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Abstract: In the present paper, we investigate and introduce the perturbation of dA∞-algebra and the homotopy property (SDR-case).

We also verify the homotopy theory of dA∞-algebras and A∞- differential module. In addition, We construct a property of homotopy

invariant property of A∞-differential algebras.
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1 Introduction

According to perturbation hypothesis, speculation is a
peneficial procession to get relatively small differential
complexes expressing an assumed chain homotopy type.
The use of perturbation method in differential
homological algebra has a long history, much of it was
indicated in [1]. Stasheff in [2] started the possibility of
an A-infinity space, since it is continuous associative
multiplication and homotopy invariant parallel to
topological space. One of the primary homes of the
structure in an A- infinity space is its homotopy
invariance, as the stability of this structure which is
estimation to the arbitrary homotopy equivalence to
topological spaces. In [3], [4] and [5], the graded
A-infinity algebras applications to the sort of homologies
of twisted tensor products and homologies of differential
algebras are addicted. In [1] and [3] applications of
differential A-infinity algebras to mathematical physics,
topology, and geometry are stated. In [1], they induce the
universal of the D-infinity differential A-infinity algebra,
that is a homotopically invariant quantum analogue of the
universal of a differential A-infinity algebra. Lodder,
Lambe, and Stasheff ([4],[6] and [2]) began the
perturbation of differential module intention and
established the homotopy invariance property of
differential module perturbation. They ordained the
dependence between the homotopy of a structure of the
differential A-infinity (to short A∞-algebra) and
differential perturbations. In [1], Lapin presented the
concept of D-infinity differential module (shortly
D∞-module), and detected the relation between D-infinity

differential module and perturbations differential module.
In the coincident work, we define and ponder the
perturbation of D-infinity A-infinity algebra and its
homotopy invariant characteristic (SDR-case).
We recollect some fundamental facts existent in the
sequel.
Definition 1.1 [7] We can define a differential algebra

(A,d,π) as (A,d) which is differential module over an
algebra with the multiplication map π : A⊗A −→ A such
satisfy the associate law, (1⊗π)π = (π ⊗ 1)π holds.

Definition 1.2 For any arbitrary algebra A, the form
(A,d,πi) is referred to as A - infinity algebra, since the
graded module over algebra (A,d) such that:

n

∑
i=0

(−1)ε πi(1⊗ ...⊗πn−1⊗ ...⊗1)= 0, ε = nk+ ik+n+k

Definition 1.3[8] A D∞-module A together with a set of

the operations πn : A⊗n+2 −→A,n≥ 0 is called differential
A∞-algebra (dA∞-algebra), with the following identity;

d(πn−1) = ∑n
i=0(−1)επi(1⊗ ...⊗πn−1⊗ ...⊗ 1) = 0,

ε = nk+ ik+ n+ k

(1)

Definition 1.4 The homomorphism

f : (X1,d,πn) −→ (X2,d,πn) of the dA∞-algebras is the
set; f =

fn : X
⊗(n+1)
1 −→ X2| fn(X

⊗(n+1)
1 )∗ ⊆ X2∗+n ,n ∈ Z,n ≥ 0
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that fulfill the accompanying connection: for integer,
n ≥−1,

d fn+1 +(−1)n fn+1 = ∑n
m=0(−1)n2+n4+... fn−m(1⊗ ...⊗ 1⊗

πm ⊗ 1⊗ ...⊗ 1)+∑n
m=0(−1)t(m+1)+nπm( fn1

⊗ ...⊗ fnm+2
)

(2)
where n1 + ...+ nn−m,πm can be located and the sum is
appropriated over all locations t.

Definition 1.5 A family of morphisms f = fn : X −→ Y

and g = gn : Y −→ Z of dA∞-algebras, its composition
g f = (g f )n : (X ,d,πn)−→ (Z,d,πn) is defined by:

((g f )n =
n

∑
m=0

gm( fn1
⊗ ...⊗ fnm+2

)), n ≥ 0

and n1 + ...+ nm+1 = n−m.

Definition 1.6 We can define the family of maps as
follows:

h = hn : X
⊗(n+1)
1 −→ X2|h2(X

⊗(n+1)
1 )∗ ⊆ X2∗+n+1

n ∈ Z,n ≥ 0

as the homotopy morphism, h : X1 −→ X2 between the
morphisms of the dA∞-algebras,
f = fn,g = gn : (X1,d,πn)−→ (X2,d,πn) such that satisfy
the relation: ∀n ≥−1,

dhn+1 +(−1)n+1hn+1 = fn+1 + gn+1

+∑n
m=0(−1)t(m+1)+n+1hn−m(1⊗ ...⊗ 1⊗πm⊗ 1)

+∑n
m=0(−1)(m+1)+ε(t)πm(gn1

⊗ ...⊗ gnt−1

⊗hnt ⊗ fnt+1
⊗ ...⊗ fnm+2

)

and the sum over t. And πm and hm can be situated, and;

ε(t) = n2 + n4 + ...+ n2[t/2]+ n2[(t+1)/2]+1 + n2[(t+1)/2]+3

+...+ n2[(m+1)/2]+1.

Definition 1.7[9] Consider two arbitrary differentials

A-infinity algebras X1 and X2. The triple system
η : X1 ⇌ X2 defines the strong differential retract of a
dA∞-algebras, since the maps; η : X1 −→ X2,
ξ : X2 −→ X1 are differential module morphisms and
satisfy; ηξ = 1X2

and h is defined to be the homotopy
between η ,ξ and 1X . If h = 0,hξ = 0,hh = 0 hold, we
can call the triple: η : X1 ⇌ X2 : h,ξ SDR-case of a
differential modules.
We give an excellent precedent of a differential SDR-case
as a homology of the differential module X1 over the field
K, defined by H(X1) = Ker d/Im d, to be the homology
module of the differential module (X1,d) over K. If
H(X1) defined as the differential module such the
differential is zero, then SDR-case η : X1 ⇌ X2 : h,ξ for
the differential modules, referred to as homology
SDR-case of differential modules, via the use of the
decomposition of fixed direct sum

(Ker d = H(X1)⊕ Im d).

Definition 1.8 The differential perturbation of the
dA∞-algebra (X1,d,πi) is the differential perturbation of
the differential (X1,d) modules satisfying;

t iπ = π(1⊗ t i+ t i ⊗ 1)

t : X1 −→ X1 with differential module (X1,d + t), i.e., the
mapping d + t : X1 −→ X1 satisfies the rule: (d + t)2 = 0.
Clearly, any t : X1 −→ X1 of the differential module
(X1,d) satisfies, dt + td = −t2. For any (X1,d) module
there is a new map
D : X1 −→ X1 s.h. t = D− d : X1 −→ X1.

Definition 1.9 A graded D∞-module (X ,di) with the set of
the maps;

(π i
n : X⊗(n+2)−→X∗ | π i

n(X
⊗(n+1))∗ ⊆X∗+n, n≥ 0, i≥ 0)

of modules is defined a differential A∞- algebra if for the
integer numbers;n ≥ 0 and k ≥ 0, the following relations
hold:

∑
i+ j=k

diπ j
0 = ∑

i+ j=k

π i
0d j

where

∑i+ j=k diπ j
n+1 +(−1)nπ i

n+1d j = ∑i+ j=k ∑n
m=0

(−1)t(m+1)+nπ i
n−m(1⊗ ...⊗ 1⊗π j

m⊗ 1⊗ ...⊗ 1)

With the sum is over all t,and π j
m can be situated.

Example 1.10 For an A∞-algebras (X ,di,π). We hold the
A∞ of dA∞-algebra (X ,di,π i) if we set: π0

0 = π , π i
n = π

for (n, i) 6= (0,0).

Definition 1.11 The homomorphism; f : X1 −→ X2 of the
dA∞-algebra X1 and X2 is the set;

f =( f i
n : X

⊗(n+1)
1 −→X2• | f

i
n(X

⊗(n+1)
1 )• ⊆X2•+n , n≥, i≥ 0)

of mappings of modules such that for any integer n ≥ 0

and k ≥ 0, then: ∑i+ j=k di f
j

0 = ∑i+ j=k f i
0d j where,

∑i+ j=k di f
j

n+1 +(−1)n f(n+ 1)id j = ∑i+ j=k ∑n
m=0

(−1)t(m+1)+n f i
n−m(1⊗ ...⊗ 1⊗π j

m⊗ 1⊗ ...⊗ 1)

+ ∑
i+ j=k

n

∑
m=0

(−1)n2+n4+...π i
m( f j1

n1
⊗ ...⊗ f

jm+2
nm+2

)

Where; n1 + ...+ nm+2 = n − m, j1 + ...+ jm+2 = j,

since the sum over t, and π
j

m can be situated.

Definition 1.12 The composition
g f = (g f )i

n : (X ,di,π i
n) −→ (Z,di,π i

n) of morphisms
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f = f i
n : X −→ Y and g = gi

n : Y −→ Z of the
dA∞-algebras is defined as:

((g f )k
n = ∑

i+ j=k

n

∑
m=0

gi
m( f

j1
n1)

⊗ ...⊗ f
jm+1

nm+1
), n ≥ 0, k ≥ 0,

where, n1 + ...+ nm+1 = n−m and j1 + ...+ jm+1 = j.

Definition 1.13 The homotopy between amorphism f ,g :
X1 −→ X2 of the dA∞-algebras is the set of a function;

h = hi
n : X

⊗(n+1)
1 −→ X2• |(h

i
nX

⊗(n+1)
1 )• ⊆ X2•+n

n ≥ 0, i ≥ 0

that fulfills the accompanying connection: for any integer
numbers, k ≥ 0, n ≥ 0;

∑
i+ j=k

dh
j
0 + hi

0d j = f k
0 − gk

0,

∑i+ j=k dih
j
n+1 +(−1)t(m+1)+n+1hi

n+1d j

= f k
n+1 − gk

n+1 ∑i+ j=k ∑n
m=0(−1)t(m+1)+n+1hi

n−m(1⊗

...⊗ 1⊗π
j

m⊗ 1⊗ ...⊗ 1)

+∑i+ j=k ∑n
m=0(−1)(m+1)+ε(t)π i

m(g
j1
n1
⊗ g

jt−1
nt−1

⊗ h
jt
nt

⊗ f
jt+1

nt+1
⊗ ...⊗ f

jm+2
nm+2

)

the sum over all t, since π j
m and h

jt
nt can be situated, n1 +

...+ nm+2 = n−m and j1 + ...+ jm+2 = j and

ε(t) = n2 + n4 + ...+ n2[t/2]+ n2[(t+1)/2]+1+ n2[(t+1)/2]+3

+...+ n2[m+1/2]+1.

2 Results

We describe and discuss the homotopy of dA∞-algebras
properties. Let any two dA∞-algebras X ,Y and
(η : X ⇌ Y : ξ ,hi) be an SDR-case of A∞-modules, where
ξ ,η are the morphisms of A∞-algebras, the map h is a
homotopy map between ξ ,η and 1X of A∞ of
dA∞-algebras. Then SDR-situation of A∞-modules defines
dA∞-algebras SDR-situation.
Definition 2.1 The differential perturbation of

A∞-algebras (X1,d
i,π i) is characterized to be the set of

the maps formula; t i : X1 −→ X1, i ≥ 1, i ∈ Z, t0 = 0
such that,

∑
i+ j=k

dit j + ∑
i+ j=k

t id j =− ∑
i+ j=k

t it j,∀k ≥ 1 (3)

From this relation, any differential perturbation in the
form, t i : X1 −→ X1, t

0 = 0, i ∈ Z, i ≥ 1 of an arbitrary
A∞-algebras (X1,d

i,π i), there exists a new
dA∞ s.h. Di = di + t i, i ≥ 0, i ∈ Z.

Notethat :
i- If we put k = 1, equation (3) satisfies the relation:
d0t1 + t1d0 = 0, that is anti-commutative

(i.e. d0t1 =−t1d0).
ii- If k = 2, then d0t2 + t2d0 = −(d1t1 + t1d1 +(t1)2:
Then the map t1 : X1 −→ X1 is homotopic to the map
d1 : X1 −→ X1. Along these lines we introduce a new
definition of differential D∞-module (X1,d

i) the
perturbation t i s.h. t1 = t,d0 = 0 , and t i = 0, i ≥ 2.
Example 2.2 The perturbation A∞-algebras (X1,d

i,π i)

can be built up by taking the filtration differential module
over a self-assertive field, the filtration differential
algebra, Xn

1 , d(Xn
1 ) ⊆ Xn

1 , n ≥ 0 and there is (X ,d)
which is the differential module for differential
perturbation such that satisfies the condition
(Xn

1 ) ⊆ Xn−1
1 ,n ≥ 1. Suppose the sub-module Xn

2 on Xn
1 ,

such that Xn
1 = Xn

2 ⊕Xn−1
1 , then: t i

n : Xn
2 −→ Xn−1

2 , such
that

t : Xn
2 −→ Xn−1

1 = Xn−1
2 ⊕ ...⊕Xn−i

2 ⊕ ...⊕X0
2 .

Clearly, the set t i : X1 −→ X1, i ≥ 1, where
t i = 0, t i = ⊕n≥0 ⊕ t i

n, i ≥ 1 is a perturbation of
dA∞-algebras (X1,d

i,π i) , since; td+ dt =−t2.
To examine the perturbation homotopy invariant of
A∞-algebra (X1,d

i,π i) let the deformation be as follows:

η i : ((X ,di)−→ (Y,di) : ξ i,hi)

of differential D∞- module, and the perturbation
t i : X1 −→ X1 for differential D∞- module (X1,d

i). Our
plan to set up the perturbation t i

∗ : X2 −→ X2 of dA∞-
module (X2,d

i). Clearly, t0
∗ = 0. Let, t1

∗ = η0 t1 ξ 0, and
using the relation d0t1 + t1d0 = 0 we get

d0t1
∗ + t1

∗d0 = d0(η0t1ξ 0)+ (η0t1ξ 0)d0 = η0d0t1ξ 0

+η0t1d0ξ 0 = η0(d0t1 + t1d0)ξ 0 = 0
(i)

Let us define the map t2
∗ by the

t2
∗ = η0t2ξ 0 +η1t1ξ 0 +η0t2ξ 1 +η0t1h0t1ξ 0.

From the relation (i) we have

d0t2 + d1t1 + t2d0 =−t1t1 (ii)

for given maps t1
∗ and t2

∗ we get the accompanying
connection,

d0t2
∗ + d1t1

∗ + t1
∗d1 + t2

∗d0 =−t1t1
∗ ,

since
d1t1

∗ = d1(η0t1ξ 0) = η1d0t1ξ 0,

t1
∗d1 = (η0t1ξ 0)d1 = η0t1d0t1ξ 1,

d0t2
∗ = η0d0t2ξ 0+η0d1t1ξ 0+η0t1d1ξ 0+d0η0t1h0t1ξ 0,

t2
∗d0 =η0t2d0ξ 0+η0t1d0t1ξ 0+η0t1d1ξ 0+η0t1h0t1ξ 0d0,

t1
∗ t1

∗ = (η0t1ξ 0)(η0t1ξ 0) = η0t1(d0h0 + h0d0 − 1)t1ξ 0

= η0t1d0h0t1ξ 0 +η0t1h0d0t1ξ 0 −η0t1t1ξ 0

=−d0η0t1h0t1ξ 0 −η0t1h0t1ξ 0d0 −η0t1t1ξ 0
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Subsequently by thinking about the relations (i),(ii) and:

d0t3 + d1t2 + d2t1 + t2d1 + d1t2 + t3d0 =−(t1t2 + t2t1)

we get t3
∗ as;

t3
∗ = η0t3ξ 0 +η1t2ξ 0 +η2t1ξ 0 +η0t1ξ 2

+η1t1ξ 1 +η0t2h0t1ξ 0 +η0t1h0t2ξ 0

+η0t1h1t1ξ 0+η0t1h0t1ξ 0+η0t1h0t1ξ 0+η0t1h0t1h0t1ξ 0,

such that

d0t3
∗ + d1t2

∗ + t2
∗d1 + t1

∗d2 + t3
∗d1 =−(t1t2

∗ + t2
∗t1).

The accompanying statement gives a perturbation;
t i
∗ : i ≥ 0, of differential D∞ by aiding the homotopy idea.

Theorem 2.3 Let a strong deformation retraction;

η i : ((X1,d
i)⇌ (X2,d

i) : ξ i,hi)

of A∞-algebra (X1,d
i,π i) and let the differential

perturbation t i : X1 −→ X1, then we have the following
statements:
On the A∞-algebra (X2,d

i,π i) we can establish the
perturbation η̃ i : X2 −→ X2 as follows

t i
∗ = ∑1≤k≤i, i1+...+ik+ j1, + j2+...+ jk+1=i(h

j1t i1)(h j2 t i2)

...(h jkt ik)ξ jk+1 , t0
∗ = 0

(4)
The strong deformation retraction

(η̃ i : (X1,d
i + t i)⇌ (X2,d

i + t i
∗) : ξ̃ i, h̃i)

such that







ξ̃ 0 = ξ 0

ξ̃ i = ∑1≤k≤i, i1+...+ik+ j1+ j2+...+ jk+1=i(h
j1t i1)

(h j2t i2)...(h jk t ik)ξ jk+1 , i ≥ 1

(5)







η̃0 = η0

η̃ i = ∑1≤k≤i, i1+...ik+ j1+ j2+...+ jk+1=i(h
jit i1)

(h j2t i2)...(h jk t ik)ξ jk+1 , i ≥ 1

(6)

is a strong deformation retraction η i : (X1,d
i)⇌ (X2,d

i) :
ξ i,hi) is SDR-case of dA∞- module, then

η̃ i : (X ,di + t i)⇌ (Y,di + t i
∗) : ξ̃ i, h̃i) (7)

is also SDR-case of A∞-algebra (X1,d
i,π i). Proof. A

deformation of strong retraction,
(η i

∗ : (X1,d
i) : (X2,d

i
∗) : ξ i

∗,h
i
∗) of A∞-module which

defined relations(7)− (4) and is the deformation of strong
retraction η0 : (X1,d

0)⇌ (X2,d
0) : ξ 0,h0).

Most importantly, the deformation of strong retraction

η̄ i : (X1,D
i = di + t i)⇌ ((X2, D̄

i = di + t̄ i)) : (ξ̄ i, h̄i) (8)

Where, t̄ i = D̄i − di
∗ is a great deformation of strong

retraction (i = 0):

(η̄0 : (X1,D
0 = d0 + t0)⇌ (X2, D̄

0 = d0 + t̄0) : ξ̄ 0, h̄0).

�

By thinking about the isomorphism

η ∗ ξ = (η ∗ ξ )i : (X ,d0)⇌ (Y,d0
∗) : gi = g,

from equation (8) we get:

η̄ i : (X1,D
i = di + t i)⇌ ((X2, D̄

i = di + t̄ i)) : (ξ̄ i, h̄i) (9)

as follows:







η̃0 = η0

η̃ i = ∑1≤k≤i, i1+...ik+ j1+ j2+...+ jk+1=i(h
jit i1)

(h j2t i2)...(h jkt ik)ξ jk+1 , i ≥ 1

(10)

The immediate estimation shows that the deformation
of strong retraction of A∞-algebra [9] is obscure (Equation
(10) identical to recipe (4)− (7)).
Example 2.4 The homology H∗(A) has a graded

A∞-algebras structure if A is a differential graded algebra
A over field.

Example 2.5 The graded space A = M[ε]/(ε2) with the
trivial A∞-structure given by the map m2 induced by the
multiplication of M and the maps mn = 0 for all
n 6= 2,where M is an ordinary algebra for N ≥ 1 and ε be
an indeterminate of degree 2 − N. We define the linear
map f : M⊗N −→ M and also the deformed multiplication

m
′

n =

{

mn n 6= N

mN + ε f n = N

A endowed with the m
′

n is an A∞-algebra iff f is Hochschild
cocycle for M.

3 Conclusion

In our work, we studied the derived E-infinity algebra and
the homology of differential graded algebra. We define
the minimal derived E-infinity algebra and studied some
properties of differential graded algebra.
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