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Abstract: Inspired by the definition of integrity and the alternative formulations for integrity, we investigate the D−Integrity and

E−Integrity numbers of a graph in the present study. The D-Integrity number of a graph G is denoted by DIk(G) defined as: DIk(G) =

∑
p
k=1 Dk(G), and the E-Integrity number of a graph G, is denoted by EIl(G) defined as: EIl(G)=∑

p
l=0 El(G). In this paper, we establish

the general formulas for the D−Integrity and E−Integrity numbers of some classes of graphs. Also, some properties of D−Integrity

and E−Integrity numbers are established.
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1 Introduction

Throughout this paper, we consider simple and undirected
graphs. Let G = (V,E) be such a graph. The number of
vertices of G is denoted by p and the number of edges is
denoted by q, so |V (G)| = p and |E(G)| = q. The degree
of a vertex v, denoted by deg(v), is the number of vertices
adjacent to v. The contraction of a vertex v in G (denoted
by G/v) is the graph obtained by deleting v and putting a
clique on the open neighbourhood of v, (note that this
operation does not create multiple edges, and if two
neighbours of v are already adjacent, they remain simply
adjacent) [1]. A spider graph Gs is a tree which is
constructed by subdividing each edge once in
K1,p−1, p ≥ 3 [2]. If every pair of vertices of a graph G are
adjacent, G is called a complete graph, and it is denoted
by Kp with p vertices.

A graph G is called a bipartite graph if the vertex set
V can be partitioned into two subsets V1 and V2 such that
every edge of G joins a vertex of V1 with a vertex of V2.
Furthermore, if every vertex of V1 joins every vertex of
V2, G is a complete bipartite graph. The complete
bipartite graph with two sets of vertices such that
|V1| = n, and |V2| = m is denoted by Kn,m. The graph
K1,p−1 is a star, or a star is a tree with at most one
non-pendant vertex. If u and v are not adjacent vertices in
G, the addition of edge e = (u,v) yields the graph G+ e.

For the vertex set V and edge set E ∪ {e}. For the
terminology not defined here, we refer the reader to [3].

A network can be modelled by a graph whose vertices
represent the nodes and edges represent the lines of
communication. Its efficiency reduces when some
vertices or edges are destroyed anyway. Various graph
parameters have been used to describe the vulnerability of
communication networks (graph), like connectivity,
tenacity, and integrity. The concept of integrity of a graph
G was introduced in [4] as a useful measure of the
vulnerability of G. The authors in [4] compared integrity,
connectivity, toughness and binding number for several
classes of graphs. Their results suggested that integrity is
appropriate for measuring vulnerability, and so it can
distinguish between graphs that should have different
measures of vulnerability. The integrity of a graph G is
defined as

I(G) = min{|S|+m(G− S) : S ⊆V (G)},

where m(G−S) denotes the order of the largest component
of G− S. An I-set of G is any subset S of V (G) for which

I(G) = |S|+m(G− S).

For more about integrity, see [5,6]. The authors in [7,8,9,
10,11,12] introduced the new concepts of integrity
parameter. In (1990), Goddard and Swart [13] introduced
two concepts that are useful computationally as follows:
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Definition 1.1. [13] For any graph G,

Dk(G) = min{|S| : S ⊂V (G) and m(G− S)≤ k},

k = 1,2, ..., p− 1.

El(G) = min{m(G− S) : S ⊂V (G) and |S|= l},

l = 0,1, ..., p− 1.

Motivated by the definition of Dk(G) and El(G), we
introduce the D-integrity number and E-integrity number
of graphs.
In this paper, D−Integrity and E−Integrity numbers of a
graph are taken as a model of network and it is thought
that it would become more stable and strong.
The robustness of a distributed system of computers can
be represented by the integrity of the graph describing the
network. D-Integrity and E−Integrity numbers of a graph
can be used to describe the stability of communication
networks, like telecommunication networks, computer
networks, the internet, road and rail networks and other
logistic networks.
In a big city, there were a lot of power plants and
transformers that distributed electricity to all parts of the
city. Those transformers were connected by electric
cables. However, the transformers were old, so the
municipality replaced them with new ones. Therefore,
they had been changed at regular intervals so as not to
encounter power cut throughout the whole city. In this
way, some transformers were replaced and the electricity
remained covering the largest possible number of city
neighborhoods. But, such a hard task has been currently
solved in that the graphs of the modern transformers
consist of several corresponding vertices with some edges
that are linked to the electrical cables between the
transformers.

We observe that if k = p, Dk(G) = 0. These definitions
prompted us to introduce the concepts of D-Integrity and
E-Integrity numbers, as follows:

2 D-Integrity number

Definition 2.1. D-Integrity number of a graph G is denoted
by DIk(G), and defined as:

DIk(G) =
p

∑
k=1

Dk(G).

Since Dp(G) = 0, we can also define the D-Integrity

number as DIk(G) = ∑
p−1
k=1 Dk(G). In this section, we

define the value of D-Integrity number for some standard
graphs.

Theorem 2.1. For a complete graph Kp, DIk(Kp) =
p(p−1)

2
.

Proof. Consider the vertices v1,v2, ...,vp of Kp. For
m(Kp − S) ≤ 1, i.e., m(Kp − S) = 0 or 1, so we choose

S = {v1,v2, ...,vp−1,vp} or S = {v1,v2, ...,vp−1},
correspondingly |S| = p, or |S| = p − 1. So
D1(Kp) = min{|S| : m(Kp − S) = 0 or
m(Kp − S) = 1} = p − 1. Also, for m(Kp − S) ≤ 2,
m(Kp − S) = 0,1 or 2, we consider
S = {v1,v2, ...,vp−1,vp}, S = {v1,v2, ...,vp−1} or
S = {v1,v2, ...,vp−2}, so
D2(Kp) = min{|S| : m(Kp − S) = 0, or m(Kp − S) = 1 or
m(Kp − S) = 2} = p − 2. Then, D2(Kp) = p − 2. That
means, if m(Kp − S) ≤ k,1 ≤ k ≤ p− 1, then Dk = p− k

and finally, for m(Kp − S) ≤ p, we have S = φ . Thus,
Dp = 0. Therefore,

DIk(Kp) =
p

∑
k=1

Dk(Kp) = D1 +D2 +D3 + ...+Dp−1+Dp

= p− 1+ p− 2+ p−3+ ...+ p− (p−1)+0

= p− 1+ p− 2+ p−3+ ...+ p− (p−1)+ p− p

=
p

∑
i=1

(p− i) =
p

∑
i=1

p−
p

∑
i=1

i

= p2 −
p(p+ 1)

2

=
p(p− 1)

2
.

Proposition 2.1. For a star graph K1,p−1,DIk(K1,p−1) =

p− 1.

Proof. Let V (K1,p−1) = {v,v1,v2, ...,vp−1}, where v is the
central vertex. Since deg(v) = p− 1, the best chosen for
S is S = {v} in all cases, and m(K1,p−1 − S) = 1, so D1 =
D2 = D3 = ...= Dp−1 = 1 and Dp = 0. Then,

DIk(K1,p−1) =
p

∑
k=1

Dk(K1,p−1) = D1 +D2 +D3

+ ...+Dp−1+Dp

= 1+ 1+ 1+ . . .+ 1
︸ ︷︷ ︸

p−1 times

+ 0

= p− 1.

Theorem 2.2. For a complete bipartite graph Kn,m,

DIk(Kn,m) =

{
3n2−n

2
, if n = m ;

n2+2nm−n
2

, if n 6= m,n < m.

Proof. Let V (Kn,m) = {v1,v2, ...,vn,u1,u2, ...,um}, we
discuss two cases:
Case 1: n = m, for m(Kn,n − S)≤ 1, i.e., m(Kn,n − S) = 0
or 1, we can choose S = V or {u1,u2, ...,un}. Since
|{u1,u2, ...,un}|< |V |, we have min{|S| : m(Kn,n − S) = 0
or m(Kn,n − S) = 1} = n and so D1 = n. Also, for
m(Kn,n − S) ≤ k and 2 ≤ k ≤ n, i.e.,
m(Kn,n − S) = 2,3, ...,n− 1 or n, we choose the sets S as
follows:
S = V,{u1,u2, ...,un},V − {u1,v1},V − {u1,v1,u2},V −
{u1,v1,u2,v2}, ...,V − {u1,u2, ...,u⌈ n

2 ⌉
,v1,v2, ...,v⌊ n

2 ⌋
}.

Then, D2 = D3 = ... = Dn = n. Now, when
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n + 1 ≤ k ≤ 2n − 1, for m(Kn,n − S) ≤ k, we consider
S = {u1,u2,u3, ...,u2n−k} or S = {v1,v2,v3, ...,v2n−k}.

Hence, Dk = ∑2n
k=n+1(2n− k). Then,

DIk(Kn,m) = D1 +D2 +D3 +D4 + ...+Dn+Dn+1

+ Dn+2 + ...+D2n−1+D2n

= n+ n+ n+ . . .+ n
︸ ︷︷ ︸

n times

+
2n−1

∑
k=n+1

(2n− k)+ 0

= n2 +
2n−1

∑
k=1

(2n− k)−
n

∑
k=1

(2n− k)

= n2 +
2n−1

∑
k=1

2n−
2n−1

∑
k=1

k−
n

∑
k=1

2n+
n

∑
k=1

k

= n2 + 2n(2n− 1)−
(2n)(2n− 1)

2
− 2n2

+
n(n+ 1)

2

=
3n2 − n

2
.

Case 2: n 6= m, if n < m, for m(Kn,m − S) ≤ k,
1 ≤ k ≤ n, i.e., m(Kn,m − S) = 0,1,2,3, ...,n − 1 or n.
Consider S = {u1,u2, ...,un,v1,v2, ...,vm},
S = {u1,u2, ...,un}, S = {u1,u2, ...,un−1,v1,v2, ...,vm−1},
S = {u1,u2, ...,un−2, v1,v2, ...,vm−1},...,
S = {u1,u2,v1,v2, ...,vm−1} or S = {u1,v1,v2, ...,vm−1},
so we have min{|S| : m(Kn,m − S) ≤ k,k = 1,2, ...,n} =
min{n + m,n,n + m − 2,n + m − 3, ...,m + 1,m} = n.
Then D1 = D2 = D3 = ...= Dn = n. For m(Kn,m −S)≤ k,
n + 1 ≤ k ≤ m, consider S = {u1,u2, ...,un}. Now, for
m(Kn,m − S) ≤ m + k, 1 ≤ k ≤ n − 1, consider
S = {u1,u2, ...,un−k}. So Dm+k = n− k. Thus,

DIk(Kn,m) = D1 +D2 + ...+Dn+Dn+1 + ...+Dm

+ Dm+1 +Dm+2 + ...+Dm+n−1

= n+ n+ n+ . . .+ n
︸ ︷︷ ︸

m times

+ n+ n+ n+ . . .+ n
︸ ︷︷ ︸

m−n times

+
n+m−1

∑
k=m+1

(n+m− k)

= nm+ n(m− n)+
n+m−1

∑
k=1

(n+m− k)

−
m

∑
k=1

(n+m− k)

= nm+ n(m− n)+
n+m−1

∑
k=1

(n+m)−
n+m−1

∑
k=1

k

−
m

∑
k=1

(n+m)+
m

∑
k=1

k

= nm++n(m− n)+ (n+m)(n+m− 1)

−
(n+m− 1)(n+m)

2
− (n+m)m+

m(m+ 1)

2

=
4nm− n2− n

2
.

Definition 2.2. [14] A double star Sn,m is a tree with
exactly two vertices that are not pendant vertices, with
one adjacent to n pendant vertices and the other to m

pendant vertices.
Theorem 2.3. For a double star graph Sn,m,

DIk(Sn,m) =

{
3n+ 1, if n = m ;
2n+m+ 1, if n 6= m,n < m.

Proof. Let V (Sn,m) = {u,u1,u2, ...,un,v,v1,v2, ...,vm}.
Two cases are discussed.
Case 1: n = m, for m(Sn,n − S) ≤ k,1 ≤ k ≤ n. Consider
S = {u,u1,u2, ...,un,v,v1,v2, ...,vn},
S = {u,v},S = {u,v2,v3, ..,vn},S = {u,v3,v4, ...,vn},
...,S = {u,vn}, then we have min{|S| : m(Sn,n − S) ≤
k,k = 1,2, ...,n} = min{2n + 2,2,n,n − 1, ...,3,2} = 2.
Then, D1 = D2 = D3 = ... = Dn = 2. Now, if
n+ 1 ≤ k < 2n+ 1, for m(Sn,n − S)≤ k, consider S = {u}
or S = {v}, and when k = 2n+ 1, we consider S = {ui} or
S = {vi}, 1 ≤ i ≤ n. Thus,
Dn+1 = Dn+2 = ...= D2n+1 = 1. Then

DIk(Sn,n) = D1 +D2 +D3 + ...+Dn+Dn+1+Dn+2

+ ...+D2n+1

= 2+ 2+ 2+ . . .+ 2
︸ ︷︷ ︸

n times

+ 1+ 1+ 1+ . . .+ 1
︸ ︷︷ ︸

n+1 times

= 2n+ n+ 1

= 3n+ 1.

Case 2: n 6= m and n < m. For m(Sn,m −S)≤ k,1 ≤ k ≤ n,
i.e., m(Sn,m − S) = 0,1,2,3, ...,n − 1 or n. Consider
S = {u,u1,u2, ...,un,v,v1,v2, ...,vm},
S = {u,v},S = {u,v1,v2, ...,vn−1},S =
{u,v1,v2, ...,vn−2},S = {u,v1,v2, ...,vn−3},
...,S = {u,v1}. Hence, min{|S| : m(Sn,m − S) ≤ k,k =
1,2, ...,n}= min{n+m+ 2,2,n,n− 1, ...,3,2}= 2. Then
D1 = D2 = D3 = ... = Dn = 2. In case
n + 1 ≤ k ≤ n + m + 1, for m(Sn,m − S) ≤ k, consider
S = {v}, S = {u,v1,v2, ...,vn}, S = {u,v1,v2, ...,vn−1},
S = {u,v1,v2, ...,vn−2},..., S = {u1,u2, ...,un−1},
S = {u1,u2, ...,un−2}, it follows that
min{|S| : m(Sn,m − S) ≤ k,k = n + 1,n + 2, ...,n + m +
1} = min{1,1,n + 1,n,n − 1,n − 2, ...,2,1} = 1. So
Dn+1 = Dn+2 = ...= Dn+m+1 = 1. Then,

DIk(Sn,m) = D1 +D2 +D3 + ...+Dn+Dn+1 +Dn+2

+ ...+Dn+m+1

= 2+ 2+ 2+ . . .+ 2
︸ ︷︷ ︸

n times

+ 1+ 1+ 1+ . . .+ 1
︸ ︷︷ ︸

m+1 times

= 2n+m+ 1.

Theorem 2.4. For the spider graph Gs with p ≥ 3 vertices,

DIk(Gs) = 4p− 4.

Proof. Let Gs be a spider graph shown in Figure 1, with
|V (Gs)|= 2p− 1 and |E(Gs)|= 2p− 2.
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Let V (Gs) = {u,v1,v2, ...,vp−1,u1,u2, ...,up−1}. For
m(Gs − S) ≤ 1, then m(Gs − S) = 0 or m(Gs − S) = 1,
consider S = {u,u1,u2, ...,up−1,v1,v2, ...,vp−1},
|S| = 2p − 1 or S = {u1,u2,u3, ...,up−1}, |S| = p − 1.
Thus, D1(G) = min{|S| : m(Gs − S) ≤ k,k = 0 or 1} =
min{2p− 1, p− 1}= p− 1. Then, D1 = p− 1. Now, for
m(Gs − S)≤ k, k ≥ 2. It is enough to take S = {u} and so
D2 = D3 = D4 = ...= D2p−2 = 1. Therefore,

DIk(Gs) = D1 +D2 +D3 +D4 + ...+D2p−3+D2p−2

= p− 1+ 1+ 1+1+ . . .+ 1
︸ ︷︷ ︸

2p−3 times

= p− 1+ 2p− 3

= 3p− 4.

✉
✧

✧
✧

✧
✧ ✉✉✉✉ ✉

✉✉✉
✉✉

u

u1 u2 u3 u4

v1 v2 v3 v4 vp−1

q q q

q q q
up−1

Figure 1: Gs

Observation 2.1. For any graph G,
(1) D1 = 1, if and only if G = K1,p−1 or G = Kp ∪K1,p−1.
(2) DIk(G)= p, if G=P4, G=P5, G= S1,2 or G=K1,4+e.

Remark 2.1. DIk(G) = I(G) if G = C3, C5, P3, 2P2,
P2 ∪P3, C3 ∪Kp, or P3 ∪P2 ∪Kp.

Proposition 2.2. For any graph G,

p− 1 ≤ DIk(G) ≤ p(p−1)
2

. The lower bound is attained if
G = K1,p−1 and the upper bound holds if G = Kp.

Theorem 2.5. Let G1,G2, ...,Gp be the components of a
graph G. Then, DIk(G1 ∪ G2 ∪ ... ∪ Gp) =
DIk(G1)+DIk(G2)+ ...+DIk(Gp).

Proposition 2.3. For any x ∈ V (Kp),
DIk(Kp) = DIk(Kp/x)+ p− 1.

Proof. Since Kp/x = Kp−1 and DIk(Kp−1) =
(p−1)(p−2)

2
,

then DIk(Kp−1)+ p− 1 = (p−1)(p−2)
2

+ p− 1 = p(p−1)
2

=
DIk(Kp).

Remark 2.2. Let S be I-set of a graph G. Then,
1) For any x /∈ S, DIk(G/x)≤ DIk(G)
2) For some x ∈ S, there exist graphs G such that
DIk(G/x) ≥ DIk(G). For example, G = K1,p−1, p ≥ 4,
clearly DIk(K1,p−1) = p − 1, but

DIk(K1,p−1/x) = DIk(Kp−1) =
(p−1)(p−2)

2
.

3 E-Integrity number

Definition 3.1. E-Integrity number of a graph G is denoted
by EIl(G) defined as:

EIl(G) =
p

∑
l=0

El(G).

Since Ep(G) = 0, we can define the E-integrity number as

EIl(G) = ∑
p−1
l=0 El(G).

Proposition 3.1. For any graph G, p+1≤ EIl(G)≤ p2+p
2

.
The lower bound is attained if G=K2 and the upper bound
holds if G = Kp.

Theorem 3.1. For the spider graph Gs with p ≥ 3 vertices,

EIl(Gs) = 5p− 5.

Proof.

Let Gs be a spider graph shown in Figure 1, with
|V (Gs)| = 2p − 1 and |E(Gs)| = 2p − 2. Consider
V (Gs) = {u,v1,v2, ...,vp−1,u1,u2, ...,up−1}. When
|S| = 0, we have E0 = m(Gs − S) = 2p − 1. Now, for
|S| = 1 to |S| = p − 2, i.e., m(Gs − S) = 2, at
E1,E2, ...,Ep−2. Also, m(Gs − S) = 1, when |S|= p− 1 to
|S|= 2p− 2, so Ep−1 = Ep = ...= E2p−2 = 1. Then,

EIl(Gs) = E0 +E1 +E2 +E3 + ...+Ep−2+Ep−1

+ Ep + ...+E2p−2

= 2p− 1+ 2+ 2+2+ . . .+ 2
︸ ︷︷ ︸

p−2 times

+ 1+ 1+ 1+ . . .+ 1
︸ ︷︷ ︸

p times

= 2p− 1+ 2(p− 2)+ p

= 5p− 5.

Theorem 3.2. For a complete graph Kp, EIl(Kp) =
p2+p

2
.

Proof. It is clear that E0 = p. For 1 ≤ l ≤ p− 1, we have
m(Kp − S) = p − l, then E1 = p − 1,E2 = p − 2,E3 =
p − 3, ...,Ep−2 = p − (p − 2), and Ep−1 = p − (p − 1).
Therefore,

EIl(Kp) = E0 +E1 +E2 +E3 +E4 + ...+Ep−2+Ep−1

= p+
p−1

∑
l=1

(p− l)

= p+
p−1

∑
l=1

p−
p−1

∑
l=1

l

= p+ p(p− 1)−
p(p− 1)

2

=
p2 + p

2
.

Corollary 3.1. For a complete graph Kp,
EIl(Kp)−DIk(Kp) = p.

Proposition 3.2. For a star graph
K1,p−1,EIl(K1,p−1) = 2p− 1.
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Proof. Let V (K1,p−1) = {v,v1,v2, ...,vp−1} such that v is
the central vertex. Put l = 0, then m(K1,p−1 − S) = p. For
|S|= 1, the best choice for S is S = {v}, so E1 = 1 and for
2 ≤ l ≤ p − 1, put S = {v} ∪ {v1,v2, ...,vl−1}. Thus
m(K1,p−1 − S) = 1 for all 2 ≤ l ≤ p − 1 and hence
E2 = ...= Ep−1 = 1. Then,

EIl(K1,p−1) = E0 +E1 +E2 +E3 +E4 + ...+Ep−2+Ep−1

= p+ 1+ 1+ 1+ . . .+ 1
︸ ︷︷ ︸

p−1 times

= p+ p− 1= 2p− 1.

Theorem 3.3. For the double star Sn,m,

EIl(Sn,m) =

{
5n+ 3, if n = m ;
3m+ 2n+ 3, if n 6= m,n > m.

Proof. Let V (Sn,m) = {v,v1,v2, ...,vn,u,u1,u2, ...,um}, we
discuss two cases:
Case 1: n = m, E0 = 2n+ 2 and when |S| = 1, the best
choice for S is S = {u} or S = {v}. Thus,
m(Sn,n − S) = n + 1. Hence, E1 = n + 1. In case
|S| = l, l ≥ 2, it is clear m(Sn,n − S) = 1. Then,
E2 = E3 = ...= E2n−1 = 1. Therefore,

EIl(Sn,n) = E0 +E1 +E2 +E3 +E4 + ...+E2n−2+E2n−1

= 2n+ 2+ n+1+1+1+ 1+ . . .+ 1
︸ ︷︷ ︸

2n times

= 3n+ 3+ 2n

= 5n+ 3.

Case 2: n 6= m,n > m. E0 = n+m+ 2. If |S|= 1, we have
min{m(Sn,m − S) : |S| = 1} = min{n+ 1,m+ 1}= m+ 1,
hence E1 = m+ 1. It is clear E2 = E3 = ...= En+m+1 = 1.
Then

EIl(Sn,m) = E0 +E1 +E2 +E3 +E4

+ ...+En+m−2+En+m−1

= n+m+ 2+m+1+1+ 1+1+ . . .+ 1
︸ ︷︷ ︸

n+m times

= 2m+ n+ 3+ n+m

= 3m+ 2n+ 3.

Theorem 3.4. For the complete bipartite graph Kn,m,

EIl(Kn,m) =

{
3n2+3n

2
, if n = m ;

2nm+m2+m+2n
2

, if n 6= m, n > m.

Proof. Let V (Kn,m) = {u1,u2, ...,un,v1,v2, ...,vm}, we
have the following cases:
Case 1: n = m, we note that E0 = 2n and since we can
choose any vertex of V (Kn,n) when |S| = l,1 ≤ l ≤ n− 1,
we get m(Kn,n − S) = 2n − l, so
E1 = 2n− 1,E2 = 2n− 2, ...,En−1 = 2n− (n− 1) = n+ 1.

When n ≤ l ≤ 2n− 1, we have m(Kn,n − l) = 1. Then,

EIl(Kn,n) = E0 +E1 +E2 + ...+En−1+En

+ ...+E2n−2+E2n−1

= 2n+
n−1

∑
l=1

(2n− l)+ 1+ 1+1+ . . .+ 1
︸ ︷︷ ︸

n times

= 2n+
n−1

∑
l=1

2n−
n−1

∑
l=1

l + n

= 2n+ 2n(n− 1)−
(n− 1)n

2
+ n

=
3n2 + 3n

2
.

Case 2: n 6=m,n >m, E0 = n+m. If |S|= l,1 ≤ l ≤ m−1,
then m(Kn,m − S) = n+ m− l, so E1 = n +m − 1,E2 =
n+m− 2, ...,Em−1 = n+ 1. Also, if |S| ≥ m, then Em =
Em+1 = ...= En+m−1 = 1. Thus,

EIl(Kn,m) = E0 +E1 +E2 +E3 +E4 + ...+En+m−2+En+m−1

= n+m+
m−1

∑
l=1

(n+m− l)+ 1+ 1+1+ . . .+ 1
︸ ︷︷ ︸

n times

= n+m+
m−1

∑
l=1

(n+m)−
m−1

∑
l=1

l + n

= m(n+m)−
(m− 1)m

2
+ n

=
2nm+m2+m+ 2n

2
.

4 Conclusion

In this paper, we introduce the concept of D-integrity and
E-integrity numbers in graphs. We also have obtained the
D-integrity and E-integrity numbers of some graphs. The
DIk and EIl of several other families of graphs are an open
problem.
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