

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/140311

Perturbation Differential A-Infinity Algebra

Alaa Hassan Noreldeen Mohamed

Department of Mathematics, Faculty of science, Aswan University, Aswan. Egypt

Received: 7 Jan. 2020, Revised: 21 Feb. 2020, Accepted: 23 Feb. 2020 Published online: 1 May 2020

Abstract: In the present paper, we investigate and introduce the perturbation of dA_{∞} -algebra and the homotopy property (SDR-case). We also verify the homotopy theory of dA_{∞} -algebras and A_{∞} - differential module. In addition, We construct a property of homotopy invariant property of A_{∞} -differential algebras.

Keywords: A-infinity-Differential module -Homotopy -Homology theory.

1 Introduction

According to perturbation hypothesis, speculation is a peneficial procession to get relatively small differential complexes expressing an assumed chain homotopy type. The use of perturbation method in differential homological algebra has a long history, much of it was indicated in [1]. Stasheff in [2] started the possibility of an A-infinity space, since it is continuous associative multiplication and homotopy invariant parallel to topological space. One of the primary homes of the structure in an A- infinity space is its homotopy invariance, as the stability of this structure which is estimation to the arbitrary homotopy equivalence to topological spaces. In [3], [4] and [5], the graded A-infinity algebras applications to the sort of homologies of twisted tensor products and homologies of differential algebras are addicted. In [1] and [3] applications of differential A-infinity algebras to mathematical physics, topology, and geometry are stated. In [1], they induce the universal of the *D*-infinity differential *A*-infinity algebra, that is a homotopically invariant quantum analogue of the universal of a differential A-infinity algebra. Lodder, Lambe, and Stasheff ([4],[6] and [2]) began the perturbation of differential module intention and established the homotopy invariance property of differential module perturbation. They ordained the dependence between the homotopy of a structure of the differential A-infinity (to short A_{∞} -algebra) and differential perturbations. In [1], Lapin presented the concept of D-infinity differential module (shortly D_{∞} -module), and detected the relation between D-infinity

differential module and perturbations differential module. In the coincident work, we define and ponder the perturbation of *D*-infinity *A*-infinity algebra and its homotopy invariant characteristic (SDR-case).

We recollect some fundamental facts existent in the sequel.

Definition 1.1 [7] We can define a differential algebra (A, d, π) as (A, d) which is differential module over an algebra with the multiplication map $\pi : A \otimes A \longrightarrow A$ such satisfy the associate law, $(1 \otimes \pi)\pi = (\pi \otimes 1)\pi$ holds.

Definition 1.2 For any arbitrary algebra A, the form (A, d, π_i) is referred to as A - infinity algebra, since the graded module over algebra (A, d) such that:

$$\sum_{i=0}^{n} (-1)^{\varepsilon} \pi_i (1 \otimes \ldots \otimes \pi_{n-1} \otimes \ldots \otimes 1) = 0, \quad \varepsilon = nk + ik + n + k$$

Definition 1.3[8] A D_{∞} -module *A* together with a set of the operations $\pi_n : A^{\otimes n+2} \longrightarrow A, n \ge 0$ is called differential A_{∞} -algebra (dA_{∞} -algebra), with the following identity;

$$d(\pi_{n-1}) = \sum_{i=0}^{n} (-1)^{\varepsilon} \pi_i (1 \otimes \dots \otimes \pi_{n-1} \otimes \dots \otimes 1) = 0,$$

$$\varepsilon = nk + ik + n + k$$
(1)

Definition 1.4 The homomorphism $f: (X_1, d, \pi_n) \longrightarrow (X_2, d, \pi_n)$ of the dA_{∞} -algebras is the set; $f = f_n: X_1^{\otimes (n+1)} \longrightarrow X_2 | f_n(X_1^{\otimes (n+1)})_* \subseteq X_{2_{*+n}}, n \in \mathbb{Z}, n \ge 0$

^{*} Corresponding author e-mail: ala2222000@yahoo.com

that fulfill the accompanying connection: for integer, $n \ge -1$,

$$df_{n+1} + (-1)^n f_{n+1} = \sum_{m=0}^n (-1)^{n_2+n_4+\dots} f_{n-m} (1 \otimes \dots \otimes 1) \\ \pi_m \otimes 1 \otimes \dots \otimes 1) + \sum_{m=0}^n (-1)^{t(m+1)+n} \pi_m (f_{n_1} \otimes \dots \otimes f_{n_{m+2}})$$

where $n_1 + ... + n_{n-m}$, π_m can be located and the sum is appropriated over all locations *t*.

Definition 1.5 A family of morphisms $f = f_n : X \longrightarrow Y$ and $g = g_n : Y \longrightarrow Z$ of dA_{∞} -algebras, its composition $gf = (gf)_n : (X, d, \pi_n) \longrightarrow (Z, d, \pi_n)$ is defined by:

$$((gf)_n = \sum_{m=0}^n g_m(f_{n_1} \otimes \ldots \otimes f_{n_{m+2}})), \quad n \ge 0$$

and $n_1 + ... + n_{m+1} = n - m$.

Definition 1.6 We can define the family of maps as follows:

$$h = h_n : X_1^{\otimes (n+1)} \longrightarrow X_2 | h_2(X_1^{\otimes (n+1)})_* \subseteq X_{2_{*+n+1}}$$

$$n \in \mathbb{Z}, n \ge 0$$

as the homotopy morphism, $h: X_1 \longrightarrow X_2$ between the morphisms of the dA_{∞} -algebras, $f = f_n, g = g_n: (X_1, d, \pi_n) \longrightarrow (X_2, d, \pi_n)$ such that satisfy the relation: $\forall n \ge -1$,

$$dh_{n+1} + (-1)^{n+1}h_{n+1} = f_{n+1} + g_{n+1} + \sum_{m=0}^{n} (-1)^{t(m+1)+n+1}h_{n-m}(1 \otimes \dots \otimes 1 \otimes \pi_m \otimes 1) + \sum_{m=0}^{n} (-1)^{(m+1)+\varepsilon(t)}\pi_m(g_{n_1} \otimes \dots \otimes g_{n_{t-1}} \\ \otimes h_{n_t} \otimes f_{n_{t+1}} \otimes \dots \otimes f_{n_{m+2}})$$

and the sum over *t*. And π_m and h_m can be situated, and;

$$\varepsilon(t) = n_2 + n_4 + \dots + n_{2[t/2]} + n_{2[(t+1)/2]+1} + n_{2[(t+1)/2]+3} + \dots + n_{2[(m+1)/2]+1}.$$

Definition 1.7[9] Consider two arbitrary differentials *A*-infinity algebras X_1 and X_2 . The triple system $\eta : X_1 \rightleftharpoons X_2$ defines the strong differential retract of a dA_{∞} -algebras, since the maps; $\eta : X_1 \longrightarrow X_2$, $\xi : X_2 \longrightarrow X_1$ are differential module morphisms and satisfy; $\eta \xi = 1_{X_2}$ and *h* is defined to be the homotopy between η , ξ and 1_X . If $h = 0, h\xi = 0, hh = 0$ hold, we can call the triple: $\eta : X_1 \leftrightharpoons X_2 : h, \xi$ SDR-case of a differential modules.

We give an excellent precedent of a differential SDR-case as a homology of the differential module X_1 over the field K, defined by $H(X_1) = Ker \ d/Im \ d$, to be the homology module of the differential module (X_1, d) over K. If $H(X_1)$ defined as the differential module such the differential is zero, then SDR-case $\eta : X_1 \rightleftharpoons X_2 : h, \xi$ for the differential modules, referred to as homology SDR-case of differential modules, via the use of the decomposition of fixed direct sum **Definition 1.8** The differential perturbation of the dA_{∞} -algebra (X_1, d, π_i) is the differential perturbation of the differential (X_1, d) modules satisfying;

$$t^i \pi = \pi (1 \otimes t^i + t^i \otimes 1)$$

 $t: X_1 \longrightarrow X_1$ with differential module $(X_1, d+t)$, i.e., the mapping $d+t: X_1 \longrightarrow X_1$ satisfies the rule: $(d+t)^2 = 0$. Clearly, any $t: X_1 \longrightarrow X_1$ of the differential module (X_1, d) satisfies, $dt + td = -t^2$. For any (X_1, d) module there is a new map $D: X_1 \longrightarrow X_1$ s.h. $t = D - d: X_1 \longrightarrow X_1$.

Definition 1.9 A graded D_{∞} -module (X, d^i) with the set of the maps;

$$(\pi_n^i: X^{\otimes (n+2)} \longrightarrow X_* \mid \pi_n^i (X^{\otimes (n+1)})_* \subseteq X_{*+n}, \ n \ge 0, \ i \ge 0)$$

of modules is defined a differential A_{∞} - algebra if for the integer numbers; $n \ge 0$ and $k \ge 0$, the following relations hold:

$$\sum_{i+j=k} d^i \pi_0^j = \sum_{i+j=k} \pi_0^i d^j$$

where

$$\sum_{i+j=k} d^i \pi^j_{n+1} + (-1)^n \pi^i_{n+1} d^j = \sum_{i+j=k} \sum_{m=0}^n (-1)^{t(m+1)+n} \pi^i_{n-m} (1 \otimes \dots \otimes 1 \otimes \pi^j_m \otimes 1 \otimes \dots \otimes 1)$$

With the sum is over all *t*, and π_m^J can be situated.

Example 1.10 For an A_{∞} -algebras (X, d^{i}, π) . We hold the A_{∞} of dA_{∞} -algebra (X, d^{i}, π^{i}) if we set: $\pi_{0}^{0} = \pi$, $\pi_{n}^{i} = \pi$ for $(n, i) \neq (0, 0)$.

Definition 1.11 The homomorphism; $f : X_1 \longrightarrow X_2$ of the dA_{∞} -algebra X_1 and X_2 is the set;

$$f = (f_n^i : X_1^{\otimes (n+1)} \longrightarrow X_{2_{\bullet}} | f_n^i (X_1^{\otimes (n+1)})_{\bullet} \subseteq X_{2_{\bullet+n}}, n \ge i \ge 0)$$

of mappings of modules such that for any integer $n \ge 0$ and $k \ge 0$, then: $\sum_{i+j=k} d^i f_0^j = \sum_{i+j=k} f_0^i d^j$ where,

$$\begin{split} & \sum_{i+j=k} d^i f^j_{n+1} + (-1)^n f_{(n+1)}{}^i d^j = \sum_{i+j=k} \sum_{m=0}^n \\ & (-1)^{t(m+1)+n} f^i_{n-m} (1 \otimes \dots \otimes 1 \otimes \pi^j_m \otimes 1 \otimes \dots \otimes 1) \\ & + \sum_{i+j=k} \sum_{m=0}^n (-1)^{n_2+n_4+\dots} \pi^i_m (f^{j_1}_{n_1} \otimes \dots \otimes f^{j_{m+2}}_{n_{m+2}}) \end{split}$$

Where; $n_1 + \ldots + n_{m+2} = n - m$, $j_1 + \ldots + j_{m+2} = j$, since the sum over *t*, and π_m^j can be situated.

Definition 1.12 The composition $gf = (gf)_n^i : (X, d^i, \pi_n^i) \longrightarrow (Z, d^i, \pi_n^i)$ of morphisms

 $f = f_n^i : X \longrightarrow Y$ and $g = g_n^i : Y \longrightarrow Z$ of the dA_{∞} -algebras is defined as:

$$((gf)_n^k = \sum_{i+j=k} \sum_{m=0}^n g_m^i (f_{n_1}^{j_1} \otimes \ldots \otimes f_{n_{m+1}}^{j_{m+1}}), \ n \ge 0, \ k \ge 0,$$

where, $n_1 + ... + n_{m+1} = n - m$ and $j_1 + ... + j_{m+1} = j$.

Definition 1.13 The homotopy between amorphism f,g: $X_1 \longrightarrow X_2$ of the dA_{∞} -algebras is the set of a function;

$$h = h_n^i : X_1^{\otimes (n+1)} \longrightarrow X_{2\bullet} | (h_n^i X_1^{\otimes (n+1)})_{\bullet} \subseteq X_{2\bullet+n}$$

$$n \ge 0, \ i \ge 0$$

that fulfills the accompanying connection: for any integer numbers, $k \ge 0$, $n \ge 0$;

$$\sum_{i+j=k} dh_0^j + h_0^i d^j = f_0^k - g_0^k,$$

$$\sum_{i+j=k} d^i h_{n+1}^j + (-1)^{t(m+1)+n+1} h_{n+1}^i d^j$$

$$= f_{n+1}^k - g_{n+1}^k \sum_{i+j=k} \sum_{m=0}^n (-1)^{t(m+1)+n+1} h_{n-m}^i (1 \otimes \dots \otimes 1 \otimes \dots \otimes 1)$$

$$+ \sum_{i+j=k} \sum_{m=0}^n (-1)^{(m+1)+\varepsilon(t)} \pi_m^i (g_{n_1}^{j_1} \otimes g_{n_{t-1}}^{j_{t-1}} \otimes h_{n_t}^{j_t} \otimes g_{n_{t+1}}^{j_{t+1}} \otimes \dots \otimes f_{m+2}^{j_{m+2}})$$

the sum over all t, since π_m^j and $h_{n_t}^{j_t}$ can be situated, $n_1 + \dots + n_{m+2} = n - m$ and $j_1 + \dots + j_{m+2} = j$ and

$$\varepsilon(t) = n_2 + n_4 + \dots + n_{2[t/2]} + n_{2[(t+1)/2]+1} + n_{2[(t+1)/2]+3}$$

+ \dots + n_{2[m+1/2]+1}.

2 Results

We describe and discuss the homotopy of dA_{∞} -algebras properties. Let any two dA_{∞} -algebras X, Y and $(\eta : X = Y : \xi, h^i)$ be an SDR-case of A_{∞} -modules, where ξ, η are the morphisms of A_{∞} -algebras, the map h is a homotopy map between ξ, η and 1_X of A_{∞} of dA_{∞} -algebras. Then SDR-situation of A_{∞} -modules defines dA_{∞} -algebras SDR-situation.

Definition 2.1 The differential perturbation of A_{∞} -algebras (X_1, d^i, π^i) is characterized to be the set of the maps formula; $t^i: X_1 \longrightarrow X_1, i \ge 1, i \in Z, t^0 = 0$ such that,

$$\sum_{i+j=k} d^{i}t^{j} + \sum_{i+j=k} t^{i}d^{j} = -\sum_{i+j=k} t^{i}t^{j}, \forall k \ge 1$$
(3)

From this relation, any differential perturbation in the form, $t^i: X_1 \longrightarrow X_1, t^0 = 0, i \in Z, i \ge 1$ of an arbitrary A_{∞} -algebras (X_1, d^i, π^i) , there exists a new dA_{∞} s.h. $D^i = d^i + t^i, i \ge 0, i \in Z$.

Note that : i- If we put k = 1, equation (3) satisfies the relation: $d^0t^1 + t^1d^0 = 0$, that is anti-commutative (*i.e.* $d^0t^1 = -t^1d^0$).

ii- If k = 2, then $d^0t^2 + t^2d^0 = -(d^1t^1 + t^1d^1 + (t^1)^2$: Then the map $t^1 : X_1 \longrightarrow X_1$ is homotopic to the map $d^1 : X_1 \longrightarrow X_1$. Along these lines we introduce a new definition of differential D_{∞} -module (X_1, d^i) the perturbation t^i s.h. $t^1 = t, d^0 = 0$, and $t^i = 0, i \ge 2$. **Example 2.2** The perturbation A_{∞} -algebras (X_1, d^i, π^i) can be built up by taking the filtration differential module over a self-assertive field, the filtration differential algebra, X_1^n , $d(X_1^n) \subseteq X_1^n$, $n \ge 0$ and there is (X, d) which is the differential module for differential perturbation such that satisfies the condition $(X_1^n) \subseteq X_1^{n-1}, n \ge 1$. Suppose the sub-module X_2^n on X_1^n , such that $X_1^n = X_2^n \oplus X_1^{n-1}$, then: $t_n^i : X_2^n \longrightarrow X_2^{n-1}$, such that

$$t: X_2^n \longrightarrow X_1^{n-1} = X_2^{n-1} \oplus \ldots \oplus X_2^{n-i} \oplus \ldots \oplus X_2^0.$$

Clearly, the set $t^i : X_1 \longrightarrow X_1$, $i \ge 1$, where $t^i = 0$, $t^i = \bigoplus_{n \ge 0} \oplus t^i_n$, $i \ge 1$ is a perturbation of dA_{∞} -algebras (X_1, d^i, π^i) , since; $td + dt = -t^2$. To examine the perturbation homotopy invariant of A_{∞} -algebra (X_1, d^i, π^i) let the deformation be as follows:

$$\eta^i: ((X,d^i) \longrightarrow (Y,d^i): \xi^i, h^i)$$

of differential D_{∞} - module, and the perturbation $t^i: X_1 \longrightarrow X_1$ for differential D_{∞} - module (X_1, d^i) . Our plan to set up the perturbation $t^i_*: X_2 \longrightarrow X_2$ of dA_{∞} module (X_2, d^i) . Clearly, $t^0_* = 0$. Let, $t^1_* = \eta^0 t^1 \xi^0$, and
using the relation $d^0t^1 + t^1d^0 = 0$ we get

$$\begin{aligned} d^{0}t_{*}^{1} + t_{*}^{1}d^{0} &= d^{0}(\eta^{0}t^{1}\xi^{0}) + (\eta^{0}t^{1}\xi^{0})d^{0} = \eta^{0}d^{0}t^{1}\xi^{0} \\ &+ \eta^{0}t^{1}d^{0}\xi^{0} = \eta^{0}(d^{0}t^{1} + t^{1}d^{0})\xi^{0} = 0 \end{aligned} (i)$$

Let us define the map t_*^2 by the

$$t_*^2 = \eta^0 t^2 \xi^0 + \eta^1 t^1 \xi^0 + \eta^0 t^2 \xi^1 + \eta^0 t^1 h^0 t^1 \xi^0.$$

From the relation (i) we have

$$d^{0}t^{2} + d^{1}t^{1} + t^{2}d^{0} = -t^{1}t^{1} \qquad (ii)$$

for given maps t_*^1 and t_*^2 we get the accompanying connection,

since

$$d^{0}t_{*}^{2} + d^{1}t_{*}^{1} + t_{*}^{1}d^{1} + t_{*}^{2}d^{0} = -t^{1}t_{*}^{1},$$

$$d^{1}t_{*}^{1} = d^{1}(\eta^{0}t^{1}\xi^{0}) = \eta^{1}d^{0}t^{1}\xi^{0},$$

$$t_{*}^{1}d^{1} = (\eta^{0}t^{1}\xi^{0})d^{1} = \eta^{0}t^{1}d^{0}t^{1}\xi^{1},$$

$$\begin{split} d^{0}t^{2}_{*} &= \eta^{0}d^{0}t^{2}\xi^{0} + \eta^{0}d^{1}t^{1}\xi^{0} + \eta^{0}t^{1}d^{1}\xi^{0} + d^{0}\eta^{0}t^{1}h^{0}t^{1}\xi^{0}, \\ t^{2}_{*}d^{0} &= \eta^{0}t^{2}d^{0}\xi^{0} + \eta^{0}t^{1}d^{0}t^{1}\xi^{0} + \eta^{0}t^{1}d^{1}\xi^{0} + \eta^{0}t^{1}h^{0}t^{1}\xi^{0}d^{0}, \\ t^{1}_{*}t^{1}_{*} &= (\eta^{0}t^{1}\xi^{0})(\eta^{0}t^{1}\xi^{0}) = \eta^{0}t^{1}(d^{0}h^{0} + h^{0}d^{0} - 1)t^{1}\xi^{0} \\ &= \eta^{0}t^{1}d^{0}h^{0}t^{1}\xi^{0} + \eta^{0}t^{1}h^{0}d^{0}t^{1}\xi^{0} - \eta^{0}t^{1}t^{1}\xi^{0} \\ &= -d^{0}\eta^{0}t^{1}h^{0}t^{1}\xi^{0} - \eta^{0}t^{1}h^{0}t^{1}\xi^{0} d^{0} - \eta^{0}t^{1}t^{1}\xi^{0} \end{split}$$

Subsequently by thinking about the relations (i), (ii) and:

$$d^{0}t^{3} + d^{1}t^{2} + d^{2}t^{1} + t^{2}d^{1} + d^{1}t^{2} + t^{3}d^{0} = -(t^{1}t^{2} + t^{2}t^{1})$$

we get t_*^3 as;

$$t_*^3 = \eta^0 t^3 \xi^0 + \eta^1 t^2 \xi^0 + \eta^2 t^1 \xi^0 + \eta^0 t^1 \xi^2 + \eta^1 t^1 \xi^1 + \eta^0 t^2 h^0 t^1 \xi^0 + \eta^0 t^1 h^0 t^2 \xi^0$$

such that

$$d^{0}t_{*}^{3} + d^{1}t_{*}^{2} + t_{*}^{2}d^{1} + t_{*}^{1}d^{2} + t_{*}^{3}d^{1} = -(t^{1}t_{*}^{2} + t_{*}^{2}t^{1}).$$

 $+\eta^{0}t^{1}h^{1}t^{1}\xi^{0}+\eta^{0}t^{1}h^{0}t^{1}\xi^{0}+\eta^{0}t^{1}h^{0}t^{1}\xi^{0}+\eta^{0}t^{1}h^{0}t^{1}h^{0}t^{1}\xi^{0},$

The accompanying statement gives a perturbation; $t_*^i : i \ge 0$, of differential D_{∞} by aiding the homotopy idea.

Theorem 2.3 Let a strong deformation retraction;

$$\eta^i:((X_1,d^i) \rightleftharpoons (X_2,d^i):\xi^i,h^i)$$

of A_{∞} -algebra (X_1, d^i, π^i) and let the differential perturbation $t^i: X_1 \longrightarrow X_1$, then we have the following statements:

On the A_{∞} -algebra (X_2, d^i, π^i) we can establish the perturbation $\tilde{\eta}^i : X_2 \longrightarrow X_2$ as follows

$$\begin{aligned}
t_*^i &= \sum_{1 \le k \le i, \ i_1 + \dots + i_k + j_1, \ + j_2 + \dots + j_{k+1} = i} (h^{j_1} t^{i_1}) (h^{j_2} t^{i_2}) \\
\dots (h^{j_k} t^{i_k}) \xi^{j_{k+1}}, \ t_*^0 &= 0
\end{aligned}$$
(4)

The strong deformation retraction

$$(\tilde{\eta}^i: (X_1, d^i + t^i) \leftrightharpoons (X_2, d^i + t^i_*): \tilde{\xi}^i, \tilde{h}^i)$$

such that

$$\begin{cases} \tilde{\xi}^{0} = \xi^{0} \\ \tilde{\xi}^{i} = \sum_{1 \le k \le i, \ i_{1} + \dots + i_{k} + j_{1} + j_{2} + \dots + j_{k+1} = i} (h^{j_{1}} t^{i_{1}}) \\ (h^{j_{2}} t^{i_{2}}) \dots (h^{j_{k}} t^{i_{k}}) \xi^{j_{k+1}}, i \ge 1 \end{cases}$$
(5)

$$\begin{cases} \tilde{\eta}^{0} = \eta^{0} \\ \tilde{\eta}^{i} = \sum_{\substack{1 \le k \le i, \ i_{1} + \dots i_{k} + j_{1} + j_{2} + \dots + j_{k+1} = i \\ (h^{j_{2}} t^{i_{2}}) \dots (h^{j_{k}} t^{i_{k}}) \xi^{j_{k+1}}, \ i \ge 1 \end{cases}$$
(6)

is a strong deformation retraction $\eta^i : (X_1, d^i) = (X_2, d^i) : \xi^i, h^i)$ is SDR-case of dA_{∞} - module, then

$$\tilde{\eta}^{i}: (X, d^{i} + t^{i}) \leftrightarrows (Y, d^{i} + t^{i}_{*}): \tilde{\xi}^{i}, \tilde{h}^{i})$$

$$(7)$$

is also SDR-case of A_{∞} -algebra (X_1, d^i, π^i) . **Proof.** A deformation of strong retraction, $(\eta^i_* : (X_1, d^i) : (X_2, d^i_*) : \xi^i_*, h^i_*)$ of A_{∞} -module which defined relations(7) – (4) and is the deformation of strong retraction $\eta^0 : (X_1, d^0) \rightleftharpoons (X_2, d^0) : \xi^0, h^0)$.

Most importantly, the deformation of strong retraction

$$\bar{\eta}^{i}: (X_{1}, D^{i} = d^{i} + t^{i}) \leftrightarrows ((X_{2}, \bar{D}^{i} = d^{i} + \bar{t}^{i})): (\bar{\xi}^{i}, \bar{h}^{i})$$
 (8)

© 2020 NSP Natural Sciences Publishing Cor. Where, $\bar{t}^i = \bar{D}^i - d^i_*$ is a great deformation of strong retraction (i = 0):

$$(\bar{\eta}^0: (X_1, D^0 = d^0 + t^0) := (X_2, \bar{D}^0 = d^0 + \bar{t}^0): \bar{\xi}^0, \bar{h}^0).$$

By thinking about the isomorphism

$$\eta * \xi = (\eta * \xi)^i : (X, d^0) \leftrightarrows (Y, d^0_*) : g^i = g,$$

from equation (8) we get:

$$\bar{\eta}^i: (X_1, D^i = d^i + t^i) \coloneqq ((X_2, \bar{D}^i = d^i + \bar{t}^i)): (\bar{\xi}^i, \bar{h}^i)$$
(9)

as follows:

$$\begin{cases} \tilde{\eta}^{0} = \eta^{0} \\ \tilde{\eta}^{i} = \sum_{1 \le k \le i, \ i_{1} + \dots + i_{k} + j_{1} + j_{2} + \dots + j_{k+1} = i} (h^{j_{i}} t^{i_{1}}) \\ (h^{j_{2}} t^{i_{2}}) \dots (h^{j_{k}} t^{i_{k}}) \xi^{j_{k+1}}, \ i \ge 1 \end{cases}$$
(10)

The immediate estimation shows that the deformation of strong retraction of A_{∞} -algebra [9] is obscure (Equation (10) identical to recipe (4) – (7)).

Example 2.4 The homology $H_*(A)$ has a graded A_{∞} -algebras structure if A is a differential graded algebra A over field.

Example 2.5 The graded space $A = M[\varepsilon]/(\varepsilon^2)$ with the trivial A_{∞} -structure given by the map m_2 induced by the multiplication of M and the maps $m_n = 0$ for all $n \neq 2$, where M is an ordinary algebra for $N \ge 1$ and ε be an indeterminate of degree 2 - N. We define the linear map $f : M^{\otimes N} \longrightarrow M$ and also the deformed multiplication

$$m'_{n} = \begin{cases} m_{n} & n \neq N \\ m_{N} + \varepsilon f & n = N \end{cases}$$

A endowed with the m'_n is an A_∞ -algebra iff f is Hochschild cocycle for M.

3 Conclusion

In our work, we studied the derived E-infinity algebra and the homology of differential graded algebra. We define the minimal derived *E*-infinity algebra and studied some properties of differential graded algebra.

Acknowledgements

The auther is strongly grateful to the officials for their great proposals and help in the main draft of the present paper.

450

References

- [1] S. Lapin, (DA)∞ -modules over (DA)∞-algebras and spectral sequences, Izv.Math., 66, No. 3, 543-568 (2002).
- [2] J. Stasheffm, Homotopy associativity of H-spaces. I, II, *Trans. Am. Math.Soc.* 108, No.2, 275-312 (1963).
- [3] V. Gugenheim and L. Lambe, Perturbation theory in differential homological algebra, *Illinois J. Math.*, 33: 566-582, (1989).
- [4] J. Lodder, A Comparison of Products in Hochschild Cohomology, *Communications in Algebra*, 44, 11, 4874-4891, (2016).
- [5] R. Hardeman, Computing A-Homotopy Groups of Graphs Using Coverings and Lifting Properties, Master thesis, University of Calgary. http://hdl.handle.net/1880/108868, (2018).
- [6] L. Lambe, and J. Stasheff, Applications of perturbation theory to iterated fibrations, *Manuscripta Math.*, 58, 363-376,(1987).
- [7] N. Alaa, On the Hochschild cohomology theory of *A*∞-algebra, *Scientific African* **5**, e00115(2019).
- [8] N. Alaa, On the Cohomology of Relative Banach Algebras, *Modern Applied Science*; Vol. 13, No. 10; . doi:10.5539/mas.v13 n10p(2019)1.
- [9] A. Engel,: Wrong way maps in uniformly finite homology and homology of groups, *J. Homotopy Relat. Struct.* 13(2), 423-441 (2018).

Alaa Hassan Nour El-Dean Mohamed Assistant Prof. Faculty of Science, Mathematics Department, Aswan University, Aswan, Egypt (Algebraic Topology Topology) Doctor of (Ph.D), Pure philosophy Mathematics, Algebraic Topology,(6/ 2000), Aswan

Faculty of Science, South Valley University, Aswan, Egypt. Master of Science (M.Sc), Pure Mathematics, Algebraic Topology (2/ 1996), Aswan Faculty of Science, South Valley University, Aswan, Egypt.Bachelor of Science (B.Sc.) Mathematics, May 1992, Aswan Faculty of Science, Assuit University, Egypt.