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Abstract: In the present work, a new concept of generalized convexity (i.e. generalized 1 —convexity ) is established and applied to
stochastic process.Using the aforementioned concept, some new Hermite - Hadamard type inequalities for stochastic processes are
found. From these results, some other inequalities for convex stochastic processes and s-convex stochastic processes in the first sense
are deduced. Some Lemmas are introduced and the classical Holder and power mean inequalities are used as tools for the development
of the main results.
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1 Introduction everywhere

Let f: I C R — R aconvex function defined on the interval X(u+(1=1)y) <tX(u, ) + (1 =0)X(v) (2
I of real numbers and a, b € I with a < b, then the following

: . forallu,v e landt € [0,1].
inequality

With this definition, in 2012, David Kotrys established
in [4] the Hermite-Hadamard inequality version for convex

1
f (a—;b) < 5 ! / frde < M (1) stochastic processes as follows:
—alo
Theorem 1. If X : I x Q — R is Jensen-convex, mean
holds for all 7 € [0, 1]. This double inequality (1) is known square continuous in the interval I, then for any u,v € I
in the literature as Hermite-Hadamard integral inequality we have
for convex functioqs from the worlfs of J acques Hada}mard u+v 1 v X(u, ) +X(v,)
and Charles Hermite [1,2]. Both inequalities hold in the X 5 < / X(t,)dt < —
V—UuJu

reversed direction if f is concave.
Kazimierz Nikodem in [3] makes an analogy of this

3)

inequality by defining the convex stochastic processes as
follows. Let (2, (A), ) be a probability space and I C R
be an interval. It is said that a stochastic process X : I X
Q — R is convex if the following inequality holds almost

almost everywhere.

The evolution of the concept of convexity has had a great
impact on the community of investigators. Recently,
generalized concepts, such as log-convexity, s-convexity,
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P-convexity, n-convexity, quasi convexity, MT-convexity,
h-convexity, as well as combinations of these new
concepts have been introduced. The following references
comprises much relevant information [5,6,7,8,9,10,11,
12,13,14,15].

In a direct relation, the results found for generalized
convex functions have had a counterpart with stochastic
processes, as illustrated in [16,17,18,19,20,21,22].

Motivated by the works of M.J. Vivas and Y. Rangel
in [23], we have established some Hermite-Hadamard type
mean square integral inequalities using generalized convex
stochastic processes.

2 Preliminaries

The following notions can be found in some text books and
articles. The reader can review then in [4,24,21].

Let (Q2,47,1) be an arbitrary probability space. A
function X : 2 — R is called a random variable if it is
o/ -measurable. Let I C R be time. A function
X : I x Q — Ris called stochastic process if for all u € 1
the function X (u, -) is a random variable.

A stochastic process X : I x Q — R is called
continuous in probability in the interval [ if for all 7y € 1.
Then

u 7}1{% X(ta ) *X(t()v')a
where t —lim denotes the limit in probability, and it is
called mean-square continuous in the interval / if for all
toel
u—= }ig}) ]E(X(t? ) 7X(t07 )) - Oa
where E(X(#,-)) denotes the expectation value of the
random variable X (z,-).

In addition, the monotony property is attained. A
stochastic process is called increasing (decreasing) if for
all u,v € I such thatt <,

X(“a') SX(Va')v (X(“a) ZX(Va)) (a'e')
respectively, and, it called monotonic if it is increasing or
decreasing.

In terms of differentiability, stochastic processes are
differentiable at a point ¢ € [ if there is a random variable
X'(t,-) such that

Let [a,b] Cl,a =1ty <1t < ...<t, = b be a partition
of [a,b] and 6 € [tr_1,14] for k =1,2,....,n. Let X be a
stochastic process such that E(X (u,-)?) < . A random
variable Y : 2 — R is called mean-square integral of the
process X (¢,-) on [a, b] if the following identity holds:

lim E[X(6,-) (i —tx—1) =Y (-)]> =0

n—oo

then .
/a X(t,)dt = Y(") (a.e).

The book of K. Sobczyk [25] involves substantial
properties of mean-square integral.

In [26], S. Maden et al. established the following
definition:

Definition 1. Ler 0 < s < 1. A stochastic process
X 11 x Q2 — R is said to be s—convex in the first sense if
the inequality

X(tu+ (1 =) <X () + (1 - )X (ne) @)
holds almost everywhere for all u,v € I and all t € [0, 1].

In this work, the authors introduce the following
definitions:

Definition 2. Let n : R xR — R be a bifunction. A
stochastic process X : I x Q — R is called convex with
respect to 1, or briefly N—convex, if the inequality

X(lu+(]—I)V,')SX(V,')—FITI(X(L{,-),X(V,-) (5)
holds almost everywhere for all u,v € I and all t € [0, 1].

Definition 3. Let n : R xR — R be a bifunction and
0 < s < 1. A stochastic process X : [ x  — R is called
s—convex in the first sense with respect to 1, or briefly
(s,M)—convex in the first sense, if the inequality

X(tu+(1—t)v,-)SX(v,-)—f—tsn(X(u,-),X(v,-) (6)
holds almost everywhere for all u,v € I and all t € [0, 1].

Example 1. Let X(t,-) be an stochastic process defined
by X(t,-) = t?A(-), where A(-) is a random variable, then
X(t,-) is a convex stochastic process and (1/2,n)—
convex in the first sense with respect to the bifunction
N(u,v) =2u+v.

Example 2. Let X(t,-) be an stochastic process defined
by X(z,-) = t"A(-), where A(+) is a random variable, then
X (t,-) is a convex stochastic process and (s, 7)— convex in
the first sense for 0 < s < 1, with respect to the bifunction

In some cases, the functions B(x,y) and B/(x,y) defined
as the Beta and incomplete Beta functions are used,
respectively. They are defined as follows:

B(x,y) = /0] 1 =) ar

and "
Balwy) = [ 0 (1= ar
0

forx,y>0and0 < a < 1.
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3 Main Results

First we establish the following Lemma as an auxiliary
result.

Lemmal. Let X : I xQ — R be a mean square
differentiable stochastic process where a,b € I and a < b.
If X" is mean square integrable. Then, the following
equality holds

bla/abx(t,-)dt—x (a;b,-)
_(b—a)?

T [/ltzx” (taTer +(1 —t)a,-) dt
2 " a+b
+/ X <tb+(1t) > >dt} (7

Proof. Using integration by parts, we found that

1 b
/ X" (ti +(1 —t)a,-) dt
Jo 2

2 b
2 +(1—t)a,-)
0
4 i a+b
- X' (t——=+(1—0a,- | dt
b_a,/o < 2 +( )05)

2 a+b
= X’ .
b—a < 2 ’>
4 2

1

1

i tb aX(tanerr(lt)a,-)o
bia/OlX(ta;bJr(lt)a,-)dt]
biaX,<aJ2rb'.)
8 b
(%)
8

! a+b

Now, using the change of variable x =t ((a+b) /2) + (1 —
t)a for ¢ € [0, 1] and multiplying the equality (8) by (b —
a)?/16, it follows that

(b*a)z/l 2on (,4+D
A ) A G )
T = + (1 —=1t)a,- |dt
—a a+b 1 a+b
X’( 3 .-)—EX( 3 ) )

1 ra+b/2
X(t,-)dt
b [ X

Similarly, we have
(bfa)zfl 2y aer
T O(t 1)°X" (th+(1—1) 5 dt
b—a a+b 1 a-+b
=- X' - =X : 1
() () o

b
X(t,)dt
_a./a+b/2 )

Adding the equations (9) and (10), then the desired result
(7) follows.

Theorem 2. Supposethat X :1x Q — R be a twice mean
square differentiable stochastic process and mean square
integrable on 1. If |X"| is (s,m)—convex on [a,b], where
a,belwitha<b, and0 < s <1, the following inequality
holds almost everywhere

()55 [ xea
_(b-ap <|x"<a,~>|+ X" (452,
3

- 16

+n(|X//(a+b )‘ |X// )|)

s+3
2 (K"l XD gy
(s+1D)(s+2)(s+3) ’

Proof. Using Lemma 1 is immediate that

a+b 1P

)= X(t.-
( 3 ) b—a/a (t,-)dt
(b_a)z/lz [, ath
A X" (t—=+(1—1t)a,
T = +(1—1)a,

+(b]6“)2/01(;1) <tb+(1t)a;b >

Now, since |X"] is (s,1)—convex on [a, b, it is easy to see
that

‘X” (taTer +(1 t)a,->
< [X"(a, y+tn< <“+b )Wx” \) (13)
and

‘ <tb+(1t) erb )‘

(538 ) ora (e

<

dt

IN

dt.
(12)

)

)

(14)
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Replacing the inequalities (13) and (14) in (12), we have
a+b 1 b
X <) = X(t,-)dt
X(50) -5 [ xe
(b*a)z /1 2 |y
< X )\ dt
< B e
1 b
+/ 5 (‘X” (—“ ) X”(a,-)]>dt]
0 2
(b—a)® /‘l 2|pn (atD
— 1?2 x" (| = .
- 16 Jo (t=1) 2

Lonlo (52

- foca? (el a0 (£ L)
16 3 s+3

)

dt

16 i

(O8]

b—ap (\x”(%w

2n (IX"(b.)], X”(%)D)
(s+1)(s+2)(s+3) ’

1 1
/ 2 = ——
0 s+3

2
(s+1)(s+2)(s+3)

that is because

and

1
/ (t—1)*t°dt =
Jo

The proof is complete. H

Remark. If in Theorem 2 we choose 1(x,y) = x —y, the
inequality (11) can be restated as

a-+b 1 b
X e X(:.-
] (52 ) = 5 [ e

_ (b-ap <s|X"<a,~>| 21X (b, )|
~ 16(s+3) 3 (s+1)(s+2)
(s+ 1)(s+2)(s+6)— 6|, (ath
LEETCE ) [ ‘X ( > >D

almost everywhere, which corresponds to s—convex
stochastic process in the first sense; and if s = 1, we
obtain

(2] -t
(b—a) (IX”(a,-)I + [X"(b, )]
64 3

<

+2

X" atb
2 ) Y

almost everywhere, for a convex stochastic process.

Theorem 3. Supposethat X : 1 x Q — R be a twice mean
square differentiable stochastic process and mean square
integrable on 1. If |X"|? is (s,n)—convex on [a,b), where
a,b with a < b, and 0 < s <1, the following inequality
holds almost everywhere

a+b 1 b
X )= X(z.-
\ (520 ) = s [ e
_a)? 1/p
<(b a) 1 "
- 16 2p+1

nfatb \|4 g 1/q
o At e
+(X”(“;b7.)

where g > 1and 1/p+1/qg=1.

s+1

q+ n <|X/(b7.)“17 X" (#)‘Q) ) 1/q |

Proof. Using Lemma 1 and the Holder inequality, we
have

a+b 1 b

X )= X(t,-
( 2 ’) bfa./u (¢, )dt
(b—a)? /] 2|y [,a+D

< — .

< 6 A X" ¢ 5 +(1—=1)a,

n (bI:)z /01(,_ 1)?[x” (tb—&-(l—t)#,')’dt

dt

(b—a)®
16

1 Up s 11 g \a
2p n(,atb _ ) )
(/ot dt) (/0 X (t 5 +(1—1)a, dt
'l 1/p
_1)2r
+(/O (r—1) dt) X
1 a+b \|4 \V4
(/0 X”(rb+(lft) 5 ) dt) (15)

Using the (s,n)—convexity of |X”|? we observe that
1 a-+b
" -r= _ .
/0 X (z 5+ t)a,)

q
Wt () eter) oo

and
5| q
/ dt
0
_lx” a+b .
= —
1 1" q n(a+b
s+1n(’X (@), X" =

Replacing (16) and (17) in (15), we obtain

a+b 1 b
X - = X(t,-)dt
‘ ( 2 ’) b_aL (,)

X

q
dt

77.
q

X" (th+(1—t ath
(r0-0%3%)

J’_

q
)4 17

© 2020 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 14, No. 3, 493-502 (2020) / www.naturalspublishing.com/Journals.asp N S 497

_a)? 1/p
< (b—a) ($) X holds almost everywhere

2p+1
b
’X(““’,-)f L X, ar
,,(Ll+b )‘q| //( )|Q))1/q 2 b=ala
X' —,- X" (a,-
2 b b b)

" l
(|x (a,-)!q+s+1n( (b—a?
16(3)1/»

(e (e

o (ixr )
L] GGl

IA

s+3

X" <a+b ) ’q X" (a, )\(1) ) Va

N 1o X (g2 )2 (i e (o))
)) } * 3 ) +2)(5+3) 7

where g > 1and 1/p+1/qg = 1.

s (a+b
X ( 2 ' )
(18)
because

</01t2pdt)l/p </01(l‘1)2pdt)1/p (ﬁ)l/p_

Proof. Using Lemma 1 and the power mean inequality, it

The proof is complete. B holds that

i . a+b
Remark. 1If in Theorem 3 we choose 1 (x,y) = x—y, it ’ ( t,-)dt
follows that

dt

)
/ ( atb (l_t)a’.)

X a+b7. 1 bX(t,.)dt
’ ((l’zﬂl)2 b?/a 1/p + (bT:)Z /(;](tfl)2 x" (tb+(17t)a—i2_b )
= 1665+ 1) (2P+1) ) (b—a)®

< X
a+b
(S‘X//(Ll,~)‘q+ x" (—,)

q)l/q 16
1 p /1 q 1/q
(/ tzdt) (/ 2 x" (ta+b +(lft)a,~) dt)
atbh \|¢ 1/q 0 0 2
+(s x" (T)’ +]X”(b,.)“1) (ae) , . 1/p
+(/ (tfl)zdt) X
Jo

which corresponds to s—convex stochastic process in the 1 b
(/( 1)? X”(rb+(lft)a; )
0

dt

first sense, and if s = 1, we obtain
a+b 1 b
X <) = X(t,-)dt
\ (2 ) [ x)

(b—a2( 1 \'r
< e X
= 24+l/g \2p+1

q 1/q
dt) } . (19)

Now, using the (s,n)—convexity of |X”
verify that

9 it is easy to

! q
1 / tz x" (ta_—i_lj_i_(]_t)a’.) dt
(|X”(a .)‘q_’_ X//(Cl+b ) q) q 0 )

| , b \|2
2 ! a1 (I e )

a+b \|? q = 3 P

(b (52 + o) ]
2
and

almost everywhere, for a convex stochastic process. q

dt

[y

X" (tb+(1 _t)aTer,.)

Theorem 4. Suppose that X : 1 x Q — R be a twice mean

square differentiable stochastic process and mean square niatb N9 20 (|X"(b,)|? (M ) ‘q
: nq - |X (—, ) | 77 I 9 2
integrable on I. If |X"|? is (s,m)—convex on [a,b], where < 2 +
a,b el witha<b,and0 < s <1, the following inequality 3 (s+1)(s+2)(s+3)
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Thus, it is attained that

‘X (a;b,-) - bia/abX(t,-)dt

(b—a)®
= 1603)17

(|X”(a7.)|<1 . n ( X" <#) ’q ; |X”(a,')|q) ) v

A

3 s+3

(s+1)(s+2)(s+3)

]

The proof is complete.

Remark. 1If in Theorem 4, we select 1 (x,y) = x—y. Then
the inequality (18) can be restated as

‘X (a;b,-) - bia/fx(t,-)dt

(swx"ga,-n‘f

(b—a)
T 16(3)1/P(s+3)1/4

q)l/q

+b
x" (¢ .
e (32

N (((S—i— D(s+2)(s+3)—6)| X" (a%b’.)‘q

3(s+1)(s+2)

2|X" (b, )| 1/q
+ )) }7

G+ 1)(s+2

which corresponds to s—convex stochastic process in the
first sense, and if s = 1, we obtain

a+b 1 b
X - X(t,-
‘ ( 5 ) bfaL (t,-)dt
(Ix"(&.)'q +[x" (a;bv')

3
a xt(p 3N Ve
LR ]

__ (-ap?
- (3)1/p(4)2+1/q

(1)

which corresponds to convex stochastic process.

q)l/q

3

The next results are obtained throughout the following
Lemma.

Lemma2. Let X :1xQ — R be a mean square
differentiable stochastic process where a,b € I and a < b.
If X" is mean square integrable, the following equality
holds

1 b a+b
X(t,)dt —X yt
b—a/a (t,-)dr ( 2 )
b

/01 m(t) (X" (ta+ (1 —1)b,-) + X" (th+ (1 —1)a,)) dr, (20)

where
2, if t€][0,1/2)
m(t) =
(1—1)2 if te[1/2,1].
Proof. In a similar way to the Proof of Lemma 1 , easily

is achieved the desired result .

Theorem 5. Suppose that X : 1 x Q — R is a twice mean
square differentiable stochastic process and mean square
integrable on I. If |X"| is (s,m)—convex on [a,b], where
a,b el witha<b,and 0 < s <1, the following inequality
holds almost everywhere

‘X (a;b,) - blﬂ[fx(r,)m
(b—a)’ (|X”(a,~)|+|X”(b,-)|
4 24

+C (0 (|X" (@)L [X" @, )]) + 1 (X" )], [X" (a,)])))

where

<

1

C:m+B(S+],3)—BI/2(S+1,3)

Proof. Using Lemma 2, we obtain

‘X (a;b,-) fbla/u.bx(t,-)dt

Lbap
4
1m(t)|(X” (ta+(1=1)b,-) + X" (tb+ (1 —1)a,-)|dt)

X @n
[0 (" Gt (1= + 167 05+ (1 =110 )

Now, using the definition of the function m(z) and the
(s,m)—convexity of |X"”|, one can observe that

/01 m(t) | X" (ta+ (1 —1)b,-)| dt

1/2
< [ (0 e (6 ()] 0,0

1
f/l/z(l —0)2 (|X" (b,)| +£'n (|X" (@), [X" (b,-)])) dt

_ X1 n (X" (a, )], 1X" (b,)])

24 253 (54 3)

+(B(s+1,3) =By p(s+1,3))n (|X" (a,-)], |X" (b,-)]),  (22)

and similarly

/0] m(t) | X" (tb+ (1 —1)a,-)| d

© 2020 NSP
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X" (@)  n(X"(b,)],|1X" (a,)])
Y B T Ty

+(B(s+1,3) =By o (s +1,3))n (X" (b,)],[X" (a,)])  (23)

Replacing (22) and (23) in (21), we get the desired result.
The proof is complete.

Remark.
obtain

If in Theorem 5 we select 1(x,y) = x —y, we

a+b
X )=
()

(ba

1 b
X(t,-)dt
b_a/ (t.)

(‘X/I

<

D+ X7 @,0)])

for convex stochastic process and s—convex stochastic
process in the first sense. This makes a coincidence with
the result by Herndndez Herndndez,J. E. and Gémez, J.F.
in [27].

Remark. If the bifunction 1 has the following property:
Nn(x,y) = n(y,x), the inequality in Theorem 5 can be

written as

a+b 1 b
X - = X(t,-)dt
] (“52) s [ xe)
(b—a)?

4

X" (a, )|+ X" (b
24

< X

>)‘ +2C (n (‘X” (a,')’ s ’X” (bv)‘)))

where

1

=——— +B(s+1
243y B3

*BI/Q(S‘F 1,3)

Theorem 6. Let g > 1 and 1/p+1/q= 1. Suppose that
X :IxQ — R is a twice mean square differentiable
stochastic process and mean square integrable on I. If
IX"|? is (s,n)—convex on [a,b], where a,b € I with a < b,
and 0 < s < 1, the following inequality holds almost
everywhere

1 b

a+b
X ) -
()l

w—@Z( 1 )VP
< — X
- 16 2p+1

(|X” (b .)’q+ n (|X// (a,)|7,|x" (b,~)“1) ) 1/q
7 s+1

b’.)‘q"x//(a’.)‘q) v
s+1 ’

Proof. Using Lemma (2) and the Holder inequality, it
follows that

a+b 1 b
X s X(t.-
\ (2) o [ X

X(t,-)dt

‘I‘(’X” |q n(‘X”(

: (f mtora) "

1 1/q
</ \X”(ta+(1t)b,-)\th>
0
1/q
(/ X" (tb+ (1 —1t)a ]"dt) 1 (24)

Now, it is easy to see that

/ )7 dr = (2p4*ﬂ

and using the (s,n)—convexity of |X”|%,it follows that

(25)

/01 |X" (ta+ (1—1)b,-)|"dt
')|qa|XN (bv')lq)

"
<|x" (b,-)‘q—|— n (1X" (a,

s+1 (26)
and
/ X" (tb+ (1—1t)a,-)|" dt
" Y " Y4
S ‘X//(a,.)‘q+ n(lX (b7 )l 7|X (a) )| ) (27)

s+ 1

Replacing (25), (26) and (27) in (24), it follows the desired
result.

Remark. If in Theorem 6 we choose 1 (x,y) = x—y, it
follows that

’X(“;b,.) bla X(t,)dt

(b—a)? ( 1 yw
< X
~16(s+1)Va \2p+1

[(S|X”(b -)’q+|X”(a

,)’q)l/q
(a7.)|4)1/‘1] ,

which corresponds to s—convex stochastic process in the
first sense, and if s = 1, it follows that

a+b
X . X(t,-)dt
’ ( 2 ’) b— a/

(b—a)* (1 1/
< 27 \2p+1 |X” (a, )|+ |X" (b))

+(s|x” (b, )| +|x"

which corresponds to convex stochastic process.

Theorem 7. Letq > land 1/p+1/q= 1. Suppose that
X :IxQ — R is a twice mean square differentiable
stochastic process and mean square integrable on I. If
|X"|? is (s,n)—convex on [a,b], where a,b € I with a < b,
and 0 < s < 1, the following inequality holds almost

everywhere
1 b
X(z,-)dt
b—a /a )

’X (a+b7.) B
2
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—a 2 /" N4 v
[

"(aq.- q a
+(%+Cn(IX”(va»VX”(“")V)) }

where
1

C= m‘FB(Sﬁ*l,:S)*BI/Z(SﬁLl,?))).

Proof. Using the Lemma (2) and the power mean
inequality it follows that

‘X (a—;b,-) - bla/abX(t,-)dt
< (b;a)Z (/Olm(t)|dt)1/p><

[(/(;1 Im(1)| X" (ta+ (1 _t)b7.)|th)1/q+

1 1/q
(/0 |m(t)\]X”(tb+(17t)a,-)]th) } (28)
Observing that

1
/0 im(1)]di = 1/12 (29)
and

/01 m() [X" (ta+ (1 —1)b, )| dr

12
g/o 2 (X" (b,)] T+ (|X" (@], X" (b,)|7)) dt
1
=07 (7 0 (67 )

_x@ (X" @)l X" (b))
24 2573 (51 3)

+B3,s+1)(1 =1 n(3,s+ 1)1 (|X" (a,-)|",[X" (b,)]), (30)

and similarly

/01 m(t)|X" (th+ (1 1)a,-)| dt

< X@)l" m (X" (@), X" (a,)|")
Y 2503 (54 3)

+B(s+1,3) =By o (s+1,3))n (|X" (b)), [X" (a,)|7) . 3D

Replacing (29),(30) and (31) in (28), we obtain the desired
result.
The proof is complete.

Remark.
have

a+b 1 b
X - X(t,-)dt
‘ < : ) [ x)

< AE’(’T),); (e @+ (55-¢) @l "

+ (C\X” (b, )|"+ (21—4 —C) X" (a, -)V) l/q]

where

If in Theorem 7 we choose N (x,y) = x —y, we

C= mﬁLB(SﬁLl,?))*BI/Z(S‘Fl,:;)),

which corresponds to s—convex stochastic process in the
first sense, if s = 1, then it follows that

c— %+B(z,3) — B15(2,3)) 2 4.1666 x 10~
and
X (“;b,.) _ bia/:x(t,.)dt

(b—a)?

< 22+2/p(3)1/p x

1/
{(4.1666 %1072 (X" (a,1)| +6.6667 x 107 [X" (b,)|*)

+ (4.1666 x 1072|x" (b,)|* +6.6667 x 1077 |X" (a, .)yq> '/"}

which corresponds to convex stochastic process.

4 Conclusion

In the present paper, we established some new Hermite -
Hadamard type mean square integral inequalities for
stochastic processes whose mean square derivative is
generalized n—convex. From these results, some other
inequalities are deduced for convex stochastic processes
and s—convex stochastic processes in the first sense.
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