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Abstract: We prove a general form of the equiconvergence theorem using the method of V. A. Il’n. Horváth, Joó and Komornik which

provides a general theorem for the one dimensional Schrödinger operator. We prove that the theorem for certain situation is more general

than the previous theorem. In particular, we write down the difference of the trigonometric kernel of the general expansion and estimate

the resulting infinite sums. For the terms of these sums we used different and sharper estimates than in the previous investigations.
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1 Introduction

Many central problems of spectral theory of linear
operators concentrate on the problem of eigenfunction
expansions. On one hand, it accumulates questions of
eigenvalues and eigenfunctions asymptotic and on the
other it connects mathematics with many physical
problems of string and membrane vibrations of quantum
mechanics [1]. The difference of eigenfunction
expansions converges to zero in any interior point of the
main interval. This phenomenon was called
equiconvergence and it makes possible to reduce
numerous questions of point and uniform convergence to
those of some model, usually, trigonometric system.

The equiconvergence theorems are very useful in the
spectral investigation of differential operators, because
many results known for the most special operators may be
transferred by their applications to more general ones.
One of the first results of this type was proved by A. Haar
[2,3] in 1910-1911, and then by N. Wiener and J. L.
Walsh in 1921 see [4].

In order to investigate eigenfunctions expansions, the
three following estimates are essential:

1. Upper estimate of one eigenfunction.
2. Upper estimate of sum of squares of eigenfunctions.
3. Titchmarsh type mean value formula.

In 1977, a fruitful method was developed by V. A. Il’n
(cf. [5,6]). His method works for the first and second
estimates in the case of ordinary differential operator of
second order (Schrödinger operator) with q ∈ L2. For

nth-order differential operator (with smooth coefficients
and using the fundamental solution) only the first estimate
was proved, and he assumed that the second was fulfilled.
I. Joó gave for both estimates a new procedure (cf. [7,8,
9]) without using the fundamental solution in case
q ∈ L1

loc. These results led I. Joó and V. Komornik [10] to
very general equiconvergence theorem for the
Schrödinger operator. This theorem concerns expansions
by Riesz bases formed by eigenfunctions of higher order
of the Schrödinger operator. The existence of Riesz basis
consisting of eigenfunctions of higher order was proved
by V. P. Mikhailov [11] and G. m. Keselman [12]. As

another illustration, we state Riesz bases {cneiλnt}n∈N
with sup limλ = +∞; the construction is described in M.
Horváth dissertation (cf. [13]). Joó’s method made it
possible to extend (1) and (2) for the differential operators
of nth-order with any (smooth or not) coefficients. This
was conducted by V. Komornik as well as several authors
(cf. [14,15,16]) using and developing some ideas and
results of Joó–Komornik [10] and Joó’s papers [7,8,9].
The results of Komornik are also new when the
coefficients of the differential operator are smooth.

A generalization of the mentioned paper Joó and
Komornik [10] is given in Komornik [17] (for higher
order differential operators) and it is based on the results
of (cf. [14,15,16]). Komornik had to extend the
Titchmarsh formula [16] and needed the explicit formulas
for their coefficients given by Joó [18]. A general
equiconvergence theorem was published in [19] by
Horváth, Joó and Komornik for the one dimensional
Schrödinger operator without any restriction of the
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distribution of the eigenvalues on the complex plane,
generalizing some known classical results of the field.
The proof uses some estimates of [20] given by Joó.

2 The Methodology

The proof demonstrates that we write down the difference
of the trigonometric kernel of the general expansion
considered, and we have to estimate the resulting infinite
sums. For the terms of these sums we used different and
sharper estimates than in the previous pieces of literature
(the most exact estimates were given by V. A. Il’n, I. Joó
and V. Komornik). Now we explain the reason why our
proof is harder and longer than Komornik’s:
f ∈ L2, (un) is not (known) Riesz bases:

∫

G
f (y)

[
wR(| x− y |,µ)− ∑√

λn<µ

un(x)vn(y)
]
.dy

=

∫
[

∑
n=1

c(µ ,λn)un(x)vn(y) f (y)
]
.dy

=
∞

∑
n=1

c(µ ,λn) un(x)
︸ ︷︷ ︸

≤‖un‖L2(G)

∫

G
vn(y) f (y)
︸ ︷︷ ︸

≤‖vn‖L2(G)
‖ f‖

L2(G)

.dy

≤ ‖ f‖L2(G)

∞

∑
n=1

c(µ ,λn)‖un‖L2(G)‖vn‖L2(G)

≤ c‖ f‖L2(G)

∞

∑
k=1

∣
∣c(µ ,k2)

∣
∣ ∑

k≤
√

λn≤k+1

1

≤ c(x),

(1)

c(x) is dependent on µ , (we proved this). But if f ∈ L2,
and (un) is Riesz bases, ∑ | f |2 < ∞, and we can estimate
as follows:

∫

G

[ ∞

∑
n=1

c(µ ,λn)un(x)v(y)
]

f (y).dy

=
∞

∑
n=1

c(µ ,λn)un(x)

∫

v(y) f (y).dy

≤
[

∞

∑
n=1

∣
∣c(µ ,λn)un(x)

︸ ︷︷ ︸

≤c

∣
∣2

] 1
2
[

∞

∑
n=1

∣
∣ fn

∣
∣2

] 1
2

≤ c
∞

∑
n=1

∣
∣c(µ ,λn)

∣
∣2

= c ∑
k=1

∣
∣c(µ ,k2)

∣
∣2. ∑

k≤
√

λn≤k+1

1

≤ c(x),

(2)

c(x) is dependent on µ , has been proved by Komornik
[16].

3 The Results

In [22], we generalized [19] using the estimates
developed by Komornik in these papers [16,17], and by
Joó in his paper [20]. Let G be an open interval (finite or
infinite) on the real line, n is a natural number,
qs ∈ L1

loc(G) are complex functions, s = 2,3, ...,n, and
consider the differential operator:

Lu := u(n)+ q2(x)u
(n−2)+ ...+ qn(x)u, n ≥ 2, (3)

defined on Hn
loc(G), (Recall that, by definition, Hn

loc(G) is

the set of all complex functions v ∈ L2
loc(G) having

distributional derivatives in L2
loc(G) of order up to k).

Given a complex number λ , the function, u : G → C,
u ≡ 0, is called an eigenfunction of order −1 of the
operator L with eigenvalue λ . Furthermore, a function
u : G → C is called an eigenfunction of order k,
k = 0,1, ..., of the operator L with the eigenvalues λ if the
function u∗ = Lu − λ u is an eigenfunction of order
(k − 1) with the same eigenvalues λ . Now, let us give a
complete and minimal system (uα) ⊂ L2(G) of
eigenfunctions of the operator L, denoted by λα(resp. oα)
the eigenvalue (resp. order) of uα and assume:
1. sup

α
oα < ∞.

2. In case oα > 0, λα uα −Luα = uα−1.
We introduce some notations: Index the nth-roots of

λα such that Re µ1,α ≥ ...≥ Re µn,α , and put µα := µm,α ,
Im µ j,α > Im µ j+1,α in case Re µ j,α = Re µ j+1,α , and put
µα := µm,α , ρα := |Re µα |, vα := |Im µα |, where m =
[

n+1
2

]
,

δ (v,vα ) =







1, if v > vα
1
2
, if v = vα

0, if v < vα ,

(4)

WR(t) =

{
sinv(x−t)

π(x−t) , if |x− t| ≤ R

0, if |x− t|> R,
(5)

where x ∈ K, K is an arbitrary fixed compact interval K ⊂
G, and R ∈ (0,dist (K,∂G));

DR0
f :=

2

R0

∫ R0

R0
2

f (R).dR, 0 < R0 < dist (K,∂G) (6)

W (t) := DR0
(WR), (7)

σv( f ,x) := ∑
vα<v

( f ,vα )uα(x)+ ∑
vα=v

cα( f ,vα )uα(x), (8)

where cα are arbitrary constants, |cα | ≤C, and ∑∗ denotes
the sum for any subset of {α : vα = v}, f ∈ L2(G), v > 0,
x ∈ G, (vα) is the dual system of (uα), (i.e. (vα) ⊂ L2(G)
and 〈vα ,u j〉= δk, j);

Sv( f ,x) :=

∫ x+R

x−R

sinv(y− x)

π(y− x)
f (y).dy, (9)
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where f ∈ L2(G), v > 0, x ± R ∈ G;
Kb := {x ∈ G : dist(x,K) ≤ b}, and where K ⊂ G is a
compact interval and 0 < b < dist(K,∂G). We prove the
following:
Theorem 3.1. Assume that the above-mentioned

assumptions (1) and (2) are satisfied, q ≡ 0, u∗α ≡ 0 and
sup
t>0

∑t≤vα≤t+1 1 < ∞ are fulfilled. Then the following

three statements are equivalent:
(a). For any compact interval K ⊂ G,

sup
α
‖vα‖L2(G)‖uα‖L2(G) < ∞. (10)

(b). For any compact interval K ⊂ G and any subsume ∑∗,

lim
v→∞

sup
x∈K

|Sv( f ,x)−σα( f ,x)| = 0, (11)

for every f ∈ L2(G) and every 0 < R < dist(K,∂G)).
(c). For any compact interval K ⊂ G and any subsume ∑∗,

lim
v→∞

‖ f −σv( f )‖L2(G) = 0, (12)

for every f ∈ L2(G).
In [22], we have proved the above-mentioned result.

Now, we are working to eliminate the conditions q2 = 0
and u∗ = 0. The case n = 4, was proved by the author in
[23] earlier, and in [24], we prove a general
equiconvergence theorem for Fejér means. We will give
some notations and theorems of our results in [24]:
Let G be an arbitrary (finite or infinite) open interval on
the real line, q, q̂ ∈ L1

loc(G) be arbitrary complex

functions. Let (uk)(resp. (ûk)) be a Riesz-basis in L2(G)
consisting of eigenfunctions of the operator

Lu =−u′′+ qu(resp. L̂u =−u′′+ q̂u), (13)

and having the following properties:
1. sup ok < ∞, sup ôk < ∞.
2. In case ok > 0, (resp. ôk > 0), λkuk − Luk = uk−1,

(resp. λ̂kûk − L̂ûk = ûk−1), where λk and ok (resp. λ̂k and
ôk), are the eigenvalues and the order of (uk)(resp. (ûk)).
Now, let us introduce some notations:
3. Rµ( f ,x) := ∑∣∣Re

√
λk

∣
∣<2µ

〈 f ,vk〉uk(x)
(
1− µk

2µ

)
,

(

µk =
√

λk

)

,

R̂µ( f ,x) := ∑∣∣Re
√

λ̂k

∣
∣<2µ

〈 f , v̂k〉ûk(x)
(
1− µ̂k

2µ

)
,

(

µ̂k =

√

λ̂k

)

,

where f ∈ L2(G), x ∈ G, µ > 0, and (vk)(resp. (v̂k)) is
the dual system of (uk)(resp. (ûk)), i.e. (vk),(v̂k)⊂ L2(G)
and 〈vk,u j〉= 〈v̂k, û j〉= δk, j .

The following result holds:

Theorem 3.2. Given any compact interval K ⊂ G for all
f ∈ L2(G), (K is finite or infinite), then:

lim
µ→∞

sup
x∈K

∣
∣Rµ( f ,x)− R̂µ( f ,x)

∣
∣ = 0. (14)

Furthermore, we have proved the same theorem for f ∈
L1(G), (G is finite or infinite).

Remark: If we modify the definition of Rµ ,

R∗
µ( f ,x) := ∑∣

∣Re
√

λk

∣
∣<2µ

〈 f ,vk〉uk(x)
(
1− ρk

2µ

)
,
(

ρk =
√

λk

)

.

(15)
Then, Theorem 3.2 remains true.

After that we investigate a special case. Denote G =
(0,+∞), and

uk(x) :=
√

2xα+1/2e−x2/2l
(α)
k (x2), (16)

q(x) := x2 − 2α − 2+
α2 − 1/2

x2
, (17)

λk := 4k, (18)

where α ≥ − 1
2

and l
(α)
k (x) is named the Laguerre

polynomial. We have proved the following theorem:

Theorem 3.3. If f ∈ L1(G), f ′(t)(1 + t2) ∈ L1(G), and
lim
+∞

f = 0, for any compact interval K ⊂ G and for any

sufficient small R > 0, we have:

sup
x∈K

∣
∣Fµ( f ,x)−Rµ( f ,x)

∣
∣ = O(

1

µ
), (19)

where for f ∈ L2(G), µ > 0 and x±R ∈ G, define

Fµ( f ,x) = Fµ( f ,x,R) :=
1

µπ

∫ x+R

x−R

( sin µ(y− x)

y− x

)

f (y)dy

(20)
For the proof, we need the following Lemma.

Lemma: If α >−1, then:

∑
a≤k<b

(
∫ x2

x1

uk(x).dx

)2

≤ c

√
b− a

a
(x4

2 + 1), (21)

such that 0 ≤ x1 ≤ x2 < ∞.
In addition, we frequently use the formulas of Szegö’s
book [29]. For example, we use the formula:

∑
a≤k<b

(
∫ t

d
xβ uk(x).dx

)2

=
1

4π iα−1

∫ 2π

0

∫ t

d

∫ t

d

exp
{
− i

x2+y2

2
ctg

ϕ
2

}

sin
ϕ
2

xβ+1/2yβ+1/2

.Jα

(

− xy

sin
ϕ
2

)

.e−i α
2 ϕ−i b+a

2 ϕ sin b−a
2

ϕ

sin
ϕ
2

.dxdydϕ .

(22)
For Applications, see [30,31].
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4 Conclusion

Motivated by the results of the previous pieces of
literature, [17,19,20,21], we investigated a general form
of the equiconvergence theorem, using the method of V.
A. Il’n. It is shown that the theorem for certain situation is
more general than the previous theorem. We also proved a
general equiconvergence theorem for Fejér means. We
consider the Schrödinger operator with any complex
potential function q : G → C on any (finite or infinite)
interval G, with arbitrary (complex) eigenvalues λn, see
[21,24]. Finally, it is necessary to be stressed that the
coefficients of the differential operators don’t need to be
assumed sufficiently smooth. Furthermore, there is no
assumption on the distribution of the eigenvalues in the
complex plane.
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