduced. 
Obviously, the proposed algorithm can be used to solve linear-quadric bilevel 
programming in which LPs are solved instead of quadric programming. 
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